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Let G = (V;E) be an undirected graph with a non-negative cost functionc de�ned on its edges. Let a family G = fg1; g2; : : :; gkg of k subsets of V begiven; we refer to these sets g1; g2; : : : ; gk as groups. For each group gi, a non-negative integer ri � jgij is also given, called the requirement of the group. TheCovering Steiner problem on G is to �nd a minimum-cost tree in G that containsat least ri vertices from each group gi; the special case of unit requirements (i.e.,ri = 1 for all i) corresponds to the Group Steiner tree problem. We denote thenumber of vertices in G by n, the size of the largest group by N , and the largestrequirement of a group by K. Logarithms in this paper will be to the base twounless speci�ed otherwise.As in the paper of Garg et al. [5], we focus on the case where the givengraph G = (V;E) is a tree, since the notion of probabilistic tree embeddings [1]can be used to reduce an arbitrary instance of the problem to a instance on atree. Speci�cally, via the result of Fakcharoenphol et al. [4], a �{approximationalgorithm on tree-instances implies an O(� logn){approximation algorithm forarbitrary instances. In fact, we can assume that the instance is a rooted treeinstance where the root vertex must be included in the tree that we output; thisassumption can be discharged by running the algorithm over all choices of theroot and picking the best tree.For the special case of the Group Steiner tree problem where K = 1, thecurrent-best approximation bound for tree instances is O((log k) � (logN)). Forthe Covering Steiner problem, the current-best approximation algorithm for treeinstances is O((log k + logK) � (logN)) [3,9]; also, an approximation bound ofO� (logN) � log2 klog(2(logN) � (log k)= logK)�is also presented in [9], which is better if K � 2a(log k)2 where a > 0 is a constant.(As mentioned above, we need to multiply each of these three approximationbounds by O(log n) to obtain the corresponding results for general graphs.)Note that these current-best approximations get worse as the requirementsincrease, i.e., as K increases. This is unusual for covering problems, where theapproximability gets better as the coverage requirements increase. This is well-known, for instance, in the case of covering integer programs which include theset cover problem; the \multiple coverage" version of set cover is one where eachelement of the ground set needs to be covered by at least a given number ofsets. In particular, the approximation ratio improves from logarithmic to O(1)(or even 1 + o(1)) for families of such problems where the minimum coveringrequirement B grows as 
(logm), when m is the number of constraints (see,e.g., [10]). In light of these results, it is natural to ask whether the approximationguarantee for the Covering Steiner problem can be better than that for the GroupSteiner problem.This question can easily be answered in the negative; indeed, given a rootedtree instance of the Group Steiner problem and an integer K, we can create aninstance of the Covering Steiner problem as follows: increase the requirement ofevery group from 1 to K, connectK�1 dummy leaves to the root with edge-cost



zero and add these leaves to all the groups. It is easily seen that any solution tothis Covering Steiner instance can be transformed to a solution to the originalGroup Steiner instance with no larger cost, and that the two instances have thesame optimal solution value. Therefore, the Covering Steiner problem is at leastas hard to approximate as the Group Steiner problem. (This fact was pointedout to us by Robert Krauthgamer.)We are thus led to the question: can the Covering Steiner problem be approx-imated as well as the Group Steiner problem? The following theorem answersthis question in the aÆrmative:Theorem 1. There is a randomized polynomial-time approximation algorithmfor the covering Steiner problem which, with high probability, produces an ap-proximation of: (i) O((logN) � (log k)) for tree instances, and (ii) O((logn) �(logN) � (log k)) for general instances.This implies an improvement of �((logn)= log logn) can be obtained overprevious results in some situations; indeed, this is achieved when, say, k =log2+�(1) n and K = n�(1). (The reason we take k � log2 n in this exampleis that the problem on trees is easily approximable to within k; so, if k weresmall, we would have a good approximation algorithm anyway.)The bounds for tree instances are essentially the best possible in the followingasymptotic sense: the paper of Halperin and Krauthgamer [7] shows that, for anyconstant � > 0, an O((log(n+k))2��)-approximation algorithm for the CoveringSteiner problem implies that NP � ZTIME[exp((logn)O(1))]. Furthermore,we adopt a natural linear programming (LP) relaxation considered by Garg etal. [5] and Konjevod et al. [9]; it has been shown that the integrality gap of thisrelaxation for tree-instances of Group Steiner is 
((log k)�(logN)= log logN) [6].1.1 Our TechniquesOur approach to solve the Covering Steiner problem is to iteratively round anLP relaxation of the problem suggested by Konjevod et al. [9]. Given a partialsolution to the problem, we consider the fractional solution of the LP for the cur-rent residual problem, and extend the partial solution using either a randomizedrounding approach and a direct deterministic approach.Informally, in order to do better than the approach of Konjevod et al. [9], themain technical issue we handle is as follows. Let OPT denote the optimal solutionvalue of a given tree instance. In essence, each iteration of [9] constructs adds anexpected cost of O(OPT � logN) to the solution constructed so far, and reducesthe total requirement by a constant fraction (in expectation). Since the initialtotal requirement is at most k �K, we thus expect to run for O(log k + logK)iterations, resulting in a total cost of O(OPT � (log k + logK) logN) with highprobability. To eliminate the logK term from their approximation guarantee,we show, roughly, that every iteration has to satisfy one of two cases: (i) agood fraction of the groups have their requirement cut by a constant factorvia a threshold rounding scheme, while paying only a cost of O(OPT), or (ii) arandomized rounding scheme is expected to fully cover a constant fraction of



the groups. A chip game presented in Section 2 is used to bound the number ofiterations where case (i) holds; Janson's inequality [8] and some deterministicarguments are used for case (ii). We do not attempt to optimize our constants.2 A Chip GameConsider the following chip game. We initially have chips arranged in k groups,with each group i having some number n(init)i � K of chips. Chips are iterativelyremoved from the groups in a manner described below; a group is called activeif the number of chips in it is nonzero. The game proceeds in rounds as follows.Let ni denote the number of chips in group i at the start of some round. LettingA denote the number of groups currently active, we may choose any set of atleast dA=2e active groups; for each of these chosen groups i, we remove at leastdni=2e chips, causing the new number of chips in group i to at most bni=2c.)Informally, we choose roughly half of the currently active groups, and halve theirsizes. (In the analysis below, it will not matter that these two constants are 1=2each; any two constants a; b 2 (0; 1) will lead to the same asymptotic result.)Due to these chips being removed, some groups may become inactive (i.e.,empty); once a group has become inactive, it may be removed from consideration.The game proceeds until there are no chips left. The following lemma will beuseful later.Lemma 1. The maximum number of rounds possible in the above chip game isO((log k) � (logK)).Before we prove this lemma, let us note that this bound is tight, and�((log k)�(logK)) rounds may be required. Suppose all the groups start o� with exactlyKchips. We �rst repeatedly keep choosing the same set of dk=2e groups for remov-ing chips, and do this until all these groups become inactive; we need �(logK)rounds for this. We are now left with about k=2 active groups. Once again, werepeatedly keep removing chips from the same set of about k=4 active groups,until all of these become inactive. Proceeding in this manner, we can go for atotal of �((log k) � (logK)) rounds.Proof (Lemma 1). To bound the number of rounds, we proceed as follows. We�rst round up the initial number of chips n(init)i in each group to the closest powerof 2 greater than it. Next, we may assume that in each round, each chosen activegroup i has its number of chips ni reduced by the least amount possible; i.e.,to exactly bni=2c. This ensures that each active group always has a number ofchips that is a power of two. We can now modify the game into an equivalentformat. We initially start with 1+ logn(init)i chips in each group i; once again, agroup is active if and only if its number of chips is nonzero. Now, in any round,we choose at least half of the currently-active groups, and remove one chip fromeach of them. Note that this simple \logarithmic transformation" does not causethe maximum number of rounds to decrease, and hence we can analyze the gameon this transformed instance. Let N1 be the number of rounds in which at least



k=2 groups are active. In each of these rounds, at least k=4 chips get removed.However, since the total number of chips is at most k(1 + logK), we must haveN1 � 4(1 + logK). Proceeding in this manner, we see that the total number ofrounds is O((log k) � (logK)), as claimed.3 Algorithm and AnalysisAs mentioned in the introduction, we will assume that the input consists of arooted tree, where the root r must be included in the output solution. Further-more, we make the following assumptions without loss of generality: every vertexbelonging to a group is a leaf, and every leaf belongs to some group.3.1 The Basic ApproachAs in previous papers on the Covering Steiner and Group Steiner problems,the broad idea of the algorithm is to proceed in iterations, with each iterationproducing a subtree rooted at r that provides some coverage not provided bythe previous iterations. This process is continued until the required coverage isaccomplished, and the union of all the trees constructed is returned as output.Consider a generic iteration; we will use the following notation. Let r0i denotethe residual requirement of group gi; call gi active if and only if r0i > 0, and letk0 be the number of groups currently active. The leaves of gi already coveredin previous iterations are removed from gi; abusing notation, we will refer tothis shrunk version of the group gi also as gi. All the edges chosen in previousiterations have their cost reduced to zero: we should not have to \pay" for themif we choose them again. For any non-root node u, let pe(u) denote the edgeconnecting u to its parent; for any edge e not incident on the root, let pe(e)denote the parent edge of e. Finally, given an edge e = (u; v) where u is theparent of v, both T (v) and T (e) denote the subtree of G rooted at v.The following integer programming formulation for the residual problem wasproposed by Konjevod et al. [9], in which there is an indicator variable xe foreach edge e, to say whether e is chosen or not. The constraints are: (i) for anyactive group gi, Pj2gi xpe(j) = r0i; (ii) for any edge e and any active group gi,Pj2(T (e)\gi) xpe(j) � r0ixe; and (iii) for any edge e not incident on the root r,xpe(e) � xe. Finally, the objective is to minimizePe cexe. By allowing each xe tolie in the real interval [0; 1] as opposed to the set f0; 1g, we get an LP relaxation.Since chosen edges have their cost reduced to zero for all future iterations, itis easy to see that the optimal value of this LP is a lower bound on OPT, theoptimal solution value to the original Covering Steiner instance.Each iteration will start with the residual problem, and solve the above LPoptimally; it will then round this fractional solution as described below in Sec-tion 3.2. An interesting point to note is that as pointed out in [9], the integralitygap of the relaxation considered can be quite large: when we write the LP relax-ation for the original instance, the integrality gap can be arbitrarily close to K.Hence it is essential that we satisfy the requirements partially in each iteration,then re-solve the LP for the residual problem, and continue.



3.2 RoundingWe will henceforth use fxeg denote an optimal solution to the LP relaxation; wenow show how to round it to partially cover some of the residual requirements.In all of the discussion below, only currently active groups will be considered.For any leaf j, we call xpe(j) the 
ow into j. Note that the total 
ow into theleaves of a group gi is r0i. For � � 1, we de�ne a group gi to be (p; �)-covered ifa total 
ow of at least pr0i goes into the elements (i.e., leaves) of gi which receiveindividual 
ow values of at least 1=�. An �-scaling of the solution fxeg is thescaled-up solution fx̂eg where we set x̂e  minf�xe; 1g, for all edges e.The iteration is as follows. De�ne G1 be the set of active groups that are(1=2; 4)-covered. We will consider two cases, based on the size of G1.Case I: jG1j � k0=2. In this case, we simply perform a 4-scaling, and pick theedges that are rounded up to 1. The solution returned in this case is just theconnected subtree consisting of the picked edges that contains the root. Note thatevery group in G1 has at least half of its requirement covered by this process.Indeed, since any such group gi is (1=2; 4)-covered, it must have at least r0i=2 ofits member leaves receiving 
ows of value at least 1=4. Thus, by this rounding,at least half of the currently active groups have their requirements reduced byat least half. Now Lemma 1 implies that the total number of iterations whereCase I holds is at most O((log k) � (logK)). We pay a cost of at most 4 �OPT ineach such iteration, and hencecost(Case I iterations) = O((log k) � (logK) �OPT): (1)(Let us emphasize again that throughout the paper, OPT refers to the costof the optimal solution for the original Covering Steiner instance.) Now supposeCase I does not hold, and thus we consider:Case II: jG1j < k0=2. In this case, let � = c0 logN , for a suÆciently large absoluteconstant c0. Let G2 be the set of active groups that are not (3=4; �)-covered, andlet G3 be the set of active groups that do not lie in G1 [ G2.We now use a modi�cation of the rounding procedure used previously by Garget al. [5] and Konjevod et al. [9]. For every edge e, de�ne x0e = minf� � xe; 1g tobe the solution scaled up by �. For every edge e incident on the root, pick e withprobability x0e. For every other edge e with its parent denoted f , pick e withprobability x0e=x0f . This is performed for each edge independently. Let H denotethe subgraph of G induced by the edges that were picked, and let T denote theconnected subtree of H containing the root r; this is returned as the solution inthis case. Crucially, we now set the costs of all chosen edges to 0, so as to notcount their costs in future iterations. It is easy to verify that the probability ofthe event e 2 T for some edge e is x0e; now linearity of expectation implies thatE[cost(T )] � � �OPT: (2)We next analyze the expected coverage properties of this randomized round-ing. For any group gi, let g0i be the subset of elements of gi which have individual



in-
ow values of at most 1=�, and let fi denote the total 
ow into the elementsof g0i. We want a lower bound on Xi, the number of elements of g0i that getcovered by the above randomized rounding; for this, we plan to employ Janson'sinequality [8].It is easy to see that �i := E[Xi] = fi�. Suppose j; j0 2 g0i are two leaves in g0i.We say that j � j0 if and only if (i) j 6= j0 and (ii) the least common ancestorof j and j0 in G is not the root r. If j � j0, let lca(j; j0) denote the least commonancestral edge of j and j0 in T 0. To use Janson's inequality, de�ne�i = Xj;j02g0i: j�j0 ; xlca(j;j0)>0 x0pe(j)x0pe(j0)x0lca(j;j0) :If fi � r0i=4, then Janson's inequality shows that if c0 is large enough, thenPr[Xi � r0i] � 1� exp��
� �i2 +�i=�i�� : (3)Furthermore, a calculation from [9] can be used to show that�i � O((r0i)2 log2N).Plugging this into (3), along with the facts that �i = fi �, and that � = c0 logN ,it follows that there is an absolute constant c00 2 (0; 1) such thatif fi � r0i=4, then Pr[Xi � r0i] � c00: (4)Recall that G2 consisted of all the groups gi which were not (3=4; �)-covered.Hence, at least r0i=4 
ow into gi goes into leaves with in-
ow at most 1=�, andhence fi is at r0i=4. This satis�es the condition in (4), and hence the expectednumber of groups in G2 that get all of their requirement covered in this iterationis at least c00 � jG2j.Next consider any gi 2 G3; by de�nition, gi must be (3=4; �)-covered, but not(1=2; 4)-covered. In other words, if we consider the leaves of gi whose individual
ow values lie in the range [1=�; 1=4], the total 
ow into them is at least (3=4�1=2)r0i = r0i=4. Hence there are at least r0i such leaves in the group gi. Finally,since all these leaves have individual 
ow values of at least 1=�, all of them getchosen with probability 1 into our random subtree T , and hence every group inG3 has all of its requirement satis�ed with probability 1.To summarize, the expected number of groups whose requirement is fullycovered, is at leastc00 � jG2j+ jG1 [ G2j � c00 � jG2j+ c00 � jG1 [ G2j � c00 � jG1j � c00 k0=2;the last inequality holding since we are in Case II and G1 � k0=2. Hence eachiteration of Case II is expected to fully satisfy at least a constant fraction of theactive groups. It is then easy to see (via an expectation calculation and Markov'sinequality) that for some constant a, the probability that not all groups aresatis�ed after a log k iterations where Case II held, is at most 1=4.Also, summing up the expected cost (2) over all iterations (using the linearityof expectation), and then using Markov's inequality, we see that with probability
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