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Abstract. We prove that a contact system of Jordan arcs is stretchable
if and only if it is extendable into a weak arrangement of pseudo-lines.

1 Barycentric Representations of Graphs

1.1 Tutte’s Barycenter Theorem

It is a classical result independently established by Wagner [11], Fáry [2] and
Stein [6] (which is also a consequence of the Steinitz’s theorem on convex poly-
topes [7]) that any simple planar graph has a straight line representation in the
plane. In the early 60’s, Tutte [9][10] gave a way to build a convex embedding
of a 3-connected planar graph:

– Let S be the vertex set of a face F0 of G in a planar embedding of G,
– let f : S → IR2 be a mapping of the vertices in S to the points of a convex

polygon, in such a way that the order of the points on the polygon is the
same as the order of the vertices on the face F0,

– let Ψ : V (G) \ S → IR2 be the solution of the linear system

∀x ∈ V (G) \ S, Ψ(x) =
∑

{v,x}∈E(G)

1
d(x)

Ψ(v) (1)

Theorem 1 (Tutte’s theorem). Ψ defines an embedding of G into the plane,
with strictly convex interior faces.

In his quite long and difficult proof, Tutte simultaneously reproves Kura-
towski’s planarity criterion. Other proofs of this theorem have been published
since. This result has been generalized by Thomassen to infinite planar graphs
in [8], while Linial, Lovász and Wigderson proved the equivalence of the k ver-
tex connectivity and the existence of a convex embedding (for any k extremal
vertices) in general position in IRk [3]. In Tutte’s construction, each vertex in
V (G) \ S is the barycenter of its neighbors. Although Tutte assumed all the
coefficients to be equal, his proof extends without changes when coefficients are
positive reals. In the aim of studying straight line segments contact systems, we
shall first give a short proof of an extension of this theorem, in a framework
allowing null coefficients, giving some side results necessary for our study on
stretchability.
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First, we shall give necessary and sufficient conditions for such a barycentric
linear system to have a unique solution (without planarity assumptions), and
for its solution to define a plane embedding (assuming that the graph is planar
and that the source set is embedded on a convex polygon with a compatible
point order). Instead of the classic approach consisting in directly proving the
planarity of the barycentric representation, we will make use of continuity argu-
ments, while considering an homotopy from some initial straight line embedding
of a triangulation of the graph (see also [1][4] for alternative approaches and
generalizations of Tutte’s Theorem).

1.2 Definitions and Notations

A barycentric system Σ on a graph G is a triple (S, f, α), where the source set
S of Σ is a subset of vertices of G, the limit function f of Σ is a function from
S to IRk, the weight function α of Σ is a function from V (G) × V (G) to [ 0 , 1 ],
and such that:

∀x, y ∈ V (G), α(x, y) �= 0 ⇒ {x, y} ∈ E(G) and x �∈ S (2)

∀x ∈ V (G) \ S,
∑

(x,v)∈E(G)

α(x, v) = 1 (3)

A solution of Σ is a function Ψ : V (G) → IRk, such that:

Ψ(x) =

{
f(x), if x ∈ S∑

v∈V (G) α(x, v)Ψ(v), otherwise
(4)

Remark 1. Notice the following equivalences:

x ∈ S ⇐⇒
∑

(x,v)∈E(G)

α(x, v) = 0 ⇐⇒ ∀v ∈ V (G), α(x, v) = 0

Let Σ = (S, f, α) be a barycentric system on a simple graph G. Let A be a
subset of V (G), the relative source set S(A) of A is defined by:

S(A) = (S ∩ A) ∪ {x ∈ A, ∃v �∈ A, α(x, v) �= 0} (5)

That is, ∀x ∈ A:

x �∈ S(A) ⇐⇒
∑

(x,v)∈E(GA)

α(x, v) = 1 (6)

Notice that, according to this definition, S(V (G)) = S.

Lemma 1. Let G be a simple graph, let Σ = (S, f, α) be a barycentric system
on G. Assume Ψ is a solution of Σ.
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Let A be a subset of V (G). We define αA : A × A → [ 0 , 1 ] by:

∀x, y ∈ A, αA(x, y) =

{
0, if x ∈ S(A)
α(x, y), otherwise

Then, ΣA = (S(A), Ψ|S(A), αA) is a barycentric system on GA, having Ψ|A as a
solution.

Proof. According to the definition of S(A), the function αA is such that:

∀x, y ∈ A, α(x, y) �= 0 ⇒ {x, y} ∈ E(GA) and x �∈ S(A)

∀x ∈ A \ S(A),
∑

(x,v)∈E(GA)

α(x, v) = 1

Thus, ΣA is a barycentric system on GA, obviously having Ψ|A as a solution. 
�
A barycentric system Σ = (S, f, α) on a simple graph G defines a directed graph
DΣ on the same vertex set as G, having S has its set of sources:

∀x, y ∈ V (G), (x, y) ∈ E(DΣ) ⇐⇒ α(y, x) �= 0 (7)

Let G be a simple graph of order n. Consider any fixed numbering of the
vertices of G. A barycentric system Σ = (S, f, α) on G define a n × n square
matrix A (with coefficients in [ 0 , 1 ]) and a n column matrix F (with coefficients
in IRk) by Ai,j = α(vi, vj) and

Fi =

{
f(vi) if vi ∈ S

0 otherwise

So, the solutions of Σ correspond to the solutions Ψ of the equation Ψ = AΨ +F .
Let G be a simple graph, Σ = (S, f, α) a barycentric system on G, and DΣ

the associated directed graph.
The distance function distS : V (G) → IN ∪ {∞} is defined as the minimum

length of a directed path in DΣ from S to a vertex, or ∞ is such a path does
not exist.

1.3 General Resolution

In the next lemmas, G is assumed to be a simple graph, and Σ = (S, f, α)
to be barycentric system on G. Elements of IRk are compared with respect to
lexicographic order.

Lemma 2. If supv∈V (G) distS(v) < ∞, any barycentric function Ψ reaches its
extremal values on S and, for any vertex x, there exists in DΣ:

– a directed path P+
x from S to x such that (Ψ, distS) is strictly increasing on

P+
x (with respect to lexicographic order).
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– a directed path P−
x from S to x such that (Ψ, −distS) is strictly decreasing

on P−
x (with respect to lexicographic order).

Proof. We only have to prove the existence of P+
x as the existence of the directed

path P−
x is then obtained by considering −Ψ instead of Ψ , and the monotony of

these paths implies that the extrema of Ψ are reached on S.
Assume there is at least a vertex v such that such a path P+

v does not
exist, and choose the one with the smallest possible value of (Ψ(v), distS(v)).
Obviously, v does not belong to S. So,

Ψ(v) =
∑

(w,v)∈E(DΣ)

α(v, w)Ψ(w) ≥ min
(w,v)∈E(DΣ)

Ψ(w)

– If there exists an arc (x, v) ∈ E(DΣ) such that Ψ(x) < Ψ(v), then P+
x exists

(by minimality assumption on v) and the directed path P+
v = P+

x + (x, v)
contradicts the hypothesis.

– Otherwise, any edge (x, v) ∈ E(DΣ) is such that Ψ(x) = Ψ(v). As there exists
an edge (x, v) ∈ E(DΣ), such that distS(x) = distS(v) − 1 the directed path
P+

x exists, and P+
v = P+

x + (x, v) contradicts the hypothesis.

In both cases, we are led to a contradiction. 
�

Lemma 3. If supv∈V (G) distS(v) < ∞, Σ has a unique solution φ.

Proof. The function φ exists and is unique if and only if the kernel of A is {0},
that is, if and only if the barycentric system (S, f0, α) has no non zero solution,
where f0 is a constant function mapping S to 0. But this is an implication of
the previous result, which asserts that the extrema of a solution of a barycentric
system are reached on its source set, that is that a solution has the same extremal
values as the limit function. 
�

Lemma 4. If supv∈V (G) distS(v) = ∞, the barycentric system has an infinite
set of solutions.

Proof. Let VS be the subset of vertices reachable from S by a directed path. For
any value c ∈ IRk, define the function f ′ : (V (G)\VS)∪S → IRk by f ′(v) = f(v) if
v ∈ S, and f ′(v) = c, otherwise. According to Lemma 3, the barycentric system
((V (G) \ VS) ∪ S, α, f ′) has a solution φ, which is also a solution of Σ. This
solution is such that φ|V (G)\VS

≡ c, and thus we get a infinite set of solutions of
Σ. 
�

Theorem 2. Let G be a simple graph. Any barycentric system Σ = (S, f, α)
has a solution, which is unique if and only if any vertex of the directed graph
DΣ associated with Σ may be reached from S by a directed path.

In the latter case, the solution φ reaches its extremal values on S and, for
any vertex x, there exists in DΣ:



Stretching of Jordan Arc Contact Systems 75

– a directed path P+
x from S to x such that (φ, distS) is strictly increasing on

P+
x (with respect to lexicographic order).

– a directed path P−
x from S to x such that (φ,−distS) is strictly decreasing

on P−
x (with respect to lexicographic order).

Proof. This is a direct consequence of the three preceding propositions. 
�

Corollary 1. Let G be a simple graph and let Σ = (S, f, α) be a barycentric
system on G having a unique solution.

Then, for any subset A of V (G),
∣∣ S(A)

∣∣ is at least equal to the number of
connected components of GA.

Proof. It is sufficient to prove the case where GA is connected. Let x be an
element of A. If x belongs to S, we are done. Otherwise, as Σ has a unique
solution, there exists, according to Theorem 2, a directed path P from S to x.
This path enters A at vertex v which, by definition, belongs to S(A). 
�

1.4 Planarity of a Barycentric Representation

Barycentric representations and convex drawings. Let G be a 2-
connected planar graph. A straight line drawing of G is a convex drawing if
each face of the graph is drawn as a convex polygon. The drawing is strictly
convex if the vertices of a face are mapped to the extremal points of the poly-
gon corresponding to the face. A barycentric representation of G with source
set S ⊆ V (G) is a mapping from V (G) to IR2, defining a straight line planar
drawing of G, and such that any vertex not in S is a barycenter of its neighbors
(with coefficients in [ 0 , 1 ]). Convex drawings are deeply related to barycentric
representations:

Lemma 5. Let G be a 2-connected planar graph. A straight line representation
of G is convex if and only it is a barycentric representation of G, which source
set S is the vertex set of a face of G and is embedded on a convex polygon (in a
compatible order).

Proof. Consider a convex drawing of G and let S be the vertex set of the external
face. Let v be an internal vertex. As the faces including v are convex, we may
augment the neighborhood of v to a wheel by adding straight line segments
between consecutive non-adjacent neighbors while preserving planarity. Thus, v
belongs to the convex hull of its neighbors. Hence, the drawing is a barycentric
representation of G with source set S.

Conversely, assume S is the vertex set of a face of G embedded on a convex
polygon of the plane. Assume the representation includes a non convex internal
face, and let v1, v2, v3 be three consecutive vertices of such a face defining a
concave angle at v2. Then, v2 does not belong to the convex hull of its neighbors,
a contradiction. 
�
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Corollary 2. The embedding defined by a convex drawing of a 2-connected pla-
nar graph G is uniquely determined by the choice of the external face.

Corollary 3. Let P be a convex polygon, let (p1, p2, p3) be a triangle including
P in its interior, let G be the graph induced by P , the triangle and a triangulation
of the annulus between the triangle and the polygon, let s1, s2, s3 be the vertices
of G mapped to p1, p2, p3 and let g(si) = pi (for 1 ≤ i ≤ 3).

Then, there exists a function αP : V (G) × V (G) → [ 0 , 1 ], such that Σ =
({s1, s2, s3}, g, αP ) is a barycentric system on G with unique solution Ψ mapping
G to its geometric embedding. A simple geometric argument shows that α may
be chosen in such a way that α(x, y) > 0, for any pair (x, y) of points adjacent
on P .

Barycentric Representations

Lemma 6. Let G be a maximal planar graph and let µ : [ 0 , 1 ] × V (G) → IR2

be a mapping such that

– µ(0, · ) induces a plane straight line representation of G,
– µ( · , x) is continuous for any vertex x of G,
– ∀t ∈ ] 0 , 1 ] and for all triangle (x1, x2, x3) of G, µ(t, x1), µ(t, x2) and µ(t, x3)

are not collinear.

Then, µ(t, · ) induces a plane straight line representation of G for every t in
[ 0 , 1 ].

Proof. In order to check if a straight line representation of a maximal planar
graph is plane, it is sufficient to check that no edge has null length, that no two
adjacent edges are overlapping and that the circular orders of the edges around a
vertex define a planar map. The first two cases may not occur, as it would imply
the existence of an aligned triangle. As µ( · , x) is continuous for any vertex x, the
circular order around a vertex may only change if two consecutive edges overlap
for some t, which would give rise to a contradiction. 
�
Given a weak plane straight line representation of G, a connected subgraph H is
0-degenerated if all its vertices are mapped to a same point. It is 1-degenerated
if all its vertices are mapped to aligned points. A k-degenerated component is a
maximal k-degenerated connected subgraph (it is thus an induced subgraph of
G).

Lemma 7. Let H be a 2-connected plane graph, and let Σ = (SH , fH , αH) be
a barycentric system on H having a unique solution ΨH , where SH is the vertex
set of the outer face of H.

Assume fH maps SH to a convex polygon P in compatible order, and that
the following condition holds for any subset A of vertices inducing a connected
subgraph:

(i)
∣∣ S(A)

∣∣ = 1 ⇒ ∣∣ A
∣∣ = 1
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(ii)
∣∣ S(A)

∣∣ = 2 ⇒ HA is a path

Then, there exists a maximal planar graph G and a barycentric system Σ =
(S, f, α) having a unique solution, such that:

– H is a subgraph of G,
– Ψ|V (H) is the solution of ΣH ,
– conditions (i) and (ii) hold for G (replacing HA by GA, and considering

relative source sets according to Σ)

Proof. Denote S(H) and S(G) the relative source set functions with respect to
H, ΣH and G, ΣG, respectively.

The graph G1 is obtained by adding a vertex in each interior face of H,
adjacent to all the vertices of the face.

Let {p1, p2, p3} be a triangle having the polygon P in its interior, let G2
be the graph obtained by geometrically triangulating the annulus between the
triangle and the polygon, let s1, s2, s3 be the vertices of G2 corresponding to the
p1, p2, p3, let f be the mapping defined by f(si) = pi, and let αP be such that
({s1, s2, s3}, f, αP ) is a barycentric system on G2 having a unique solution Ψ ,
which restriction to S is fH (such a function exists according to Corollary 3).

The graph G is obtained from the union of G1 and G2, by identifying the
vertices corresponding to elements of S.

Then, define α : V (G) × V (G) → [ 0 , 1 ] as follows:

α(x, y) =






αH(x, y), if x, y ∈ V (H)
αP (x, y), if x, y ∈ V (G2)

1
d(x) , if x ∈ V (G1) \ V (H) and y ∈ V (H),

0, otherwise

(8)

By construction, H is a subgraph of G. It is easily checked that Σ =
({s1, s2, s3}, f, α) is a barycentric system on G having a unique solution, which
restriction to V (H) is a solution of ΣH (according to Lemma 1).

Consider any subset A ⊆ V (G) inducing a connected subgraph GA of G, such
that

∣∣ SG(A)
∣∣ ≤ 2 and HA has no cycle. As no vertex x ∈ A \V (H) \ {s1, s2, s3}

may have all its neighbors in A (for otherwise its neighbors would form a cycle
in HA), any vertex in A \ V (H) belongs to S(G)(A). By definition, for any
x ∈ S(H)(A ∩ V (H)) \ SH , there exists v ∈ V (H) \ A, αH(x, v) > 0. Thus,
α(x, v) > 0, what implies x ∈ S(G)(A). If S(H)(A) ∩ SH is not empty, it is easily
checked that either S(H)(A) ∩ SH is included in S(G)(A), or SH is included
in A (and hence HA includes a cycle), or S(H)(A) has cardinality at least 3.
Altogether, we get:

S(G)(A) = S(H)(A ∩ V (H)) ∪ (A \ V (H)) (9)

Assume there exists a subset A of V (G) inducing a connected subgraph of
G.
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If
∣∣ S(G)(A)

∣∣ = 1 then, according to (9), either A ⊆ V (H) and
∣∣ S(H)(A)

∣∣ =
1, or A ∩ V (H) = ∅ and

∣∣ A
∣∣=1. Hence, (i) holds.

If
∣∣ S(G)(A)

∣∣ = 2 then, according to (9):

– either A ⊆ V (H) and
∣∣ S(H)(A)

∣∣ = 2, and hence GA = HA is a path,
– or A \ V (H) = 1 and

∣∣ S(H)(A)
∣∣ = 1, and hence

∣∣ A
∣∣ = 2 and GA is a path,

– or A ∩ V (H) = ∅ and A is a subset of size 2 of {s1, s2, s3} (hence inducing
a path).

Thus (ii) holds for G. 
�

Theorem 3. Let G be a 2-connected plane graph, S the vertex set of its outer
face, f a function mapping S to the points of a convex polygon in compatible
order, and α : V (G) × V (G) → [ 0 , 1 ], such that Σ = (S, f, α) is a barycentric
system on G with a unique solution Ψ .

Then, Ψ defines a barycentric representation of G if and only if, for any
subset A of V (G) inducing a connected subgraph, the following assertions hold:

(i)
∣∣ S(A)

∣∣ = 1 ⇒ ∣∣ A
∣∣ = 1

(ii)
∣∣ S(A)

∣∣ = 2 ⇒ GA is a path

Proof. First, notice that the necessity of conditions (i) and (ii) is straightforward.
Assume (i) and (ii) hold. According to Lemma 7, we may assume that G

is maximal planar and that f maps its outer face {s1, s2, s3} to a triangle
{p1, p2, p3}. It is a classical result [2,6,11] that G has a straight line embedding
Γ with external face {s1, s2, s3}. Moreover, using an affine transformation, we
may assume that s1, s2, s3 are mapped to p1, p2, p3 in this embedding. According
to Lemma 5, this is a barycentric representation, and thus induced by the solu-
tion of some barycentric system Σ′

x = (S, f, α′). Let αt = (1 − t)α′ + α. Then,
Σ(t) = (S, f, αt) is obviously a barycentric system having a unique solution Ψ (t)

continuously depending on t. Let µ(t, v) = Ψ (t)(v). If, for any t ∈ ] 0 , 1 ], there
exists no triangle (x1, x2, x3) such that µ(t, x1), µ(t, x2) and µ(t, x3) are collinear
then, according to Lemma 6, Ψ = µ(1, · ) will define a barycentric representation
of G. First notice that, if 0 < t < 1 then, for any x, y ∈ V (G), αt(x, y) > 0 if
and only if α(x, y) > 0 or α′(x, y) > 0. Thus, for any subset A of vertices, the
relative source set of A computed according to Σt includes the relative source
set of S(A) computed according to Σ. Hence, as (i) and (ii) hold for t = 1, these
conditions also hold for any t ∈ ] 0 , 1 ]. Moreover, if conditions (i) and (ii) imply
that no triangle (x1, x2, x3) of G is such that µ(1, x1), µ(1, x2) and µ(1, x3) are
collinear then the same will apply for any t ∈ ] 0 , 1 [.

Assume there exists a triangle {x1, x2, x3} of G, such that Ψ(x1), Ψ(x2) and
Ψ(x3) are collinear. Let GA ⊆ {x1, x2, x3} be the corresponding 1-degenerated
component, and let ax + by + c = 0 be an equation of the straight line ∆
including Ψ(A). Consider the barycentric system Σ∆ = (S, afx + bfy + c, α)
(where (fx(v), fy(v)) = f(v)) and its unique solution Ψ . The subgraph GA is
then a connected component of Ψ−1(0).
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Let G+ be the directed planar graph obtained from G by adding to vertices
ω− and ω+ and the edges {ω−, s} (if s ∈ S and φ(s) ≤ 0), {ω+, s} (if s ∈
S and φ(s) ≥ 0) and {ω−, ω+}.

For each vertex ai ∈ S(A) \ S, there exists a vertex v such that (v, ai) is an
arc of DΣ∆

and Ψ(v) �= 0. From the equation 0 = Ψ(ai) =
∑

(x,ai)∈E(DΣ∆
) Ψ(x),

we deduce that there exists, for each such ai, two vertices xi and yi, such that
(xi, ai) and (yi, ai) are arcs of DΣ∆

and such that Ψ(xi) < 0 < Ψ(yi). According
to Theorem 2, there exists in DΣ∆

, for each such ai, directed paths P+
ai

and P−
ai

,
whose vertices (except ai) have a negative (resp. positive) Ψ -value.

Thus, there exists, in G+, for each ai ∈ S(A), paths P1(ai) and P2(ai), from
ω− (resp. ω+) to ai, which vertices (except ai) have a negative (resp. positive)
Ψ -value. Hence, we have:

∀{a, a′} ⊆ S(A) P1(a) ∩ P2(a′) = ∅
∀a ∈ S(A), P1(a) ∩ A = P2(a) ∩ A = P1(a) ∩ P2(a) = {a}
∀a ∈ S(A), ω− ∈ P1(a) and ω+ ∈ P2(a)

Hence, two cases may occur:

– A = S(A). Then, the triangle {x1, x2, x3}, the paths Pi(xj) (i ∈ {1, 2}, j ∈
{1, 2, 3}), and the edge {ω−, ω+} may be contracted to K5, contradicting
the planarity of G+.

– there exists a vertex x in A \ S(A). According to the 3-connexity of G+,
there exists 3 disjoint paths from x to ω+. By continuity, these paths leave
A at some distinct vertices v1, v2, v3 ∈ S(A). Then, the subpaths from x to
v1, v2, v3, and the paths Pi(vj) (i ∈ {1, 2}, j ∈ {1, 2, 3}) may be contracted
to a K3,3, contradicting the planarity of G+.

In both cases, we are led to a contradiction. Thus, no triangle of G may be
mapped to 3 collinear points. Hence, Ψ is a barycentric representation of G. 
�

2 Jordan Arc Contact Systems

2.1 Introduction

A Jordan arc is an arc homeomorphic to a straight line segment. A pseudo-line
is an arc homeomorphic to a straight line. A contact system is a set of Jordan
arcs in the plane, such that two arcs intersect at most once at a point which
is internal to at most one arc. A contact system is stretchable if there exits
an homeomorphism which transforms it into a contact system whose arcs are
straight line segments.

A set L = (L1, . . . , Lk) of pseudo-lines is a weak arrangement of pseudo-lines
if it satisfies :

∀i �= j,
∣∣ Li ∩ Lj

∣∣ ≤ 1 (10)
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A weak arrangement of pseudolines is an arrangement of pseudolines if it satisfies
the additional axiom :

∀i, j, k, (Li ∩ Lj = ∅ and Li ∩ Lk �= ∅) ⇒ Lj ∩ Lk �= ∅
A contact system A = (A1, . . . , Ak) is extendable into an arrangement of

pseudo-lines (resp. into a weak arrangement of pseudolines) if there exists a
arrangement of pseudo-lines (resp. a weak arrangement of pseudolines) L =
(L1, . . . , Lk), such that Ai ⊆ Li for each i ∈ {1, . . . , k}.

Remark 2. It is easy to prove that a contact system is extendable into an ar-
rangement of pseudo-lines if and only if it is extendable into a weak arrangement
of pseudo-lines.

2.2 Extendibility and Extremal Points

An extremal point of a contact system is a point of the union of the arcs which
is interior to no arc. We note δ(A) the set of the extremal points of the contact
system A. A maximal contact system is a contact system whose extremal points
belong to the unbounded region. A contact system A = (A1, . . . , Ak) is extend-
able into a maximal contact system if there exists a maximal contact system
A′ = (A′

1, . . . , A
′
k), such that Ai ⊆ A′

i for each i ∈ {1, . . . , k}.

Remark 3. If a contact system is extendable into a weak arrangement of pseudo-
lines, it is extendable into a maximal contact system, which in turn is extendable
into a weak arrangement of pseudo-lines.

Let A be a maximal contact system extendable into a weak arrangement of
pseudo-lines L.

– Let p be an interior point of an arc A (but no other arc) on the unbounded
region of A.

– Let L be the pseudoline extending A in L, and let L− and L+ be the two
halves of L delimited by p.

– Let H be a half pseudo-line having its endpoint at p and having no other
intersection in A.

Then, L and H induce a “partition” of A into three new contact systems A−, A+

and A0 (see Fig. 1):

– H, L− and L+ define three unbounded regions R−,R+ and R0 having H ∪
L−, H ∪ L+ and L as respective frontiers.

– We define J−, J+ and J0 as the sub-arcs of H ∪ L−, H ∪ L+ and L strictly
including all the intersections of these later pseudolines with A.

These regions define three contact systems of Jordan arcs :

A− ={J−} ∪ {A ∩ R−, A ∈ A and A ∩ R− is a nonempty arc}
A+ ={J+} ∪ {A ∩ R+, A ∈ A and A ∩ R+ is a nonempty arc}
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Fig. 1. Partitioning a Contact System

A0 ={J0} ∪ {A ∩ R0, A ∈ A and A ∩ R0 is a nonempty arc}

These three contact systems have some nice properties :

Lemma 8. The contact systems A−,A+ and A0 are maximal and extendable
into weak arrangements of pseudo-lines.

Proof. The maximality is straightforward, as the extremal points of these contact
systems are either extremal points of A or the extremities of J−, J+ or J0.

The contact systems A− and A+ are homeomorph to the contact systems
where J− (resp. J+) is replaced by J0. Then, the weak arrangement of pseudo-
lines which extends A is an extension of all of the contact systems. 
�

Lemma 9. If the arc A includes no extremal point of A, we have :

2 ≤ ∣∣ A− ∣∣ <
∣∣ A ∣∣, 2 ≤ ∣∣ A+

∣∣ <
∣∣ A ∣∣, 3 ≤ ∣∣ A0

∣∣ ≤ ∣∣ A ∣∣,

and each of A−,A+ and A0 has two extremal points belonging to a same arc.

Proof. As A includes no extremal point of A the extremity of A in A− (resp.
A+) is interior to some arc B− (resp. B+). As A may not intersect an arc twice,
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we have B− �= B+. Moreover, each of these arcs intersects at most once the
extension L of A, and hence the arc B− (resp. B+) does not meet the region R+

(resp. R−). Thus,
∣∣ A+

∣∣ ≤ ∣∣ A ∣∣ − 1 and the same holds for
∣∣ A− ∣∣. Notice also

that A− and A+ include at least two arcs : J− (resp. J+) with two extremal
points on it and the non empty portion of B− (resp. B+) in R− (resp. R+).
Moreover, A0 includes at least three arcs : J0 (with two extremal points on it)
and the portions of B− and B+ in R0. 
�

Lemma 10. Any contact system extendable into an arrangement of pseudo-
lines has at least 3 extremal points, unless it has cardinality at most one.

Proof. First notice that we may prove the lemma for maximal contact systems
only, according Remark 3 and the fact that the extended contact system may
not have more extremal points than the original one.

The lemma is straightforward for contact systems of cardinality at most
two. So, assume that for any 2 ≤ i < k, the lemma holds for maximal contact
systems of cardinality i and assume there exists a maximal contact system A of
cardinality k having at most 2 extremal points.

Notice that at least 3 arcs of A meet the unbounded region in a sub-arc.
Otherwise, the contact system would be bounded by a single arc or by two arcs
intersecting each other twice, and the system could not be extended into a weak
arrangement of pseudo-lines.

– Assume A has two extremal points belonging to a same arc.
From the previous construction and according to Lemma 8, A− and A+ are
extendable into weak arrangements of pseudo-line and, according to Lemma
9, have a smaller cardinality than A but include at least two arcs. By induc-
tion, they have at least 3 extremal points. Among these, there is one which
is an extremal point of A belonging to the interior of R− (resp. R+). Notice
that these extremal points do not belong to a same arc : otherwise, this arc
would intersect A twice. Hence, as the contact system A has an arc with
two extremal points on it, it has at least 3 extremal points, what leads to a
contradiction.
Hence, the lemma holds for any maximal contact system with at most k arcs
having two extremal points belonging to a same arc.

– Assume A does not include two extremal points belonging to a same arc.
From the same construction and according to Lemma 8, the contact system
A0 is maximal and, according to Lemma 9, it has cardinality at most k and
has two extremal points belonging to a same arc. According to the previous
case, it has at least 3 extremal points. Among these, one is an extremal point
of A belonging to the interior of R0. Together with the 2 extremal points of
A belonging to the interior of R− and R+ (as in the previous case), we get
3 extremal points, which lead to a contradiction.


�
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Lemma 11. Any contact system A extendable into a weak arrangement of
pseudo-lines is extendable into a maximal contact system, each subsystem of
which has at least 3 extremal points unless it has cardinality at most one.

Proof. As any subsystem A′ of the extension of A into a maximal contact system
is extendable into a weak arrangement of pseudo-lines, the result follows from
Lemma 10. 
�

2.3 Stretching

Consider a maximal contact system of Jordan arcs A, and the plane graph G
whose vertices are the points which are extremity of a least an arc of A and
whose edges are the sub-arcs between such points.

Let S be the set of the vertices of G corresponding to points which are interior
to no arc in A.

Let f be a function mapping S to the vertices of a convex polygon, in com-
patible order.

Let α : V (G) × V (G) → [ 0 , 1 ] be a function such that:

– α(x, y) = 0 if and only if y is interior to no arc in A or x and y are non
adjacent in G.

– α(x1, y) + α(x2, y) = 1 if y is interior to some arc A ∈ A and has x1 and x2
as neighbors in A.

Then, Σ = (S, f, α) is a barycentric system on G.

Notation 1. Given an arc A ∈ A, the path P (A) is the path of G, whose vertices
and edges are induced by A. The set P of these paths induces a covering of G by
edge disjoint paths.

By extension, given a contact system A′, P (A′) denotes the union of the
paths P (A) (A ∈ A′).

Notation 2. Let X ⊆ V (G). We note A(X) the set of the arcs of A having at
least two points corresponding to vertices in X.

We now may link Theorem 3 with the stretching problem, using the next
notations and lemmas.

Lemma 12. Let A′ be a subsystem of A. Then S(V (P (A′))) = δ(A′).

Proof. A vertex of X = V (P (A′)) belongs to the S(X) if and only if it has no
incoming edge in DΣ (hence is an extremal point of A) or if its has an incoming
edge in DΣ from a vertex which does not belong to X (and thus is internal
to some arc in A \ A′ or, equivalently, is an extremal point of A′ but not an
extremal point of A). Thus, S(X) is the set of the extremal vertices of A′. 
�
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Lemma 13. Let X ⊆ V (G) have cardinality at least 2 and induce a connected
subgraph of G. Then,

X ⊆V (P (A(X))) (11)
∣∣ S(X)

∣∣ ≥∣∣ S(V (P (A(X))))
∣∣ (12)

Proof. Inclusion (11) is straightforward as each edge of GX is included in the
path corresponding to some arc of A(X).

Consider the connected graph H obtained from GX by adding k ≥ 0 paths
corresponding to arcs in A(X) and assume that

∣∣ S(V (H))
∣∣ =

∣∣ S(X)
∣∣ holds.

Let A be some arc of A(X), such that P (A) does not belong to H.

– Assume H include two vertices v and w of P (A) but none of the edges of P
linking them.
Then, by adding those missing edges and vertices, no vertex is added to
S(V (H)).
After this first completion, the internal vertices of P (A) have at most one
incoming edge from the complement of H.

– Otherwise, H includes an interior vertex v of P (A), but none of the vertices
between v and an extremity w of P .
Then, v belongs to S(V (H)). By adding the sub-path from v to w, exactly
one vertex is added to the S(V (H)), namely w. As P (A) has at least two
vertices in common with H, v is an interior vertex of P (A). Moreover, as
the previous case does not apply, v had initially one incoming edge (exactly)
from the complement of H ′. Thus, after the addition of the sub-path from v
to w, the vertex v will no longer belong to S(V (H)).

Thus, we may add a new path to H without increasing
∣∣ S(V (H))

∣∣, which com-
pletes the induction. 
�

Theorem 4. Let A be a contact system of Jordan arcs. Then, the following
conditions are equivalent :

(C1) A is stretchable,
(C2) A is extendable into a weak arrangement of pseudo-lines,

Proof. It is straightforward that Condition (C1) implies condition (C2). Accord-
ing to Lemma 11, this second condition implies that A is extendable into a
maximal contact system, each subsystem of which has at least 3 extremal points
or has cardinality at most one. Consider any subset X of vertices of G with
cardinality at least 2 and inducing a connected subgraph of G. Then, according
to Lemma 13 and Lemma 12,

∣∣ S(X)
∣∣ ≥ ∣∣ S(V (P (A(X))))

∣∣ =
∣∣ δ(A(X))

∣∣. But,
either A(X) includes a single arc and hence GX is a path and

∣∣ S(X)
∣∣ ≥ 2 or

A(X) includes at least two arcs and then
∣∣ S(X)

∣∣ ≥ 3, according to the hypoth-
esis. The result now follows from the application of Theorem 3. 
�
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3 Conclusion

The equivalence between stretchability and extendibility into an arrangement of
pseudo-lines for contact systems of Jordan arcs does not extend to intersection
systems (stretchability of pseudoline arrangements is NP-hard, as proved by
Short [5]). With more work, another equivalent condition may be given : A
contact system is stretchable if and only if any subsystem has at least 3 extremal
points on its unbounded region, unless it has at most an arc.
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