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Abstract. The Covering Steiner problem is a common generalization
of the k-MST and Group Steiner problems. An instance of the Covering
Steiner problem consists of an undirected graph with edge-costs, and
some subsets of vertices called groups, with each group being equipped
with a non-negative integer value (called its requirement); the problem
is to find a minimum-cost tree which spans at least the required number
of vertices from every group. When all requirements are equal to 1, this
is the Group Steiner problem.

While many covering problems (e.g., the covering integer programs such
as set cover) become easier to approximate as the requirements increase,
the Covering Steiner problem remains at least as hard to approximate
as the Group Steiner problem; in fact, the best guarantees previously
known for the Covering Steiner problem were worse than those for Group
Steiner as the requirements became large. In this work, we present an im-
proved approximation algorithm whose guarantee equals the best known
guarantee for the Group Steiner problem.

1 Introduction

We present an improved approximation algorithm for the Covering Steiner prob-
lem. This is a covering problem has the following property that goes against the
norm for covering problems: its approximability cannot get better as the cov-
ering requirements increase. Thus the approximability of the general Covering
Steiner problem is at least as high as for the case of all unit requirements, which
is just the Group Steiner problem. In this work, we improve on the current-best
approximation algorithms for the Covering Steiner problem given by Even et
al. [3] and Konjevod et al. [9]. Our results match the approximation guarantee
of the current-best randomized algorithm for the Group Steiner problem due to
Garg et al. [5] (see the paper of Charikar et al. [2] for a deterministic algorithm).
A suitable melding of a randomized rounding approach with a deterministic
“threshold rounding” method leads to our result.
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Let G = (V, E) be an undirected graph with a non-negative cost function
¢ defined on its edges. Let a family G = {g1,92,..., 91} of k subsets of V' be
given; we refer to these sets g1,¢92,...,9gr as groups. For each group g;, a non-
negative integer r; < |g;| is also given, called the requirement of the group. The
Covering Steiner problem on G is to find a minimum-cost tree in G that contains
at least r; vertices from each group g;; the special case of unit requirements (i.e.,
r; = 1 for all i) corresponds to the Group Steiner tree problem. We denote the
number of vertices in G by n, the size of the largest group by N, and the largest
requirement of a group by K. Logarithms in this paper will be to the base two
unless specified otherwise.

As in the paper of Garg et al. [5], we focus on the case where the given
graph G = (V, E) is a tree, since the notion of probabilistic tree embeddings [1]
can be used to reduce an arbitrary instance of the problem to a instance on a
tree. Specifically, via the result of Fakcharoenphol et al. [4], a p—approximation
algorithm on tree-instances implies an O(plogn)—approximation algorithm for
arbitrary instances. In fact, we can assume that the instance is a rooted tree
instance where the root vertex must be included in the tree that we output; this
assumption can be discharged by running the algorithm over all choices of the
root and picking the best tree.

For the special case of the Group Steiner tree problem where K = 1, the
current-best approximation bound for tree instances is O((log k) - (log N)). For
the Covering Steiner problem, the current-best approximation algorithm for tree
instances is O((log k + log K) - (log N)) [3,9]; also, an approximation bound of

(log N) - log® k
(10g(2(10g N) - (logk)/log K) )

is also presented in [9], which is better if K > 2¢(l°¢ * where a > 0 is a constant.
(As mentioned above, we need to multiply each of these three approximation
bounds by O(logn) to obtain the corresponding results for general graphs.)

Note that these current-best approximations get worse as the requirements
increase, i.e., as K increases. This is unusual for covering problems, where the
approximability gets better as the coverage requirements increase. This is well-
known, for instance, in the case of covering integer programs which include the
set cover problem; the “multiple coverage” version of set cover is one where each
element of the ground set needs to be covered by at least a given number of
sets. In particular, the approximation ratio improves from logarithmic to O(1)
(or even 1 + o(1)) for families of such problems where the minimum covering
requirement B grows as (2(logm), when m is the number of constraints (see,
e.g., [10]). In light of these results, it is natural to ask whether the approximation
guarantee for the Covering Steiner problem can be better than that for the Group
Steiner problem.

This question can easily be answered in the negative; indeed, given a rooted
tree instance of the Group Steiner problem and an integer K, we can create an
instance of the Covering Steiner problem as follows: increase the requirement of
every group from 1 to K, connect K —1 dummy leaves to the root with edge-cost



zero and add these leaves to all the groups. It is easily seen that any solution to
this Covering Steiner instance can be transformed to a solution to the original
Group Steiner instance with no larger cost, and that the two instances have the
same optimal solution value. Therefore, the Covering Steiner problem is at least
as hard to approximate as the Group Steiner problem. (This fact was pointed
out to us by Robert Krauthgamer.)

We are thus led to the question: can the Covering Steiner problem be approx-
imated as well as the Group Steiner problem? The following theorem answers
this question in the affirmative:

Theorem 1. There is a randomized polynomial-time approximation algorithm
for the covering Steiner problem which, with high probability, produces an ap-
prozimation of: (i) O((logN) - (logk)) for tree instances, and (ii) O((logn) -
(log N) - (log k)) for general instances.

This implies an improvement of @((logn)/loglogn) can be obtained over
previous results in some situations; indeed, this is achieved when, say, k& =
10g2+@(1) n and K = n®Y. (The reason we take k > log® n in this example
is that the problem on trees is easily approximable to within k; so, if k were
small, we would have a good approximation algorithm anyway.)

The bounds for tree instances are essentially the best possible in the following
asymptotic sense: the paper of Halperin and Krauthgamer [7] shows that, for any
constant € > 0, an O((log(n + k))?~¢)-approximation algorithm for the Covering
Steiner problem implies that NP C ZTIM E[exp((logn)°(M")]. Furthermore,
we adopt a natural linear programming (LP) relaxation considered by Garg et
al. [5] and Konjevod et al. [9]; it has been shown that the integrality gap of this
relaxation for tree-instances of Group Steiner is £2((log k) - (log N)/ loglog N) [6].

1.1 Ouwur Techniques

Our approach to solve the Covering Steiner problem is to iteratively round an
LP relaxation of the problem suggested by Konjevod et al. [9]. Given a partial
solution to the problem, we consider the fractional solution of the LP for the cur-
rent residual problem, and extend the partial solution using either a randomized
rounding approach and a direct deterministic approach.

Informally, in order to do better than the approach of Konjevod et al. [9], the
main technical issue we handle is as follows. Let OPT denote the optimal solution
value of a given tree instance. In essence, each iteration of [9] constructs adds an
expected cost of O(OPT -log N) to the solution constructed so far, and reduces
the total requirement by a constant fraction (in expectation). Since the initial
total requirement is at most k - K, we thus expect to run for O(logk + log K)
iterations, resulting in a total cost of O(OPT - (logk + log K)log N) with high
probability. To eliminate the log K term from their approximation guarantee,
we show, roughly, that every iteration has to satisfy one of two cases: (i) a
good fraction of the groups have their requirement cut by a constant factor
via a threshold rounding scheme, while paying only a cost of O(OPT), or (ii) a
randomized rounding scheme is expected to fully cover a constant fraction of



the groups. A chip game presented in Section 2 is used to bound the number of
iterations where case (i) holds; Janson’s inequality [8] and some deterministic
arguments are used for case (ii). We do not attempt to optimize our constants.

2 A Chip Game

Consider the following chip game. We initially have chips arranged in k groups,
with each group ¢ having some number ngzmt) < K of chips. Chips are iteratively
removed from the groups in a manner described below; a group is called active
if the number of chips in it is nonzero. The game proceeds in rounds as follows.
Let n; denote the number of chips in group ¢ at the start of some round. Letting
A denote the number of groups currently active, we may choose any set of at
least [A/2] active groups; for each of these chosen groups i, we remove at least
[1;/2] chips, causing the new number of chips in group i to at most |[n;/2].)
Informally, we choose roughly half of the currently active groups, and halve their
sizes. (In the analysis below, it will not matter that these two constants are 1/2
each; any two constants a,b € (0,1) will lead to the same asymptotic result.)

Due to these chips being removed, some groups may become inactive (i.e.,
empty); once a group has become inactive, it may be removed from consideration.
The game proceeds until there are no chips left. The following lemma will be
useful later.

Lemma 1. The maximum number of rounds possible in the above chip game is
O((log k) - (log K).

Before we prove this lemma, let us note that this bound is tight, and ©((log k)-
(log K)) rounds may be required. Suppose all the groups start off with exactly K
chips. We first repeatedly keep choosing the same set of [k/2] groups for remov-
ing chips, and do this until all these groups become inactive; we need ©(log K)
rounds for this. We are now left with about k/2 active groups. Once again, we
repeatedly keep removing chips from the same set of about k/4 active groups,
until all of these become inactive. Proceeding in this manner, we can go for a
total of ©((log k) - (log K')) rounds.

Proof (Lemma 1). To bound the number of rounds, we proceed as follows. We
first round up the initial number of chips nglmt) in each group to the closest power
of 2 greater than it. Next, we may assume that in each round, each chosen active
group i has its number of chips n; reduced by the least amount possible; i.e.,
to ezxactly [n;/2]|. This ensures that each active group always has a number of
chips that is a power of two. We can now modify the game into an equivalent
format. We initially start with 1+ log ng”m) chips in each group 4; once again, a
group is active if and only if its number of chips is nonzero. Now, in any round,
we choose at least half of the currently-active groups, and remove one chip from
each of them. Note that this simple “logarithmic transformation” does not cause
the maximum number of rounds to decrease, and hence we can analyze the game
on this transformed instance. Let IN; be the number of rounds in which at least



k/2 groups are active. In each of these rounds, at least k/4 chips get removed.
However, since the total number of chips is at most k(1 + log K'), we must have
N; < 4(1 +log K). Proceeding in this manner, we see that the total number of
rounds is O((log k) - (log K)), as claimed.

3 Algorithm and Analysis

As mentioned in the introduction, we will assume that the input consists of a
rooted tree, where the root r must be included in the output solution. Further-
more, we make the following assumptions without loss of generality: every vertex
belonging to a group is a leaf, and every leaf belongs to some group.

3.1 The Basic Approach

As in previous papers on the Covering Steiner and Group Steiner problems,
the broad idea of the algorithm is to proceed in iterations, with each iteration
producing a subtree rooted at r that provides some coverage not provided by
the previous iterations. This process is continued until the required coverage is
accomplished, and the union of all the trees constructed is returned as output.

Consider a generic iteration; we will use the following notation. Let r} denote
the residual requirement of group g;; call g; active if and only if 7} > 0, and let
k" be the number of groups currently active. The leaves of g; already covered
in previous iterations are removed from g;; abusing notation, we will refer to
this shrunk version of the group g; also as g;. All the edges chosen in previous
iterations have their cost reduced to zero: we should not have to “pay” for them
if we choose them again. For any non-root node u, let pe(u) denote the edge
connecting u to its parent; for any edge e not incident on the root, let pe(e)
denote the parent edge of e. Finally, given an edge e = (u,v) where u is the
parent of v, both T'(v) and T'(e) denote the subtree of G rooted at v.

The following integer programming formulation for the residual problem was
proposed by Konjevod et al. [9], in which there is an indicator variable z. for
each edge e, to say whether e is chosen or not. The constraints are: (i) for any
active group g;, Zj@i Tpe(j) = 135 (i) for any edge e and any active group g;,
2 je(T(e)ng:) Tre(j) < Tite; and (iii) for any edge e not incident on the root r,
Tpe(e) = Te- Finally, the objective is to minimize Y. Cee. By allowing each . to
lie in the real interval [0, 1] as opposed to the set {0,1}, we get an LP relaxation.
Since chosen edges have their cost reduced to zero for all future iterations, it
is easy to see that the optimal value of this LP is a lower bound on OPT, the
optimal solution value to the original Covering Steiner instance.

Each iteration will start with the residual problem, and solve the above LP
optimally; it will then round this fractional solution as described below in Sec-
tion 3.2. An interesting point to note is that as pointed out in [9], the integrality
gap of the relaxation considered can be quite large: when we write the LP relax-
ation for the original instance, the integrality gap can be arbitrarily close to K.
Hence it is essential that we satisfy the requirements partially in each iteration,
then re-solve the LP for the residual problem, and continue.



3.2 Rounding

We will henceforth use {x.} denote an optimal solution to the LP relaxation; we
now show how to round it to partially cover some of the residual requirements.
In all of the discussion below, only currently active groups will be considered.
For any leaf j, we call xpe(;) the flow into j. Note that the total flow into the
leaves of a group g; is r}. For a > 1, we define a group g; to be (p, a)-covered if
a total flow of at least pr] goes into the elements (i.e., leaves) of g; which receive
individual flow values of at least 1/a. An a-scaling of the solution {z.} is the
scaled-up solution {Z.} where we set £, < min{az.,1}, for all edges e.

The iteration is as follows. Define G; be the set of active groups that are
(1/2,4)-covered. We will consider two cases, based on the size of Gj.

Case I: |Gi| > k'/2. In this case, we simply perform a 4-scaling, and pick the
edges that are rounded up to 1. The solution returned in this case is just the
connected subtree consisting of the picked edges that contains the root. Note that
every group in G; has at least half of its requirement covered by this process.
Indeed, since any such group g; is (1/2,4)-covered, it must have at least r}/2 of
its member leaves receiving flows of value at least 1/4. Thus, by this rounding,
at least half of the currently active groups have their requirements reduced by
at least half. Now Lemma 1 implies that the total number of iterations where
Case I holds is at most O((log k) - (log K)). We pay a cost of at most 4 - OPT in
each such iteration, and hence

cost(Case I iterations) = O((log k) - (log K) - OPT). (1)

(Let us emphasize again that throughout the paper, OPT refers to the cost
of the optimal solution for the original Covering Steiner instance.) Now suppose
Case I does not hold, and thus we consider:

Case II: |G| < k'/2. In this case, let A = ¢’ log N, for a sufficiently large absolute
constant ¢’. Let Gy be the set of active groups that are not (3/4, A)-covered, and
let G3 be the set of active groups that do not lie in G; U G,.

We now use a modification of the rounding procedure used previously by Garg
et al. [5] and Konjevod et al. [9]. For every edge e, define 2/, = min{\ - z., 1} to
be the solution scaled up by A. For every edge e incident on the root, pick e with
probability z.. For every other edge e with its parent denoted f, pick e with
probability z; /2. This is performed for each edge independently. Let H denote
the subgraph of G induced by the edges that were picked, and let T' denote the
connected subtree of H containing the root r; this is returned as the solution in
this case. Crucially, we now set the costs of all chosen edges to 0, so as to not
count their costs in future iterations. It is easy to verify that the probability of
the event e € T for some edge e is 2 ; now linearity of expectation implies that

Elcost(T')] < A-OPT. (2)

We next analyze the expected coverage properties of this randomized round-
ing. For any group g;, let g} be the subset of elements of g; which have individual



in-flow values of at most 1/A, and let f; denote the total flow into the elements
of gj. We want a lower bound on Xj;, the number of elements of g; that get
covered by the above randomized rounding; for this, we plan to employ Janson’s
inequality [8].

It is easy to see that p; = E[X;] = fiA. Suppose j, j' € g} are two leaves in g/.
We say that j ~ j' if and only if (i) j # j’ and (ii) the least common ancestor
of j and j' in G is not the root r. If j ~ j', let Ica(j, j') denote the least common
ancestral edge of j and j' in T". To use Janson’s inequality, define

! !
A, = Lpe(s) Ppe(s")
i= =0 =/
z
53" €l it tieags gy >0 €3S

If f; > ri/4, then Janson’s inequality shows that if ¢’ is large enough, then

Pr[X; > r]] > 1 —exp (—Q (ﬁ)) . (3)

Furthermore, a calculation from [9] can be used to show that A; < O((r})? log® N).
Plugging this into (3), along with the facts that u; = f; A, and that A = ¢'log N,
it follows that there is an absolute constant ¢’ € (0,1) such that

it f; > r}/4, then Pr[X; > T':] >, )

Recall that G consisted of all the groups g; which were not (3/4, A)-covered.
Hence, at least r}/4 flow into g; goes into leaves with in-flow at most 1/A, and
hence f; is at r}/4. This satisfies the condition in (4), and hence the expected
number of groups in G, that get all of their requirement covered in this iteration
is at least ¢ - |Gs|.

Next consider any g¢; € Gs; by definition, g; must be (3/4, A)-covered, but not
(1/2,4)-covered. In other words, if we consider the leaves of ¢g; whose individual
flow values lie in the range [1/A,1/4], the total flow into them is at least (3/4 —
1/2)r} = ri/4. Hence there are at least r} such leaves in the group g;. Finally,
since all these leaves have individual flow values of at least 1/, all of them get
chosen with probability 1 into our random subtree 7', and hence every group in
Gs has all of its requirement satisfied with probability 1.

To summarize, the expected number of groups whose requirement is fully
covered, is at least

" Go| +1G1UGe| 2 " |Ga] + " [GLU G| 2 ¢ - [Gi] > "K' /2,

the last inequality holding since we are in Case II and G; > k'/2. Hence each
iteration of Case II is expected to fully satisfy at least a constant fraction of the
active groups. It is then easy to see (via an expectation calculation and Markov’s
inequality) that for some constant a, the probability that not all groups are
satisfied after alogk iterations where Case II held, is at most 1/4.

Also, summing up the expected cost (2) over all iterations (using the linearity
of expectation), and then using Markov’s inequality, we see that with probability



at least 1/2,
cost(Case II iterations) < O((logk) - (log N) - OPT). (5)

Combining (1) and (5) and noting that K < N, we get the proof of Theorem 1.

4 Open Questions

It would be nice to resolve the approximability of the Group Steiner and Cov-
ering Steiner problems on general graph instances. Near-optimal approximation
algorithms that are fast and/or combinatorial would also be of interest.
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