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Abstract. Many frameworks have been proposed to manage uncertain informa-
tion in logic programming. Essentially, they differ in the underlying notion of un-
certainty and how these uncertainty values, associated to rules and facts, are man-
aged. The goal of this paper is to allow the reasoning withnon-uniform default
assumptions, i.e. with any arbitrary assignment of default values to the atoms.
Informally, rather than to rely on the same default certainty value for all atoms,
we allow arbitrary assignments to complete information. To this end, we define
both epistemologically and computationally the semantics according to any given
assumption. For reasons of generality, we present our work in the framework pre-
sented in [17] as a unifying umbrella for many of the proposed approaches to the
management of uncertainty in logic programming. Our extension is conservative
in the following sense:(i) if we restrict our attention to the usual uniform Open
World Assumption, then the semantics reduces to the Kripke-Kleene semantics,
and (ii) if we restrict our attention to the uniform Closed World Assumption,
then our semantics reduces to the well-founded semantics.

1 Introduction

The management of uncertainty is an important issue whenever the real world informa-
tion to be represented is of imperfect nature and the classical crisptrue, falseapprox-
imation is not adequate (which is likely the rule rather than an exception). Numerous
frameworks for logic programming with uncertainty have been proposed. Essentially,
they differ in the underlying notion of uncertainty (e.g. probability theory [8, 16, 23–25],
fuzzy set theory [3, 27, 29], multi-valued logic [7, 12–14, 17, 28], possibilistic logic [4,
32, 33]) and how uncertainty values, associated to rules and facts, are managed.

Recently, Lakshmanan and Shiri [17] have proposed a general framework, called
Parametric Deductive Databases with Uncertainty(PDDU), that captures and gen-
eralizes many of the precedent approaches, permitting various forms of uncertainty
to be manipulated in different ways. Informally, in [17], a rule is of the formA

α←
B1, ..., Bn . Computationally, given an assignmentI of certainties, taken from a cer-
tainty latticeL, to theBis, the certainty ofA is computed by taking the “conjunction”
of the certaintiesI(Bi) and then somehow “propagating” it to the rule head, taking
into account the certaintyα of the implication. The term ‘parametric’ in the PDDU
framework derives from the fact it is possible to select, individually for each rule, the
aggregation operators, i.e. how conjunction, disjunction and rule propagation are inter-
preted and, thus, admitting a certain amount of flexibility. Our motivation to consider



the PDDU framework comes from its generality. We will just recall that Lakshmanan
and Shiri [17] essentially motivate their parametric approach by the need(i) to permit
various forms of uncertainty to be manipulated in different ways, and(ii) to allow for
the fact that certain manipulations amount to treating different derivations of an atom
as a set (see, e.g. [4, 15, 29]) while others amount to treating it as a multiset (e.g.[16]).

The main topic of this study is to extend the PDDU framework, and thus the ap-
proaches captured by that framework, withnon-uniform default assumptions. Infor-
mally, rather than to rely on the same default value for all atoms, we allow arbitrary
assignments of default certainty values. An assumption defines default knowledge to be
used to complete the available knowledge provided by the facts and rules of a program.
As shown in [21], the usual semantics of logic programs can be obtained through a
unique computation method, but using differentuniformassumptions, i.e. assumptions
that assign the same default truth-value to all the atoms. Well-known are(i) theClosed
World Assumption(CWA), which asserts that any atom whose truth-value cannot be
inferred from the facts and rules is supposed to be false, and(ii) theOpen World As-
sumption(OWA), which asserts that every such atom is supposed to be unknown or
undefined. In the first case, fall the approaches, which end up with astable model[9,
10], orwell-founded[31] semantics, like [5, 19, 23, 24], while in the latter case fall the
others, including [17] as well. Exceptions are a previous attempt [19] and those works
related to Extended and Disjunctive Logic Programs [10], where some non-uniformity
is allowed (see, e.g. [32, 33]). In those works, some atoms are allowed to be inter-
preted according to the OWA, while others are allowed to be interpreted according to
the CWA and, thus, roughly the choice of the default is restricted to the valueunknown
and/orfalse. The general case, whereanyassignment may be considered as the default
knowledge, is approached in [22], but relying on a weak evaluation of formulas (based
on the possible values of unknown atoms), and thus leads to a weaker semantics than
the one presented here (that relies on classical formulas evaluation). To the best of our
knowledge there is no other work addressing the general case. To illustrate the idea of
non-uniform assumptions, consider the following example. Examples motivating the
need for combining OWA and CWA can be found in [10, 22, 32, 33] and in [8].

Example 1.A judge is collecting information from two sources, the public prosecutor
and the counsel for the defence, in order to decide whether to charge a person named
Ted, accused of murder3. The judge first collects a set of factsF = {¬has witness(Ted),
friends(John, Ted)}. Then he combines them with his own set of rulesR (described
below) in order to make a decision.

suspect(X) ← motive(X)
suspect(X) ← has witness(X)
cleared(X) ← alibi(X, Y) ∧ ¬friends(X, Y)
cleared(X) ← innocent(X) ∧ ¬suspect(X)
friends(X, Y) ← friends(Y, X)
friends(X, Y) ← friends(X, Z) ∧ friends(Z, Y)
charge(X) ← suspect(X)
charge(X) ← ¬cleared(X)

The question is: What should the value ofcharge(Ted) be? According to that set of
rules,Ted should be charged if he has been proved effectively suspect or not cleared.

3 For ease, we omit any association of uncertainty numbers to the rules and facts.



UsingF andR (and intuition), it appears that uniform default assumption are not ap-
propriate in such a case. If the judge relies on the CWA, then he will decide thatTed
is not cleared and must be charged despite the absence of proof. Relying on the OWA,
the atomssuspect(Ted), cleared(Ted) andcharged(Ted) will be unknown, and the
judge cannot take a decision (approaches based on OWA are often too weak). Assum-
ing that by default the atomsmotive(Ted), has witness(Ted) andsuspect(Ted)
are false, that the atominnocent(Ted) is true and that the others are unknown seems
to be an appropriate assumption here. Relying on this assumption, the judge will infer
thatTed is cleared, not suspect and should not be charged. If the set of certainty val-
ues is the unit interval[0, 1], then assuming that by default the value ofmotive(Ted),
has witness(Ted) andsuspect(Ted) is 0.1, that the value ofinnocent(Ted) is 0.9
and that the others are unknown would be a way to use uncertainty values to distinguish
the notion of proved innocence from the notion of presumption of innocence.

Motivation for allowing the use of any assignment of truth values as an assumption,
apart from proposing a general framework for reasoning with incomplete information,
comes mainly from the area of information integration. Information is now usually
scattered in many different sources, and then has to be integrated before to be used.
But an information source that received knowledge from other sources may want to
privilege its own knowledge. To this end, the source should have the possibility to use
the “external” information just to complete its own “internal” knowledge, but without
‘removing’ it. It follows that the source should have the possibility of considering the
external knowledge provided by other sources as an assumption over its own universe.
Let us consider the following example to illustrate that situation.

Example 2.Consider an insurance company that has information about its customers
(data grouped into a set F of facts, and a set R of rules, i.e. a logic program). That
information is used to determine, or to re-evaluate, the risk coefficient in[0, 1] of each
customer in order to fix the price of the insurance contracts. In presence of incomplete
information, the insurance company may use knowledge provided by other sources such
as the risk coefficient of a new customer provided by its precedent insurance company.
Such knowledge should be seen as “assumed” or “possible” knowledge for completing
the knowledge given by the program, but without overwriting it.

We will rely on the central notion ofsupport, which is roughly speaking the maximal
knowledge provided by an assumption that can be “safely” added to a program. That
notion will be used to define new families of models, calledsupported modelswhich are
models that can not be completed anymore by the assumption. As a side effect, our ap-
proach extends PDDU, and thus the underlying formalisms, by allowing negation, and
generalizes to those frameworks the usual semantics of logic programs with negation.
Indeed, our extension of the PDDU framework to non-uniform default assumptions is
conservative, i.e. if we restrict our attention to the uniform OWA, then our semantics re-
duces to the Kripke-Kleene semantics [6]. On the other hand, if we restrict our attention
to the uniform CWA, then our semantics captures the well-founded semantics [31].

In the following section, we introduce the syntax of PDDU with negation, called
normal parametric programs. Section 3 contains the definitions of interpretation and
model of a program. Section 4 presents both epistemic and fixpoint characterizations of



the intended semantics of normal parametric programs with respect to any given default
assumption. Section 5 presents some concluding remarks.

2 Preliminaries

We start with some basic definitions related to PDDU [17]. Consider an arbitrary first
order language that contains infinitely many variable symbols, finitely many constants,
and predicate symbols, but no function symbols. The predicate symbolπ(A) of an
atomA given byA = p(X1, . . . , Xn) is defined byπ(A) = p. LetL = 〈T ,�,⊗,⊕〉
be acertainty lattice(a complete lattice) andB(T ) the set of finite multisets overT . A
multiset is indicated with{|·|}. With⊥ and>we denote the least and greatest element in
T , respectively. Essentially, as we will see in the next section, an atom will be mapped
into a certainty value inT . Typical certainty lattices are: given a set of real valuesT ,
defineLT = 〈T ,�,⊗,⊕〉, α � β iff α ≤ β, α⊗β = min(α, β), α⊕β = max(α, β),
⊥ = inf(T ) and> = sup(T ), respectively. ThenL{0,1} corresponds to the classical
truth-space, whileL[0,1], which relies on the unit interval, is quite frequently used as
certainty lattice. While the language does not contain function symbols, it contains
symbols for families of propagation (Fp), conjunction (Fc) and disjunction functions
(Fd), calledcombination functions. The intention is that a conjunction function (e.g.⊗)
determines the certainty of a conjunction in the body of a rule, the propagation function
(e.g.⊗) determines how to “propagate” the certainty resulting from the evaluation of
the body of a rule to the head, by taking into account the certainty associated to the rule,
while the disjunction function (e.g.⊕) dictates how to combine the certainties in case an
atom appears in the heads of several rules. Combination functions have to satisfy some
restrictions to reflect their use. Formally, apropagation functionis a mapping fromT ×
T to T and aconjunctionor disjunctionfunction is a mapping fromB(T ) to T . Each
combination function is monotonic and continuous w.r.t. (with respect to) each one of
its arguments. Conjunction and disjunction functions are commutative and associative.
Additionally, each kind of function must verify some of the following properties (for
simplicity, we formulate the properties treating any function as a binary function onT ):

(i) bounded-above:f(α1, α2) � αi, for i = 1, 2,∀α1, α2 ∈ T ;
(ii) bounded-below:αi � f(α1, α2), for i = 1, 2,∀α1, α2 ∈ T ;
(iii) f({|α|}) = α,∀α ∈ T ;
(iv) f(∅) = ⊥;
(v) f(∅) = >; and
(vi) f(α,>) = α, ∀α ∈ T .

The following should be satisfied:

– a conjunction function inFc should satisfy properties(i), (iii), (v) and(vi);
– a propagation function inFp should satisfy properties(i) and(vi); while
– a disjunction function inFd should satisfy properties(ii), (iii) and(iv).

Note that, condition(iii) accounts for the evaluation a one-element conjunction or dis-
junction; condition(v) deals with a conjunction of an empty body, i.e. a fact, and, thus,
the body is evaluated to>, while condition(iv) specifies that a disjunction of an empty



set of literals is evaluated to⊥ (for instance, in case an atom is head of no rule). We also
assume that there is a function fromT to T , callednegation function, denoted¬, that
is anti-monotone w.r.t.� and satisfies¬¬α = α, ∀α ∈ T . E.g., inL[0,1], ¬α = 1 − α
is quite typical. Finally, a literal is an atomic formula or its negation.

In the following definition of normal parametric program, we extend [17] by allow-
ing literals to appear in the body of a rule. But, as we will clarify later on, in this special
case, the role of a literal¬A depends on the default assumption made on the atomA.
If it is the OWA, i.e. by defaultA’s value is unknown, then¬A behaves classically, if it
is the CWA, i.e. by defaultA’s value is false, then¬A behaves likenot A (negation as
failure). Note thatA’s default value may well be any other value, e.g.0.7 in L[0,1].

Definition 1 (Normal parametric program). A normal parametric programP (np-
program) is a 5-tuple〈L,R, C,P,D〉, whose components are defined as follows:

1. L = 〈T ,�,⊗,⊕〉 is a complete lattice, whereT is a set of certainties partially
ordered by�,⊗ is the meet operator and⊕ the join operator;

2. R is a finite set ofnormal parametric rules(np-rules), each of which is a statement
of the form:r : A

αr← L1, ..., Ln whereA is an atom,L1, ..., Ln are literals or
values inT andαr ∈ T \ {⊥} is the certainty of the rule;

3. C maps each np-rule into a conjunction function inFc;
4. P maps each np-rule into a propagation function inFp;
5. D maps each predicate symbol in P into a disjunction function inFd.

For ease of presentation, we writer : A
αr← L1, ..., Ln; 〈fd, fp, fc〉 to represent an np-

rule in whichfd ∈ Fd is the disjunction function associated withπ(A) and,fc ∈ Fc and
fp ∈ Fp are the conjunction and propagation functions associated withr, respectively.
Note that under the above representation, rules involving the same predicate symbol in
the head, should have the same disjunction function associated. TheHerbrand baseBP

of an np-programP is the set of all instantiated program atoms and,P ∗ is theHerbrand
instantiation ofP , i.e. the set of all ground instantiations of the rules inP (P ∗ is finite).
Note that any Datalog program with negation can be seen as an np-program.

We recall from [17] the following examples, which both might help informally the
reader to get confidence with the formalism and show how PDDU may capture differ-
ent approaches to the management of uncertainty in logic programming. Consider the
following generic program with the four rulesri, (r1:A

α1← B), (r2:A
α2← C), (r3:B

α3←
), (r4:C

α4←) whereA,B,C are ground atoms, whereαi is the certainty of the ruleri.

Example 3 (Classical case).ConsiderL{0,1} andαi = 1, for 1 ≤ i ≤ 4. Suppose
the propagation and conjunction functions associated withri are bothmin, and the
disjunction function associated with each atom ismax. Then,P is a program in the
standard logic programming framework.

Example 4 ([4]).ConsiderL[0,1]. Supposeα1 = 0.8, α2 = α3 = 0.7, andα4 = 0.8 are
possibility/necessity degrees associated with the implications. Suppose the conjunction,
propagation, and disjunction functions are the same as in the above example. ThenP is
a program in the framework proposed by Dubois et al. [4], which is founded on Zadeh’s
possibility theory [35]. In a fixpoint evaluation ofP , the possibility/necessity degrees
derived forA, B, C are0.7, 0.7, 0.8, respectively.



Example 5 ([29]).ConsiderL[0,1] and supposeαi as defined in Example 4. Suppose
the conjunction and disjunction functions are as before, but the propagation function is
multiplication(·). ThenP is a program in van Emden’s framework [29], which is math-
ematically founded on the theory of fuzzy sets proposed by Zadeh [34]. In a fixpoint
evaluation ofP , the values derived forA, B, C are0.56, 0.7, 0.8, respectively.

Example 6 (MYCIN [2]).ConsiderL[0,1], and supposeαi’s are probabilities defined
as in the previous example. Suppose(·) is the propagation and conjunction function
associated with every rule inP , andfd(α, β) = α + β − α · β is the disjunction
function associated with every atom inP (algebraic sum). Viewing an atom as an event,
fd returns the probability of the occurrence, of any one of two independent events, in
the probabilistic sense. Note thatfd is the disjunction function used in MYCIN [2].
Let us consider a fixpoint evaluation ofP . In the first step, we deriveB andC with
probabilities0.7 and0.8, respectively. In step 2, applyingr1 and r2, we obtain two
derivations ofA, the probability of each of which is0.56. The probability ofA is then
defined asfd(0.56, 0.56) = 0.8064. Note that, in this example, collecting derivations
as a multiset is crucial; if the derivations were collected as a set, the certainty obtained
for A would be0.56, which is incorrect.

Finally, let us extend the introductory Example 1 to an np-program formulation.

Example 7.Consider the certainty lattice isL[0;1]. Considerfd(α, β) = α + β −α · β,
fc(α, β) = α · β, fp = fc and¬α = 1 − α. Let P be the set of rules in Example 1,
rewritten as np-program by including uncertainty values, and extended as follows.

suspect(X)
0.6← motive(X) 〈fd,⊗,⊗〉

suspect(X)
0.8← has witness(X) 〈fd,⊗,⊗〉

cleared(X)
1← alibi(X, Y) ∧ ¬friends(X, Y) 〈fd, fp,⊗〉

cleared(X)
1← innocent(X) ∧ ¬suspect(X) 〈fd, fp,⊗〉

friends(X, Y)
1← friends(Y, X) 〈⊕, fp,⊗〉

friends(X, Y)
0.7← friends(X, Z) ∧ friends(Z, Y) 〈⊕, fp, fc〉

charge(X)
1← suspect(X) 〈⊕, fp,⊗〉

charge(X)
1← ¬cleared(X) 〈⊕, fp,⊗〉

motive(Ted)
1← 1 〈⊕, fp,⊗〉

alibi(Ted, John)
1← 1 〈⊕, fp,⊗〉

friends(Ted, John)
1← 0.8 〈⊕, fp,⊗〉

Note that e.g. for predicatesuspect, the disjunction function isfd to take into account
that if there are different ways for inferring that someone is suspect, then we would like
to increase (summing up) our suspicion and not just to choose the maximal value.

3 Interpretations of programs

An interpretationI of an np-programP is a function that assigns to all atoms of the
Herbrand base ofP a value inT . The semantics of a programP is usually an inter-
pretation chosen in the set of models ofP . In Datalog programs, as well as in PDDU,



that chosen model is generally the least model ofP w.r.t.�.4 Due to the non-monotone
negation operator on lattices, some logic programs do not have a unique minimal model
anymore, as shown in the following example.

Example 8.Consider the certainty latticeL[0,1] and the programP = {(A←¬B),
(B←¬A), (A←0.2), (B←0.3)}. Informally, an interpretationI is a model of the pro-
gram if it satisfies every rule, whileI satisfies a ruleX ← Y if I(X) � I(Y ). So,
this program has an infinite number of modelsIy

x , where0.2 � x � 1, 0.3 � y � 1,
y ≥ 1 − x, Iy

x(A) = x andIy
x(B) = y. (those in theA area below). There are also

an infinite number of minimal models (those on the thin diagonal line). The minimal
modelsIy

x are such thaty = 1− x.

-
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Concerning the previous example we may note that the certainty ofA in any minimal
models ofP belongs to the interval[0.2, 0.7], while for B the interval is[0.3, 0.8]. An
obvious question is: what should be the answer to a queryA to the program proposed
in Example 8? There are at least two answers:

1. the certainty ofA is undefined, as there is no unique minimal model. This is a
conservative approach, which in case of ambiguity prefers to leaveA unspecified;

2. the certainty ofA is in [0.2, 0.7], which means that even if there is no unique value
for A, in all minimal models the certainty ofA is in [0.2, 0.7]. In this approach
we still try to provide some information. Of course, some care should be used.
Indeed fromI(A) ∈ [0.2, 0.7] andI(B) ∈ [0.3, 0.8] we should not conclude that
I(A) = 0.2 andI(B) = 0.3 is a model of the program.

Applying a usual approach, like the well-founded semantics [31] or the Kripke-Kleene
semantics [6], would lead us to choose the conservative solution 1. This was also the
approach taken in [19]. Such a semantics seems to be too weak, in the sense that it loses
some knowledge (e.g. the value ofA should be at least 0.2). In this paper we rely on the
more informative solution 2.

There is a well-known solution to it that consists in relying on the inducedinterval
bilattice (these bilattices are obtained in a standard way as product of a lattice by itself
–see, for instance [5, 11]). Indeed, we propose to rely onT ×T . Any element ofT ×T
is denoted by[a; b] and interpreted as an interval onT , i.e. [a; b] is interpreted as the set
of elementsx ∈ T such thata � x � b. For instance, turning back to Example 8 above,
in the intended model ofP , the certainty ofA is “approximated” with[0.2; 0.7], i.e. the
certainty ofA lies in between0.2 and0.7 (similarly for B). Formally, given a complete
latticeL = 〈T ,�,⊗,⊕〉, we construct abilatticeoverT ×T . We recall that a bilattice
is a triple〈B,�t,�k〉, whereB is a nonempty set and�t,�k are both partial orderings
giving to B the structure of a lattice with a top and a bottom [11]. In our setting, we
considerB = T × T with the two following orderings:

4 � is extended to the set of interpretations as follows:I � J iff I(A) � J(A) for all atomsA.



– thetruth ordering�t, where[a; b] �t [a′; b′] iff a � a′ andb � b′;
– theknowledge ordering�k, where[a; b] �k [a′; b′] iff a � a′ andb′ � b.

The intuition of those orders is that truth increases if the interval contains greater
values (e.g.[0.1; 0.4] �t [0.2; 0.5]), whereas the knowledge increases when the in-
terval (i.e. in our case the approximation of a certainty value) becomes more precise
(e.g.[0.1; 0.4] �k [0.2; 0.3], i.e. we have more knowledge)5. The least and greatest ele-
ments ofT ×T are respectively(i) f = [⊥;⊥] (false) andt = [>;>] (true), w.r.t.�t;
and(ii)⊥ = [⊥;>] (unknown – the less precise interval, i.e. the atom’s certainty value
is unknown) and> = [>;⊥] (inconsistent – the empty interval) w.r.t.�k. The meet,
join and negation onT ×T w.r.t. both orderings are defined by extending the meet, join
and negation fromT to T × T in the natural way: let[a; b], [a′; b′] ∈ T × T , then

– [a; b]⊗t [a′; b′] = [a⊗ a′, b⊗ b′] and[a; b]⊕t [a′; b′] = [a⊕ a′, b⊕ b′];
– [a; b]⊗k [a′; b′] = [a⊗ a′, b⊕ b′] and[a; b]⊕k [a′; b′] = [a⊕ a′, b⊗ b′];
– ¬[a; b] = [¬b;¬a].

⊗t and⊕t (⊗k and⊕k) denote the meet and join operations onT × T w.r.t. the truth
(knowledge) ordering, respectively. For instance, inL[0,1],

[0.1; 0.4]⊕t [0.2; 0.5] = [0.2; 0.5] ,
[0.1; 0.4]⊗t [0.2; 0.5] = [0.1; 0.4] ,
[0.1; 0.4]⊕k [0.2; 0.5] = [0.2; 0.4] ,
[0.1; 0.4]⊗k [0.2; 0.5] = [0.1; 0.5] ,
¬[0.1; 0.4] = [0.6; 0.9] .

Finally, we extend in a similar way the combination functions fromT to T ×T . Let fc

(resp.fp andfd) be a conjunction (resp. propagation and disjunction) function overT
and[a; b], [a′; b′] ∈ T × T , then

– fc([a; b], [a′; b′]) = [fc(a, a′), fc(b, b′)];
– fp([a; b], [a′; b′]) = [fp(a, a′), fp(b, b′)];
– fd([a; b], [a′; b′]) = [fd(a, a′), fd(b, b′)].

It is easy to verify that the combination functions above preserve the original properties
of combination functions and that the negation function is monotone w.r.t.�k.

Theorem 1. ConsiderT × T with the orderings�t and�k. Then

1. ⊗t,⊕t,⊗k, ⊕k and the extensions of combination functions are continuous (and,
thus, monotonic) w.r.t.�t and�k;

2. any extended negation function is monotonic w.r.t.�k;
3. if the negation function satisfies the de Morgan laws, i.e.∀a, b ∈ T .¬(a ⊕ b) =
¬a⊗ ¬b then the extended negation function is continuous w.r.t.�k.

We extend interpretations based onT to T × T as follows.

5 An alternative to the interval bilattice is used in [5, 11], where a pair[a; b] is interpreted as
degree of doubt and degree of belief, or, similarly, as degree of falsity and degree of truth, re-
spectively. Of course definitions of orders and extensions of functions would then be different,
but the whole theory presented in the paper would still hold.



Definition 2 (Approximate interpretation). LetP be an np-program. Anapproximate
interpretationof P is a total functionI from the Herbrand baseBP to the setT × T .
The set of all the approximate interpretations ofP is denotedCP .

Intuitively, assigning the logical value[a; b] to an atomA means that the exact certainty
value ofA lies in betweena andb w.r.t.�. I(A) = [a; b] can also be understood as the
specification of alower bound and upper bound constrainton the admissible certainty
values ofA. Our goal will be to determine for each atom of the Herbrand base ofP the
most precise interval that can be inferred.

The two orderings onT × T can be extended to the set of approximate interpre-
tationsCP in a usual way: letI1 andI2 be in CP , I1 �t I2 iff I1(A) �t I2(A), for
all ground atomsA; andI1 �k I2 iff I1(A) �k I2(A), for all ground atomsA. Un-
der these two orderingsCP becomes a complete bilattice. The meet and join operations
overT × T for both orderings are extended toCP in the usual way (e.g. for any atom
A, (I ⊕k J)(A) = I(A) ⊕k J(A)). Negation is extended similarly, for any atomA,
¬I(A) = I(¬A), and approximate interpretations are extended toT , for anyα ∈ T ,
I(α) = [α;α]. With I f andI t we will denote the bottom and top approximate inter-
pretation under�t (they map any atom intof and t , respectively). WithI ⊥ and I >
we will denote the bottom and top approximate interpretation under�k (they map any
atom into⊥ and>, respectively).

Definition 3 (Model of a logic program). Let P be an np-program and letI be an
approximate interpretation ofP .

1. I satisfiesa ground np-ruler:A αr← L1, ..., Ln; 〈fd, fp, fc〉 in P , denoted|=I r, iff
I(A) �t fp([αr;αr], fc({|I(L1), . . . , I(Ln)|}));

2. I is a model of P , or I satisfiesP , denoted|=I P , iff for all atomsA ∈ BP ,
I(A) �t fd(X) wherefd is the disjunction function associated withπ(A) and

X = {|fp([αr;αr], fc({|I(L1), . . . , I(Ln)|})):A αr← L1, ..., Ln; 〈fd, fp, fc〉 ∈ P ∗|} .

4 Assumption-based semantics

In this section we define the semantics of an np-program w.r.t. a given assumption.

Definition 4 (assumption).AnassumptionH is an approximate interpretation.

Informally, we propose to complete our knowledge using an approximate interpretation
over the Herbrand base. The term assumption is used in order to stress the fact that it
represents “default” knowledge and not the usual “sure” knowledge.

At first, we give the definition of the immediate consequence operator over approx-
imate interpretations, which does not take into account assumptions.

Definition 5. Let P and I be an np-program and an approximate interpretation, re-
spectively. Theimmediate consequence operatorTP is defined as follows: for every
atom A, TP (I)(A) = fd(X), wherefd is the disjunction function associated with
π(A) and

X = {|fp([αr;αr], fc({|I(L1), . . . , I(Ln)|})):A αr← L1, ..., Ln; 〈fd, fp, fc〉 ∈ P ∗|} .



Note that by property(iv) of combination functions satisfied by all disjunction func-
tions, it follows that if an atomA does not appear as the head of a rule, thenTP (I)(A) =
f . It can be shown that

Theorem 2. For any np-programP , TP is monotonic and, if the de Morgan laws hold,
continuous w.r.t.�k.

It is worth noting that the least fixpoint ofTP with respect to�k (which exists as
TP is monotonic w.r.t.�k) corresponds to an extension of the classical Kripke-Kleene
semantics [6] of Datalog programs with negation to np-programs. Indeed, if we re-
strict our attention to Datalog with negation, then we have to deal with four values
[0; 0], [1; 1], [0; 1] and[1; 0] that correspond to the truth valuesfalse, true, unknownand
inconsistent, respectively. In such a setting, our bilattice coincides with Belnap’s bilat-
ticeFOUR [1] and for any Datalog program with negationP , the least fixpoint ofTP

w.r.t.�k is a model ofP that coincides with the Kripke-Kleene semantics ofP .

Example 9.ConsiderP = {(A ← B,C), (C ← C,D), (B ← 0.7), (D ← 0.9)}6,
andL[0,1] as certainty lattice. The maximal knowledgeI that can be inferred from
that program (without any extra knowledge such as assumptions) is that the (minimal)
values of B and D are exactly 0.7 and 0.9 respectively, while the values of A and C are
at most 0.7 and 0.9 respectively, i.e.I(A) = [0; 0.7], I(B) = [0.7; 0.7], I(C) = [0; 0.9]
and I(D) = [0.9; 0.9]. Using an assumptionH asserting that the value ofC is by
default at least 0.6, i.e.H(C) = [0.6; 1], then we should come up with a more precise
characterisation ofA andC by stating thatA is in [0.6, 0.7] andC is in [0.6, 0.9].

The formalisation of the above concept relies on the notion of safe approximation and
support. Intuitively, the notion ofsupportprovided by a hypothesisH to an np-program
P and an interpretationI, denotedsH

P (I), can be explained as follows. We regardI as
what we already know about an intended model ofP . On the basis of both the current
knowledgeI and the information expressed by the rules ofP , we want to complete our
available knowledgeI, by using the hypothesisH. We regard the hypothesis as an addi-
tional source of information to be used to completeI. The support ofI, sH

P (I), indeed
determines in a principled way the amount of information provided by the hypothesis
H that can be joined toI. The concept of support has been extensively discussed in [20]
in relation to an alternative, epistemic based, characterization of the well-founded se-
mantics over bilattices. But, in [20], the ‘hypothesis’ isfixed to the approximate in-
terpretationH = I f . That is, by default the certainty of any atom isf . We base our
work on [20], rather than try to extend the well-know Gelfond-Lifschitz transforma-
tion [9, 10], for two main reasons. First the Gelfond-Lifschitz transformation provides
only a computational definition of the semantics whereas our approach provides also
an epistemic definition, and thus lights the role of the assumption. Second, the limits
of the Gelfond-Lifschitz transformation for reasoning with general assumptions have
been shown in [18], where that transformation has been extended for reasoning with
any given assumption over Belnap’s bilatticeFOUR [1]. It is shown that properties
of extremal fixpoints of monotone operators over lattices (and bilattices), on the one
hand, allow the use of any such assumption instead of the CWA, but, on the other hand,

6 For ease of presentation, we omit combination functions.



restrict the set of default values to the set of extremal values only and thus do not allow
the use of any assumption over a latticedifferentfromFOUR.

Formally, at first, we extendTP to take an assumption into account as well.

Definition 6. The immediate consequence operatorTH
P is defined asTP , except that

rather than mapping intof all atoms that do not appear as the head of any rule inP ,
TH

P maps every such atomA into its default valueH(A).

Definition 7 (safe approximation).LetP, I andH be an np-program, an approximate
interpretation and an assumption, respectively. An approximate interpretationJ is safe
w.r.t. P,H andI iff bothJ �k H andJ �k TH

P (I ⊕k J) hold.

In the above definition, the first condition dictates that a safe interpretationJ must
not be more informative than a given assumptionH. If J = H, then every ground
atom assumes its default value. But, givenI andP , not necessarily the value of every
atom may be given by its default (e.g., for some atoms we may infer something else)
and, thus, we have to consider some weaker assumptionJ �k H. The second item
dictates that a safe interpretation must becumulative, i.e. that the accumulated amount
of information provided by the assumption should be preserved and lead to more precise
approximations of an intended model ofP .

Example 10.Consider Example 9 and the following table of approximate interpreta-
tionsI, J1, J2, J and assumptionH.

A B C D

I [0; 0.7] [0.7; 0.7] [0; 0.9] [0.9; 0.9]

H [0.4; 0.5] [0; 1] [0.6; 1] [0; 0]

J1 [0.3; 0.7] [0; 1] [0.6; 1] [0; 0.9]

J2 [0.4; 0.8] [0; 1] [0.6; 1] [0; 0.9]

J [0.4; 0.7] [0; 1] [0.6; 1] [0; 0.9]

Then bothJ1 andJ2 are safe w.r.t.P,H andI. It is easy to see that the maximal safe
approximate interpretation w.r.t. the knowledge order isJ = J1 ⊕k J2.

Given an assumptionH assigning a default value to any atom of the Herbrand base, we
can not expect it to be safe, and thus we have to relax the assumption and consider a
safe interpretation w.r.t.H, i.e. weaker thanH. Among all possible safe approximate
interpretations w.r.t.H, we will privilege the maximal one under�k as our goal is to
use it to complete the knowledge provided byP andI.

Definition 8 (support). Let P be an np-program, letI be an approximate interpreta-
tion and consider an assumptionH. Thesupport, denotedsH

P (I), provided byH to P
andI is the maximal safe interpretation w.r.t.P,H andI under�k.

It can be shown that ifJ1 andJ2 are two safe interpretations w.r.t.P,H andI, then
J1 ⊕k J2 is safe w.r.t.P,H andI. It follows that the support is a well-defined concept
and that we havesH

P (I) =
⊕

k {J : J is safe w.r.t.P,H andI}.
The following theorem provides an algorithm for computing the support.

Theorem 3. Let P be an np-program.sH
P (I) can be computed as the iterated fixpoint

of FH
P,I beginning the computation withH, whereFH

P,I(J) = H ⊗k TH
P (I ⊕k J).



From Theorems 1 and 2, it can be shown thatFH
P,I is monotone and, if the de Morgan

laws hold, continuous w.r.t.�k. It follows that the iteration of the functionFH
P,I starting

from H decreases w.r.t.�k and reaches a fixed point.

Example 11 (Example 10 cont.).Below, the computation of the support is shown.

A B C D
I [0; 0.7] [0.7; 0.7] [0; 0.9] [0.9; 0.9]

J0 = H [0.4; 0.5] [0; 1] [0.6; 1] [0; 0]

J1 = J2 = sH
P (I) [0.4; 0.7] [0; 1] [0.6; 1] [0; 0.9]

Intuitively, the support of an assumption represents the maximal knowledge that can be
considered “compatible” with the program and that can be used “safely” tocomplete
the knowledge inferred from the program. Given an assumptionH, this intuition leads
to the definition of a family of models, those models that already integrate their own
support provided byH, i.e. the models ofP “supported” byH.

Definition 9 (H-supported models).LetP be an np-program and letH be an assump-
tion. A modelI of P is supportedby H if sH

P (I) �k I. Thesemanticsof P supported
byH is the least model under�k of P supported byH, denotedAH

P .

Example 12 (Example 11 cont.).Below, the semantics,AH
P , of P supported byH is

shown. Note thatsH
P (AH

P ) �k H andsH
P (AH

P ) �k AH
P , i.e.AH

P contains all the default
information that can be used to complete the knowledge provided by the program.

A B C D
H [0.4; 0.5] [0; 1] [0.6; 1] [0; 0]

sH
P (AH

P ) [0.4; 0.7] [0; 1] [0.6; 1] [0; 0.9]

AH
P [0.6; 0.7] [0.7; 0.7] [0.6; 0.9] [0.9; 0.9]

Note that there are two special cases of assumptions that are closely related to the in-
terpretation of negation : given an atomA, then if H(A) = f then¬A is interpreted
as negation-as-failurenot A, whereas ifH(A) = ⊥ then we revert to the classical in-
terpretation of negation. These two particular cases may be seen as strictly related to
Extended and Disjunctive Logic Programs [10], in which you may consider to add a
rule of the form¬A← not A or not, respectively.

Supported models have also a fixed point characterization. Given an approximate in-
terpretationI, an assumptionH and an np-programP , there are two ways of inferring
information from an np-programP : (i) usingTH

P ; and(ii) usingsH
P . We propose to

combine them in order to infer as much knowledge as possible: that is(i) first we com-
putesH

P (I), i.e. the most precise approximation of the assumptionH that can be used
safely; (ii) we add that approximate interpretation toI (that represents the available
knowledge) and obtainI⊕ksH

P (I); and finally(iii) we activate the rules of the program
by applying the immediate consequence operator, i.e. we computeTH

P (I ⊕k sH
P (I)).

Definition 10. Let P , H andI be an np-program, an assumption and an approximate
interpretation, respectively. Theassumption-based immediate consequence operator,
denotedΓH

P , is defined asΓH
P (I) = TH

P (I ⊕k sH
P (I)).

From the monotonicity (continuity) ofTH
P andsH

P over the complete latticeCP , w.r.t.�k,
by the well-known Knaster-Tarski theorem, it follows that



Theorem 4. LetP be an np-program and letH be an assumption. ThenΓH
P is mono-

tone and, if the de Morgan laws hold, continuous w.r.t. the knowledge order�k. There-
fore,ΓH

P has a least fixpoint w.r.t. the knowledge order�k.

ΓH
P provides a fixed point characterization of supported models and, thus,AH

P can be
computed as the iterated fixpoint ofΓH

P starting withI ⊥.

Theorem 5. LetP be an np-program and letH be an assumption. An interpretationI
is a model ofP supported byH iff I is a fixpoint ofΓH

P .

Example 13 (Example 11 cont.).Below, the computation of the semanticsAH
P is shown.

A B C D

H [0.4; 0.5] [0; 1] [0.6; 1] [0; 0]

I0 = I ⊥ [0; 1] [0; 1] [0; 1] [0; 1]

sH
P (I0) [0; 1] [0; 1] [0; 1] [0; 0.9]

I1 [0; 1] [0.7; 0.7] [0; 0.9] [0.9; 0.9]

sH
P (I1) [0.4; 0.7] [0; 1] [0.6; 1] [0; 0.9]

I2 [0.6; 0.7] [0.7; 0.7] [0.6, 0.9] [0.9; 0.9]

sH
P (I2) [0.4; 0.7] [0; 1] [0.6; 1] [0; 0.9]

I3 = I2 = AH
P [0.6; 0.7] [0.7; 0.7] [0.6; 0.9] [0.9; 0.9]

Example 14.Consider the programP given in Example 7. LetH be the assumption that
assigns to the atomsmotive(Ted), has witness(Ted) andsuspect(Ted) the value
[0; 0], to the atominnocent(Ted) the value[1; 1], and to the other atoms the value
[0; 1]. Then it can be shown that the semantics ofP for the three different assumptions,
H1 = I ⊥ (i.e. everything unknown),H2 = I f (i.e. everything false) andH are:

suspect(Ted) cleared(Ted) charge(Ted)

AH1
P [0.6; 0.92] [0.2; 0.52] [0.6; 0.92]

AH2
P [0.6; 0.6] [0.2; 0.2] [0.8; 0.8]

AH
P [0.6; 0.6] [0.52; 0.52] [0.6; 0.6]

Note that using the assumption that everything is unknown by default gives obviously
a less precise semantics than using any other assumption. As anticipated in Example 1,
the OWA, i.e.H1, does not provide precise information, and the CWA, i.e.H2, de-
creases the degree of innocence in presence of incomplete information and leads to
charge a person despite the absence of evidence for or against the guiltyness of that
person, while the assumptionH respects the principle of presumption of innocence and
leads to expected results.

A first attempt to give a semantics to PDDU with negation under non-uniform assump-
tions is described in [19]. It is based on an extension of the alternating fixpoint semantics
of van Gelder [30], i.e. on a separated management of positive and negative literals. The
approach proposed here is based on a more intuitive management of negation where no
distinction is made between positive and negative literals. Moreover, our approach is
more general: in fact(i) in [19], some knowledge is lost whenever the value of an atom
oscillates between two different uncertainty values, while in our approach, an approx-
imation (interval) of the uncertainty value is assigned. For instance, with respect to



Example 8 under the assumptionI ⊥, [19] assigns⊥ = [0, 1] to bothA andB, while
our approach assigns[0.2, 0.7] to A and[0.3, 0.8] to B; and(ii) our approach does not
impose any restriction on the kind of interpretations that can be used as assumptions
(any value, even an interval, can be considered as a default value).

If we restrict our attention to PDDU and consider the assumptionH = I f , then our
approach captures the semantics proposed in [17] for PDDU.

Theorem 6. LetP be a program as defined in [17]. IfH = I f , then the semanticsAH
P

assigns exact values to all atoms and coincides with the semantics presented in [17].

The following theorem states that our approach extends the usual semantics of normal
logic programs to the PDDU framework.

Theorem 7. LetP be a Datalog program with negation. Then we have:

1. the semantics ofP w.r.t. H = I f , AH
P , is the well-founded semantics ofP ;

2. if the assumptionH is such that, for all atomsA, if A is not the head of any rule in
P ∗, thenH(A) = f elseH(A) = ⊥, then the semanticsAH

P of P coincides with
the Kripke-Kleene semantics ofP .

3. a stable model ofP [9] is a model ofP supported byH = I f .

5 Conclusions

PDDU [17] has been proposed as a unifying umbrella for many existing approaches
towards the manipulation of uncertainty in deductive databases. We introduced non-
uniform assumptions into this context, which allows to assign any default value to the
atoms. The well known OWA, CWA and the combination of both are, thus, special
cases. A main topic for further research is to generalize the introduced concept within
a more fundamental work in which we deal with bilattices, disjunctive programs, as-
sumptions and stable models [9, 10, 26] in place of our current setting.
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