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Abstract Concurrent constraint programmin@cp) is a model of concurrency

for systems in which agents (also called processes) interact with one another by
telling and asking information in a shared mediurimed(or tempora) ccp ex-

tends ccp by allowing agents to be constrained by time requirements. The novelty
of timed ccp is that it combines in one framework@verational and algebraic

view based upon process calculi withdaclarativeview based upon temporal
logic. This allows the model to benefit from two well-established theories used in
the study of concurrency.

This essay offers an overview of timed ccp covering its basic background and
central developments. The essay also includes an introduction to a temporal ccp
formalism called thetcc calculus.

1 Introduction

Concurrency theorjnas made progress by extending well-established models of com-
putation to capture new and wider phenomena. These extensions should not come as a
surprise since the field is indeed large and subject to the advents of new technology. One
particular phenomenon, for which extensions of the very first theories of concurrency
were needed, is the notion tifne

Time is not only a fundamental concept in concurrency but also in science at large.
Just like modal extensions of logic for temporal progression study time in logic reason-
ing, mature models of concurrency were extended to study time in concurrent activity.
For instance, neither Milner's CCS [23], Hoare’s CSP [18], nor Petri Nets [31], in their
original form, were concerned with temporal behavior but they all have been extended
to incorporate an explicit notion of time. Namely, Timed CCS [52], Timed CSP [34],
and Timed Petri Nets [53].

The notion ofconstraintis certainly not rare in concurrency. After all, concurrency
is about the interaction of agents and such an interaction often involves constraints of
some sort (e.g., synchronization constraints, access-control, actions that must eventually
happen, actions that cannot happen, etc).

Saraswat’soncurrent constraint programmin@cp) [44] is a well-established for-
malism for concurrency based upon the shared-variables communication model where
interaction arises via constraint-imposition over shared-variables. In ccp, agents can in-
teract byadding(or telling) partial information in a medium, a so-callstbre Partial
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information is represented lonstraintg(i.e., first-order formulae such as> 42) on

the shared variables of the system. The other way in which agents can interact is by
askingpartial information to the store. This provides the synchronization mechanism of
the model; asking agents are suspended until there is enough information in the store to
answer their query.

As other models of concurrency, ccp has been extended to capture aspects such as
mobility [8, 36, 12], stochastic behavior [13], and most prominently time [39, 5, 41, 14].
Timedccp extends ccp by allowing agents to be constrained by time requirements.

A distinctive feature of timed ccp is that it combines in one frameworloper-
ational and algebraioview based upon process calculi wittdaclarativeview based
upon temporal logic. So, processes can be treated as computing agents, algebraic terms
and temporal formulae. At this point it is convenient to quote Robin Milner:

I make no claim that everything can be done by algebra ... It is perhaps equally true
that not everything can be done by logic; thus one of the outstanding challenges in
concurrency is to find the right marriage between logic and behavioral approaches

— Robin Milner, [23]

In fact, the combination in one framework of the alternative views of processes
mentioned above allows timed ccp to benefit from the large body of techniques of well
established theories used in the study of concurrency and, in partiduled systems

Furthermore, timed ccp allows processes to be (1) expressed using a vocabulary and
concepts appropriate to tispecific domairfof some application under consideration),
and (2) read and understood as temporal I@giecificationsThis feature is suitable
for timed systems as they often involspecific domainge.g., controllers, databases,
reservation systems) and have time-constraipéifyingheir behavior (e.g., the lights
must be switched on within the next three seconds). Indeed, several timed extensions
of ccp have been developed in order to provide settings for the modeling, programming
and specification of timed systems [39, 42, 5, 14].

This paper offers an overview of timed ccp with its basic background and various
approaches explored by researchers in this field. Furthermore, it offers an introduction
to a timed ccp process calculus callettc . The paper is organized as follows. In
Section 2 we discuss briefly those issues from models of concurrency, in particular
process calculi, relevant to temporal ccp. In Sections 3 and 4 we give an overview of
ccp and timed ccp. Section 5 is devoted to address, in the context of timed ccp and by
usingntcc , those issues previously discussed in Section 2. Finally in Section 6 we
discuss central developments in timed ccp.

2 Background: Models of Concurrency

Concurrencyis concerned with the fundamental aspects of systems consisting of mul-
tiple computing agents, usually callpdocessesthat interact among each other. This
covers a vast variety of systems, so-cal®tcurrent systemsvhich nowadays most
people can easily relate to due to technological advances such as the Internet, pro-
grammable robotic devices and mobile computing . For instatiwed systems, in
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which agents are constrained by temporal requirements. Some example of timed sys-
tems are: Browser applications which are constrained by timer-based exit conditions
(i.e., time-out3 for the case in which a sever cannot be contacted; E-mailer applica-
tions can be required to check for messages ekeliyne units. Also, robots can be
programmed with time-outs (e.g., to wait for some signal) and with timed instructions
(e.g., to go forward for 42 time-units).

Because of the practical relevance, complexity and ubiquity of concurrent systems,
it is crucial to be able to describe, analyze and, in general, reason about concurrent
behavior. This reasoning must be precise and reliable. Consequently, it ought to be
founded upon mathematical principles in the same way as the reasoning about the be-
havior of sequential programs is founded upon logic, domain theory and other mathe-
matical disciplines.

Nevertheless, giving mathematical foundations to concurrent computation has be-
come a serious challenge for computer science. Traditional mathematical models of
(sequential) computation based on functions from inputs to outputs no longer apply.
The crux is that concurrent computation, e.g., in a reactive system, is seldom expected
to terminate, it involves constant interaction with the environment, anchibigleter-
ministicowing to unpredictable interactions among agents.

Models of Concurrency: Process CalculComputer science has therefore taken up the
task of developingnodelsconceptually different from those of sequential computation,

for the precise understanding of the behavior of concurrent systems. Such models, as
other scientific models of reality, are expected to comply with the following criteria:
They must besimple(i.e., based upon few basic principlesxpressivdi.e., capable

of capturing interesting real-world situation&rmal(i.e., founded upon mathematical
principles), and they must providechniquego allow reasoning about their particular
focus.

Process calculi are one of the most common frameworks for modeling concurrent
activity. These calculi treat processes much like Xbealculus treats computable func-
tions. They provide a language in which the structureeainsrepresents the structure
of processes together with aperational semantick represent computational steps.

For example, the ter® || @, which is built fromP and@ with theconstructor||, rep-
resents the process that results from the parallel execution of those represeftaaddy
Q. An operational semantics may dictate tha®i€an evolve inta’ in a computational
stepP’ thenP || @ can also evolve int@’ || @ in a computational step.

An appealing feature of process calculi is thaligebraictreatment of processes.

The constructors are viewed as thgeratorsof an algebraic theory whose equations
and inequalities among terms relate process behavior. For instance, the cdhsamict

be viewed as a commutative operator, hence the equ&tipr) = @ || P states that

the behavior of the two parallel compositions are the same. Because of this algebraic
emphasis, these calculi are often referred tprasess algebras

There are many different process calculi in the literature mainly agreeing in their
emphasis upon algebra. The main representatives are CCS [23], CSP [18], and the pro-
cess algebra ACP [2]. The distinctions among these calculi arise from issues such as the
process constructions considered (i.e., the language of processes), the methods used for
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giving meaning to process terms (i.e. the semantics), and the methods to reason about
process behavior (e.g., process equivalences or process logics).

Semantics.The methods by which process terms are endowed with meaning may in-
volve at least three approachepgerational denotationahndalgebraicsemantics. The
operational methodvas pioneered by Plotkin [32]. An operational semantics interprets

a given process term by using transitions (labeled or not) specifying its computational
steps. A labeled transitioR —= () specifies thaP performsa and then behaves &k
Thedenotational methodias pioneered by Strachey and provided with a mathematical
foundation by Scott. A denotational semantics interprets processes by using a function
[-] which maps them into a more abstract mathematical object (typically, a structured
set or a category). The mgp] is compositionaln that the meaning of processes is
determined from the meaning of its sub-processes.alpebraic methodhas been ad-
vocated by Bergstra and Klop [2]. An algebraic semantics attempts to give meaning
by stating a set of laws (or axioms) equating process terms. The processes and their
operations are then interpreted as structures that obey these laws.

Behavioral Analysis.Much work in the theory of process calculi, and concurrency in
general, involves the analysis of process equivalences. Let us say that our equivalence
under consideration is denoted by Two typical questions that arise are: (1) Is the
equivalence decidable ? (2) Is the equivalence a congruence ? The first question refers
to the issue as to whether there can be an algorithm that fully determines (or decides)
foreveryP andQ if P ~ Q or P « (). Since most process calculi can model Turing
machines most natural equivalences are therefore undecidable. So, the interesting ques-
tion is rather for what subclasses of processes is the equivalence decidable. The second
question refers to the issue as to whether the fact®hand() are equivalent implies

that they are still equivalent in any process context. A process cafiteah be viewed

as a term with a holg] such that placing a process in the hole yields a process term.
Hence, the equivalence is a congruenck it ) impliesC[P] ~ C[Q] for every pro-

cess context’. The congruence issue is fundamental for algebraic as well as practical
reasons; one may not be content with having~ ) equivalentbut? || P £ R || @

(here the contexti€' = R || []).

Specification and LogicOne often is interested in verifying whether a given process
satisfies a specification; the so-calleerification problem But process terms them-
selves specify behavior, so they can also be used to express specifications. Then this
verification problem can be reduced to establishing whether the process and the speci-
fication process are related under some behavioral equivalence (or pre-order). Another
way of expressing process specifications, however, is by using temporal logics. These
logics were introduced into computer science by Pnueli [33] and thereafter proven to be
a good basis for specification as well as for (automatic and machine-assisted) reasoning
about concurrent systems. Temporal logics can be classified into linear and branching
time logics. In thdinear case at each moment there is only one possible future whilst

in thebranchingcase at may split into alternative futures.
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3 Concurrent Constraint Programming

In his seminal PhD thesis [38], Saraswat proposed concurrent constraint programming
as a model of concurrency based on the shared-variables communication model and a
few primitive ideas taking root in logic. As informally described in this section, the ccp
model elegantly combines logic concepts and concurrency mechanisms.

Concurrent constraint programming traces its origins back to Montanari’s pioneer-
ing work [26] leading to constraint programming and Shapiro’s concurrent logic pro-
gramming [45]. The ccp model has received a significant theoretical and implementa-
tional attention: Saraswat, Rinard and Panangaden [44] as well as De Boer, Di Pierro
and Palamidessi [6] gave fixed-point denotational semantics to ccp whilst Montanari
and Rossi [35] gave it a (true-concurrent) Petri-Net semantics; De Boer, Gabrielli et
al [7] developed an inference system for proving properties of ccp processes; Smolka's
Oz [47] as well as Haridi and Janson’s AKL [17] programming languages are built upon
ccp ideas.

Description of the model.A fundamental issue of the ccp model is th@ecification

of concurrent systerria terms of constraints. A constraint is a first-order formula rep-
resentingpartial informationabout the shared variables of the system. For example,
the constraintz + y > 42 specifies possible values ferandy (those satisfying the
inequation). The ccp model is parameterized goastraint systerwhich specifies the
constraints of relevance for the kind of system under consideration aadtaiiment
relation = between constraints (eg+y > 42 =z +y > 0).

During computation, the state of the system is specified by an entity called the
storewhere items of information about the variables of the system reside. The store is
represented as a constraint and thus it may provide only partial information about the
variables. This differs fundamentally from the traditional view of a store based on the
Von Neumann memory model, in which each variable is assigned a uniquely determined
value (e.g.x = 42 andy = 7) rather than a set of possible values.

Some readers may feel uneasy as the notion of store in ccp suggests a model of
concurrency with central memory. This is, however, an abstraction that simplifies the
presentation of the model. The store can be distributed in several sites according to the
agents that share the same variables (see [38] for further discussions about this matter).
Conceptually, the store in ccp is theediumthrough which agents interact with each
other.

The ccp processes can update the state of the system omlgidiyg (or telling)
information to the store. This is represented as the (logical) conjunction of the constraint
being added and the store representing the previous state. Hence, the update is not about
changing the values of the variables but rather about ruling out some of the previously
possible values. In other words, the storenisnotonically refined

Furthermore, processes can synchronizadiinginformation to the store. Asking
is blocked until there is enough information in the storeneail (i.e., answer positively)
their query. The ask operation is seen as determining whether the constraint representing
the store entails the query.

A ccp computation terminates whenever it reaches a point, cedithg or qui-
escenfpoint, in which no more new information is added to the store. The final store,
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also calledquiescent storgi.e,. the store at the quiescent point), is the output of the
computation.

Example 1.To make the description of the ccp model clearer, consider the simple ccp
scenario illustrated in Figure 1. We have four agents (or processes) wishing to interact
through an initially empty medium. Let us name them, starting from the upper rightmost
agent in a clockwise fashiom;, A», A3 and A4, respectively. Suppose that they are
scheduled for execution in the same order they were named.

This way A; moves first and tells the others through the medium that the temper-
ature value is greater than 42 degrees but without specifying the exact value. In other
words A; gives the others partial information about the temperature. This causes the
addition of the item “temperature42” to the previously empty store.

Now A, asks whether the temperature is exactly 50 degrees, and if so it wishes to
execute a procesB. From the current information in the store, however, it cannot be
determined what the exact value of the temperature is. The ageist then blocked
and so is the agemt; since from the store it cannot be determined either whether the
temperature is between 0 and 100 degrees.

The turn is forA, which tells that the temperature is less than 70 degrees. The store
becomes “temperature 42 A temperature< 70”. Now A3 can executé) as its query
is entailed by the information in the store . The other ask agenis doomed to be
blocked forever unles§ adds enough information to the store to entail its queryd

temperature>42 temperature=50?.P

STORE

(MEDIUM)

temperature<70 O<temperature<100?2.Q

Figurel. A simple ccp scenario

The CCP Process Languagén the spirit of process calculi, the language of processes
in the ccp model is given with a reduced number of primitive operators or combina-
tors. Rather than giving the actual syntax of the language, we content ourselves with
describing the basic intuition that each construct embodies. So, in ccp we have:

— The tell action for expressing tell operations. E.g., agdntabove.

— The ask action (or prefix actionfor expressing an ask operation that prefixes an-
other process; its continuation. E.g., the agéntibove.

— Parallel compositionwhich combines processes concurrently. E.g., the scenario in
Figure 1 can be specified as the parallel compositiaA9fd,, A3 andA,.
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— Hiding (orlocality), for expressing local variables that delimit the interface through
which a process can interact with others.

— Summatiopwhich expresses a disjunctive combination of agents to allow alternate
courses of action.

— Recursionfor defining infinite behavior.

It is worth pointing out that without summation, the ccp model is deterministic in the
sense that the quiescent or final store is always the same, independently from the exe-
cution order (scheduling) of the parallel components [44].

4 Timed Concurrent Constraint Programming

The first timed ccp model was introduced by Saraswat et al [39] as an extension of ccp
aimed at programming and modeling timed, reactive systems. This model, which has
attracted growing attention during the last five years or so, elegantly combines ccp with
ideas from the paradigms of Synchronous Languages [3, 15].

As any other model of computation, the tcc model makes an ontological commit-
ment about computation. It emphasizes the view of reactive computation as proceed-
ing deterministicallyin discrete time units (or timatervalg. More precisely, time is
conceptually divided into discrete intervals. In each time interval, a deterministic ccp
process receives a stimulus (i.e. a constraint) from the environment, it executes with
this stimulus as thanitial store, and when it reaches its resting point, it responds to the
environment with thdinal store Also, the resting point determines a residual process,
which is then executed in the next time interval.

This view of reactive computation is particularly appropriate for programming reac-
tive systems such as robotic devices, micro-controllers, databases and reservation sys-
tems. These systems typically operate in a cyclic fashion; in each cycle they receive and
input from the environment, compute on this input, and then return the corresponding
output to the environment.

The fundamental move in the tcc model is to extend the standard ccpelily
andtime-outoperations. These operations are fundamental for programming reactive
systems. The delay operation forces the execution of a process to be postponed to the
next time interval. The time-out (or wege-emptiof operation waits during the cur-
rent time interval for a given piece of information to be present and if it is not, triggers
a process in thaext time interval

Pre-emption and multi-form timeln spite of its simplicity, the tcc extension to ccp is
far-reaching. Many interesting temporal constructs can be expressed, in particular:

— do P watching c. This interrupt process executBgontinuously until the item of
information (e.g, a signabis present (i.e., entailed by the information in the store);
whenc is presentP is killed from the next time unit onwards. This corresponds to
the familiarkill command in Unix or clicking on the stop bottom of your favorite
web browser.

— S.A,(P). This pre-emption process executBscontinuously untilc is present;
whenc is presentP is suspendefrom the next time unit onwards. The procd3s



8 Frank D. Valencia

is reactivatedvhend is present. This corresponds to the familirl( -Z, fg )
mechanism in Unix.

— time P onc. This denotes a process whosation of timeis the occurrence of the
item of informatiornc. That is,P evolves only in those time intervals wherbholds.

In general, tcc allows processes to be “clocked” by other processes. This provides
meaningful pre-emption constructs and the ability of definmgtiple forms of time
instead of only having a unique global clock.

4.1 More Timed CCP Models

Thentcc calculus is generalization of the tcc model originated in [28] by Palamidessi,
Nielsen and the present author. The calculus is built upon few basic ideas but it cap-
tures several aspects of timed systems. Asrtta; can model unit delays, time-outs,
pre-emption and synchrony. Additionally, it can modelbounded but finite delays,
bounded eventuality, asynchroagdnondeterminismT he applicability of the calculus

has been illustrated with several examples of discrete-time systems involving , mutable
data structures, robotic devices, multi-agent systems and music applications [37].

Another interesting extension of tcc, which does not consider nondeterminism or
unbounded finite-delay, has been proposed in [42]. This extension adds strong pre-
emption: the time-out operations can trigger activity in the current time interval. In
contrasthtcc can only express weak pre-emption. Other extensions of tcc have been
proposed in [14]. In [14] processes can evolve continuously as well as discretely. None
of these extensions consider nondeterminism or unbounded finite-delay.

The tccp framework, introduced in [5] by Gabrielli et al, is a fundamental repre-
sentative model of (nondeterministic) timed ccp. The authors in [5] also advocate the
need of nondeterminism in the context of timed ccp. In fact, they use tccp to model
interesting applications involving nondeterministic timed systems (see [5]). The major
difference between tccp anttcc is that the former extends the original ccp while
the latter extends the tcc model (so, except for allowing nondeterminism, it makes the
same commitments about computation). In tccp the information about the store is car-
ried through the time units, thus the semantic setting is completely different. The notion
of time is also different; in tccp each time unit is identified with the time needed to ask
and tell information to the store. As for the constructs, unfikec , tccp provides for
arbitrary recursion and does not have an operator for specifying unbounded but finite
delays.

As briefly described in this section, there are several models of timed ccp, and it
would be hard to introduce all of them in detail. | shall introduce in detail the gener-
alization of Saraswat’s tcc, thetcc calculus, and then indicate as related work the
developments in other models which appear to me to be central.

5 Thentcc process calculus

This section gives an introduction to thécc model. We shall give evidence of the
compliance ohtcc with the criteria for models of concurrency previously mentioned
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(i.e., it is simple, expressive, formal and it provides reasoning techniques). First, we
shall see that it captures fundamental aspects of concurrency (i.e., discrete-time reactive
computations, nondeterminism, synchrony and asynchrony) whilst keeping a pleasant
degree ofsimplicity. Second, the expressivenessntdéc  will be illustrated by mod-

eling robotic devices. Furthermore, we shall see titat is founded uporformal
theories such as process calculi and first-order logic. Finally, we shall present some of
the techniques thattcc provides to reason about concurrent activity. Namely,

1. Severakquivalencescharacterized operationally, to compare the behavior of pro-
cesses much like the behavioral equivalences for existing process calculi (e.g.,
bisimilarity and trace-equivalence).

2. A denotational semantioghich interprets a given process as the set of sequences
of actions it can potentially exhibit while interacting with arbitrary environments.

3. Aprocess logiavith an associateihference systenan can be used much like the
Hoare’s program logic for sequential computation. The logic can be used to express
required timed behaviors of processes, temporal specificationd he inference
system can be used to prove that a process fulfills the specification.

We shall begin with an informal description of the process calculus with examples.
These examples are also meant to give a flavor of the range of application of timed ccp.

5.1 Intuitive Description of Constraint Systems

In this section we introduce the basic ideas underlyingitbe calculusin an informal

way. We shall begin by introducing the notion of a constraint system, which is central
to concurrent constraint programming. We then describe the basic process constructs
by means of examples. Finally, we shall describe some convenient derived constructs.

The ntcc processes are parametric ircanstraint systemA constraint system
provides asignaturefrom which syntactically denotable objects callsmhstraintscan
be constructed and aentailment relation|= specifying inter-dependencies between
these constraints.

A constraint represents a piece of informationgartial informatior) upon which
processes may act. For instance, processes modeling temperature controllers may have
to deal with partial information such a® < tsensor < 100 expressing that the
sensor registers an unknown (or not precisely determined) temperature value between
42 and100. The inter-dependeneyl= d expresses that the information specifieddby
follows from that bye, e.g.,(42 < tsensor < 100) = (0 < tsensor < 120).

We can set up the notion of constraint system by using first-order logic. Let us
suppose thak’ is a signature (i.e., a set of constants, functions and predicate symbols)
and thatA is a consistent first-order theory ovér (i.e., a set of sentences ov&r
having at least one model). Constraints can be thought of as first-order formulae over
Y. We can then decree that= d if the implicationc = d is valid in A. This gives us
a simple and general formalization of the notion of constraint system as @pat).

In the examples below we shall assume that, in the underlying constraint system,
Y isthe set{=,<,0,1...} andA is the set of sentences ov&rvalid on the natural
numbers.
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Intuitive Description of Processes

We now proceed to describe with examples the basic ideas underlying the behavior of
ntcc processes. For this purpose we shall model simple behavior of controllers such
as Programmable Logic Controllers (PLC’s) and RCX bricks.

PLC's are often used in timed systems of industrial applications [9], whilst RCX
bricks are mainly used to construct autonomous robotic devices [20]. These controllers
have external input and output ports. One can attach, for example, sensors of light,
touch or temperature to the input ports, and motors, lights or alarms to the output ports.
Typically PLC’s and RCX bricks operate in a cyclic fashion. Each cycle consist of
receiving an input from the environment, computing on this input, and returning the
corresponding output to the environment.

Our processes will operate similarly. Time is conceptually divided disorete in-
tervals (or time units)In a particular time interval, a proces receives atimulusc;
from the environment (see Equation 1 below). The stimulus is some piece of informa-
tion, i.e., a constraint. The proceBsexecutes with this stimulus as the initial store, and
when it reaches its resting point (i.e., a point in which no further computation is pos-
sible), itrespondgo the environment with a resulting stade Also the resting point
determines a residual proceBs 1, which is then executed in the next time interval.

The following sequence illustrates the stimulus-response interactions between an
environment that inputs,, cs, . . . and a process that outputs, ds, . . . on such inputs
as described above.

(c1,d1)

P, p, L2t p lnd) p o Cindial @

Communication: Telling and Asking Information.Thentcc processes communicate
with each other by posting and reading partial information about the variables of system
they model. The basic actions for communication providetéligng and asking of
information. A tell action adds a piece of information to the common store. An ask
action queries the store to decide whether a given piece of information is present in it.
The store as a constraint itself. In this way addition of information corresponds to logic
conjunction and determining presence of information corresponds to logic implication.
The tell and ask processes have respectively the form

tell(c) andwhen c do P. 2

The only action of a tell procesell(c) is to add, within a time unit; to the current
stored. The store then becomés\ c. The addition ot is carried out even if the store
becomes inconsistent, i.€d A ¢) = false , in which case we can think of such an
addition as generatingfailure.

Example 2.Suppose thad = (motor ;_speed > motor ,_speed ). Intuitively, d
tells us that the speed of motor one is greater than that of motor two. It does not tell us
what the specific speed values are. The execution in gtofg@rocess

tell(motor ,_speed > 10)
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causes the store to becoimeotor ;_speed > motor »_speed > 10)inthe current
time interval, thus increasing the information we know about the system —we now know
that both speed values are greater than 10.
Notice that in the underlying constraint systént= motor ;_speed > 0, there-
fore the process
tell(motor ;_speed =0)

in stored causes a failure. a

The processvhen ¢ do P performs the action of asking If during the current
time intervalc can eventually be inferred from the stafgi.e.,d = ¢ ) thenP is
executed within the same time interval. Otherwigghen ¢ do P is precluded from
execution in any future time interval (i.e., it becomes constantly inactive).

Example 3.Suppose thatl = (motor ;_speed > motor »_speed ) is the store.
The process
P = when motor ;_speed > 0do

will execute in the currenttime interval sineé}= motor ;_speed > 0, by contrast
the process
P' = when motor ;_speed > 10do Q

will not execute) unless more information is added to the store, during the current
time interval, to entaimotor ;_speed > 10.

The intuition is that any process ih= (motor ;_speed > motor »_speed )
can execute a given action if and only if it can do so whenevetor ; _speed and
motor »_speed are set to arbitrary values satisfying So, P above execute§) if
motor ; speed andmotor ,_speed take on any value satisfying O

The above example illustrates the partial information allows us to model the actions
that a system can perform, regardless of the alternative values a variable may assume,
as long they comply with the constraint representing the store.

Nondeterminism. As argued above, partial information allows us to model behavior
for alternative values that variables may take on. In concurrent systems it is often con-
venient to model behavior falternative coursesf action, i.e., nondeterministic be-
havior.

We generalize the processes of the favhen ¢ do P described above to guarded-
choice summation processes of the form

Z when ¢; do P; 3
el
wherel is a finite set of indices. The expressi@iel when ¢; do P; represents a
process that, in the current time intervalust nondeterministicallghoose a process
P; (j € I) whose corresponding constraisit is entailed by the store. The chosen
alternative, if any, precludes the others. If no choice is possible during the current time
unit, all the alternatives are precluded from execution.
In the following example we shall use “+” for binary summations.
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Example 4.0ften RCX programs operate in a set of simple stimulus-response rules of
the formIF E THEN C. The expressiof is a condition typically depending on the
sensor variables, and is a command, typically an assignment. In [11] these programs
respond to the environment by choosing a rule whose condition is met and executing its
command.

If we wish to abstract from the particular implementation of the mechanism that
chooses the rule, we can model the execution of these programs by using the summation
process. For example, the program operating in the set

(IF sensor ; >0 THEN motor ;_speed :=2),
(IF sensor , > 99 THEN motor ;_speed :=0)

corresponds to the summation process

when sensor ; > 0 do tell(motor ;_speed = 2)
P= +
when sensor 5 > 99 do tell(motor ;_speed = 0).

In the stored = (sensor ; > 10), the process’ causes the store to become
d A (motor ;_speed = 2) sincetell(motor ;_speed = 2) is chosen for execution
and the other alternative is precluded. In the stare , P cannot add any information.
In the storee = (sensor ; = 10 A sensor , = 100), P causes the store to become
eithere A (motor ;_speed = 2) ore A (motor ;_speed =0). o

Parallel Composition.We need a construct to represent processes ambingurrently
Given P and() we denote their parallel composition by the process

Ple (4)

In one time unit (or interval) processfsand(@ operate concurrently, “communicating”
via the common store by telling and asking information.

Example 5.Let P be defined as in Example 4 and

when motor ;_speed = 0 do tell(motor ,_speed = 0)
Q=+
when motor ,_speed = 0 do tell(motor ;_speed = 0).
Intuitively @ turns off one motor if the other is detected to be off. The parallel
compositionP || @ in the stored = (sensor » > 100) will, in one time unit, cause
the store to becoméA (motor ;_speed = motor ,_speed = 0). O

Local Behavior. Most process calculi have a construct to restrict the interface through
which processes can interact with each other, thus providing for the modelingabf
(or hidden)behavior. We introduce processes of the form

(localz) P (5)

The procesg$local z) P declares a variable, private toP. This process behaves
like P, except that all the information abontproduced byP is hidden from external
processes and the information abauytroduced by other external processes is hidden
from P.
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Example 6.In modeling RCX or PLC's one uses “global” variables to represent ports

(e.g., sensor and motors). One often, however, uses variables which do not represent

ports, and thus we may find it convenient to declare such variables as local (or private).
Suppose thak is a given process modeling some controller task. Furthermore, sup-

pose thatRk uses a variable, which is set at random, with some unknown distribution,

to a valuev € {0,1}. Let us define the process

P= Z when true dotell(z =v)) | R
ve{0,1}

to represent the behavior & underz’s random assignment.

We may want to declare in P to be local since it does not represent an input or
output port. Moreover, notice that if we need to run two copieB dfe., proces® || P,
afailure may arise as each copy can assign a different valudtterefore, the behavior
of R under the random assignmentd@an be best represented2s= (local z) P.

In fact, if we run two copies of’, no failure can arise from the random assignment to
thez’'s as they are private to eadh. O

The processes hitherto described generate activity within the current time interval
only. We now turn to constructs that can generate activity in future time intervals.

Unit Delays and Time-OutsAs in the Synchronous Languages [3] we have constructs
whose actions can delay the execution of processes. These constructs are needed to
model time dependency between actions, e.g., actions depending on the absence or
presence of preceding actions. Time dependency is an important aspect in the modeling
of timed systems.

The unit-delay operators have the form

next P and unless ¢ next P (6)

The processiext P represents the activation @&t in the next time interval. The
procesainless c next P is similar, butP will be activated only ifc cannot be inferred
from the resulting (or final) storéin the currenttime interval, i.ed, j= ¢. The “unless”
processes add time-outs to the calculus, i.e., they wait during the current time interval
for a piece of informatiom to be present and if it is not, they trigger activity in the next
time interval.

Notice thatunless c next P is not equivalent tevhen —c do next P sinced [~ ¢
does not necessarily imply = —c. Notice that) = unless false next P is not
the same af? = next P since unlike@, even if the store contairfalse , R will
still activateP in the next time interval (and the store in the next time interval may not
containfalse ).

Example 7.Let us consider the following process:
P = when false do next tell(motor ;_speed = motor ,_speed = 0).

P turns the motors off by decreeing thabtor ;_speed = motor ,_speed = 0in
the next time interval if a failure takes place in the current time interval. Similarly, the
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process
unless false next (tell(motor ;_speed > 0) || tell(motor »_speed > 0))

makes the motors move at some speed in the next time unit, unless a failure takes place
in the current time interval. O

Asynchrony. We now introduce a construct that, unlike the previous ones, can describe
arbitrary (finite) delays. The importance of this construct is that it allows us to model
asynchronous behavior across the time intervals.

We use the operatos" which corresponds to the unbounded but finite delay oper-
ator for synchronous CCS [24]. The process

* P (7)

represents an arbitrary long but finite delay for the activatiof? 6Thus,* tell(c) can
be viewed as a messagthat is eventually delivered but there is no upper bound on the
delivery time.

Example 8.Let S = xtell(malfunction  (motor ;_status )). The proces$ can
be used to specify thahotor |, at some unpredictable point in time, is doomed to
malfunction 0

Infinite Behavior. Finally, we need a construct to define infinite behavior. We shall use
the operator!” as a delayed version of the replication operator forthealculus [25].
Given a proces®, the process

'P (8)

represent® || (next P) || (next next P) || --- ||! P, i.e., unboundedly many copies
of P, but one at a time. The procelsB executes in one time unit and persists in the
next time unit.

Example 9.The proces® below repeatedly checks the statenadtor ;. If a malfunc-
tion is reportedR tells thatmotor ; must be turned off.

R =!when malfunction ~ (motor ;_status ) do tell(motor ;_speed =0)

Thus,R || S with S = xtell(malfunction  (motor ;_status )) (Example 8) even-
tually tells thatmotor ; is turned off. O

Some Derived Forms

We have informally introduced the basic process construct#af and illustrated
how they can be used to model or specify system behavior. In this section we shall
illustrate how they can be used to obtain some convenient derived constructs.

In the following we shall omit when true do” if no confusion arises. The
“blind-choice” process) ;. ; when true do P;, for example, can be written as
Eiel P;. We shall USQ—L'EI P;, wherel is finite, to denote the parallel composition of
all the P;'s. We usenext™(P) as an abbreviation fonext(next(. .. (next P)...)),
wherenext is repeatea times.
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Inactivity. The process doing nothing whatsoewdip can be defined as an abbrevia-
tion of the empty summatioh;, P;. This process corresponds to the inactive proce-
ssesD of CCS andSTOP of CSP. We should expect the behaviorff|| skip to be

the same as that d? under any reasonable notion of behavioral equivalence.

Abortion. Another useful construct is the proceslsort which is somehow to the
opposite extreme afkip. Whilst havingskip in a system causes no change whatso-
ever, havingabort can make the whole system fail. Herwdeort corresponds to the
CHAOS operator in CSP. In Section 5.1 we mentioned that a tell process causes a fail-
ure, at the current time interval, if it leaves the store inconsistent. Therefore, we can
defineabort as!tell(false ), i.e., the process that once activated causes a constant
failure. Therefore, any reasonable notion of behavioral equivalence should not distin-
guish betweer® || abort andabort.

Asynchronous Parallel CompositionNotice that inP || @ both P and@ are forced
to move in the current time unit, thus our parallel composition can be regarded as being
a synchronous operator. There are situations where an asynchronous vergjoisof “
desirable. For example, modeling the interaction of several controllers operating con-
currently where some of them could be faster or slower than the others at responding to
their environment.

By using the star operator we can defin@adar) asynchronouparallel composition
P|Qas

(P+Q) + P Q)

A move of P | @ is either one ofP or one of@) (or both). Moreover, bott® and@
are eventually executed (i.e. a fair executiorPof Q). This process corresponds to the
asynchronous parallel operator described in [24].

We should expect operato|’to enjoy properties of parallel composition. Namely,
we should expecP | @) to be the same a@ | P and P | (@ | R) to be the same
as(P | @) | R. Unlike in P || skip, however, inP | skip the execution ofP may
be arbitrary postponed, therefore we may want to distinguish bet#epskip and
P. Similarly, unlike inP || abort, in P | abort the execution ohbort may be
arbitrarily postponed. In a timed setting we may want to distinguish between a process
that aborts right now and one that may do so sometime later after having done some
work.

Bounded Eventuality and InvarianceWe may want to specify that a certain behavior
is exhibited within a certain number of time units, il@ounded eventualityr during a
certain number of time units, i.dopunded invarianceAn example of bounded eventu-
ality is “the light must be switched off within the next ten time units” and an example
of bounded invariance is “the motor should not be turned on during the next sixty time
units”.

The kind of behavior described above can be specified by using the bounded ver-
sions of! P andx P, which can be derived using summation and parallel composition
in the obvious way. We definlg P andx; P, wherel is a closed interval of the natural
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numbers, as an abbreviation for

HnextiP and ZnextiP

el iel

respectively. Intuitivelyx,,, ,) > means thal’ is eventually active between the nesxt
andm + n time units, while!j,, ,,; P means thaP is always active between the next
andm + n time units.

Nondeterministic Time-Outs.The ntcc calculus generalizes processes of the form
when ¢ do P by allowing nondeterministic choice over them. It would therefore be
natural to do the same with processes of the faiimless ¢ next P. In other words,
one may want to haver@gondeterministic time-out operator

E unless ¢; next P;
iel

which chooses on&; such that; cannot be eventually inferred from the store within
the current time unit (if no choice is possible then the summation is precluded from
future execution). Notice that this is not the same as having a blind-choice summation
of theunless ¢; next P; operators. It is not difficult to see, however, that the behavior
of such a nondeterministic time-out operator can be described t¢he process:.

(local I') (H (unless ¢; next tell(i € I')) || next Z wheni € I' do P)
iel iel

where: € I’ holds iff 7 is in the setl’.

5.2 The Operational Semantics oftcc

In the previous section we gave an intuitive descriptionto€ . In this section we shall

make precise such a description. We shall begin by defining the notion of constraint sys-
tem and the formal syntax atcc . We shall then give meaning to thécc processes

by means of an operational semantics. The semantics, which resembles the reduction
semantics of ther-calculus [25], providefternal andexternaltransitions describing
process evolutions. The internal transitions describe evolutions within a time unit and
thus they are regarded as being unobservable. In contrast, the external transitions are
regarded as being observable as they describe evolution across the time units.

Constraint SystemsFor our purposes it will suffice to consider the notion of constraint
system based on first-order logic, as was done in [46].

Definition 1 (Constraint System).A constraint system (c$3 a pair (¥, A) whereX
is a signature of function and predicate symbols, ahit a decidable theory oveY
(i.e., a decidable set of sentences o¥eawith a least one model).
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Given a constraint systerfi’, A), let (X, V,S) be its underlying first-order lan-
guage, wher@’ is a countable set of variablesy, . . ., andS is the set of logic sym-
bols -, A,V,=,3,V,true andfalse . Constraintse,d,... are formulae over this
first-order language. We say thaentailsd in A, writtenc |= d, iff ¢ = d is true in
all models ofA. The relation=, which is decidable by the definition af, induces an
equivalencex given byc =~ d iff ¢ = d andd |= ¢. Henceforth(C denoteghe set of
constraints under consideratianodulo= in the underlying cs. Thus, we simply write
c=diff cx~d.

Definition (ProcessesProc). Processed, @), ...€ Proc are built from constraints
¢ € C and variablesr € V in the underlying constraint system by:

P,Q,... := tell(¢) |> . whenc;doP; | P || Q | (localz)P
i€l
| nextP |unlesscnextP | xP |!P

Intuitively, tell(c) adds an item of informatioato the store in the current time inter-
val. Theguarded-choice summatioEieI when ¢; do P;, where[ is a finite set of
indexes, chooses in the current time interval one offf®whosec; is entailed by the
store. If no choice is possible, the summation is precluded from execution. We write
when ¢;, do P;, + ...+ whenc;, do P; if I = {i1,...,i,}. We omitthe ), _,”

if 7] = 1 and useskip for 3, _, P.

The proces® || @ represents thparallel executiorof P and(@. In one time unit
P and(@ operate concurrently, communicating through the store.

The procesglocal z) P behaves likeP, except that all the information abowt
produced byP can only be seen b¥ and the information about produced by other
processes cannot be seenMyln other wordglocal ;) P declares an: local to P,
and thus we say thatlitindsz in P. Thebound variabledv(Q) (free variablesv(Q))
are those with a bound (a not bound) occurrenag.in

Theunit-delayprocessmext P executesP in the next time interval. Théme-out
unless c next P is also a unit-delay, bu? will be executed only it: cannot eventually
be entailed by the store during the current time interval. Noterleat P is not the
same aqinless false next P since an inconsistent store entdéddse . We use
next” P for next(next(... (next P)...)), wherenext is repeated: times.

The operator *” represents amrbitrary (or unknown) but finite delagas “¢” in
SCCS [24]) and allows asynchronous behavior across the time intervals. Intuitively,
% P meansP + next P + next?P + .. ., i.e., an unbounded finite delay &%

Thereplicationoperator " is a delayed version of that of the-calculus [25]:! P
meansP || next P || next?P || ... ||! P, i.e., unboundedly many copies &fbut
one at a time.

A Transition Semantics.

The structural operational semantics (SOS)ntifc  considerstransitions between
process-storeonfigurationsof the form (P, ¢) with stores represented as constraints
and processes quotiented Bybelow. Intuitively = describes irrelevant syntactic as-
pects of processes.
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Definition 2 (Structural Congruence). Let = be the smallest congruence satisfying:
DPskip=P,QP|Q=Q| P,and@)P || (Q || R) = (P || Q) || R. Extend
= to configurations by decreeing th@P, c) = (Q, ¢) iff P = Q.

Following standard lines, we extend the syntax with a constiweil (z, d) in P, to
represent the evolution of a process of the fdwaal  in (0, whered is the local in-
formation (or store) produced during this evolution. Initiallis “empty”, so we regard
local z in P aslocal (z,true )in P.

The transitions of the SOS are given by the relatiersand—> defined in Table 1.
Theinternaltransition(P,d) — (P',d') should be read as” with stored reduces, in
one internal step, t®' with stored’ ”. The observable transitior® =9 R should
be read as P on inputc, reduces in onéme unitto R and outputsl!”. The observable
transitions are obtained from terminating sequences of internal transitions.

TELL SUM dEcijel
(tell(c),d) — (skip,d A c) (3 icr whencido Pi,d) — (Pj,d)

(P,c)y — (P, d) (Pyc A3pd) — (P',c)
(Pl Q,¢) — (P' I Q,d> LocC ((localz,c) P,d) —> ((localw,c')P',d/\ﬂzc'>

PAR

UNL ifd e
(unless c next P, d) — (skip, d)

REP STAR ifn>0
(!P,dy — (P || next!P,d) (x P,d) — (next™P,d)

Y172 .
STR—————= if y1 = ] andy2 = 74

7= 72

(Pc) —" (Q,d) 7~

OBS
p L2 g

if R=F(Q)

Tablel.Rules for internal reductior— (upper part) and observable reducties- (lower part).
~—~ in OBS holds iff for no~y', v — +'. = and F are given in Definitions 2 and 3.

We shall only describe some of the rules of in Table 1 due to space restrictions
(see [28] for further details). As clarified below, the seemingly missing cases for “next”
and “unless” processes are given®S. The ruleSTAR specifies an arbitrary delay
of P. REP says that P creates a copy oP and then persists in the next time unit.
We shall dwell a little upon the description of RUI®C as it may seem somewhat
complex. Let us consider the process

Q = (localz,c) P

in Rule LOC. The global store igl and the local store ig. We distinguish between
the external(corresponding t@)) and theinternal point of view (corresponding t®).
From the internal point of view, the information abaut possibly appearing in the
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“global” stored, cannot be observed. Thus, before redudinge should first hide the
information about: that@ may have ind. We can do this by existentially quantifying
x in d. Similarly, from the external point of view, the observable information about
z that the reduction of internal agef may produce (i.e.¢') cannot be observed.
Thus we hide it by existentially quantifyingin ¢’ before adding it to the global store
corresponding to the evolution ¢f. Additionally, we should make’ the new private
store of the evolution of the internal process for its future reductions.

Rule OBS says that an observable transition fréhiabeled with(c, d) is obtained
from a terminating sequence of internal transitions fidMmc) to a(@, d). The process
R to be executed in the next time interval is equivalenfY@)) (the “future” of Q).
F(Q) is obtained by removing fror@ summations that did not trigger activity and any
local information which has been storedin and by “unfolding” the sub-terms within
“next” and “unless” expressions.

Definition 3 (Future Function). Let F' : Proc — Proc be defined by

skip if Q=3 ;c;whenc; do Q;
FQ) = d FQ I F(@) 1Q =011 Q.
") (localz) F(R) if Q= (localz,c)R
R if Q = next R or Q = unless c next R

Remark 1.F need no to be total since whenever we need to apply a @ (OBS in
Table 1), everyell(c), abort, x R and! R in @ will occur within a “next” or “unless”
expression.

5.3 Observable Behavior

In this section we recall some notions introduced in [29] of what an observer can see
from a process behavior . We shall refer to such notionsrasess observationsve
assume that what happens within a time unit cannot be directly observed, and thus we
abstract from internal transitions. Tmecc calculus makes it easy to focus on the
observation of input-output events in which a given process engages and the order in
which they occur.

Notation 1 Throughout this pape€“ denotes the set of infinite (ar) sequences of
constraints in the underlying set of constraifitsWe usey, o, . . . to range overC*.

Leta = ¢;.co....anda’ = ¢} .c,. . ... Suppose thaP exhibits the following infinite
(c1,eh) P (c2,¢h)

sequence of observable transitionsiiom): P = P, .... Given

(aya’)

this run of P, we shall use the notatiah —="~.

10 and Output Behavior. Observe the above run éf. At the time unit;, the environ-
mentinputse; to P; which then responds with an outptjt As observers, we can see

(aya’)

that ona, P responds withy'. We refer to the set of alla, o') such thatr —=—=

as theinput-output (io) behavioof P. Alternatively, if « = true ¥, we interpret the

run as an interaction among the parallel componentf ithout the influence of any
(external) environments observers what we see is tliaproducesy on its own. We

(true “,a’

refer to the set of all’ such thatr ‘=% » a5 theoutputbehavior ofP.
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Quiescent Sequences and SRnother observation we can make of a process is its
guiescent input sequences. These are sequences on input of Wiae run without

(a,a') o

adding any information; we observe whethes o’ whenevelPr ——=-.

In [28] it is shown that the set of quiescent sequences of a givean be alter-
natively characterized dke set of infinite sequences thiattan possibly output under
arbitrary environmentsthe strongest postcondition (sp) Bf

The following definition states the various notions of observable behavior men-
tioned above.

Definition 4 (Observable Behavior).The behavioral observations that can be made
of a process are:

1. Theinput-output (or stimulus-response) behawdP, written, io(P), defined as

io(P) = {(a,a!) | P 122wy,
2. The(default) output behaviasf P, written o(P), defined as

o(P) = {a' | P 200wy

3. Thestrongest postconditidmehavior ofP, written sp(P), defined as

sp(P)={a | P 1220 for somen'}.

The following are the obvious equivalences and congruences induced by our behav-
ioral observations. (Recall the notion of congruence given in Section 2.)

Definition 5 (Behavioral Equivalences).Let [ € {io,0,sp}. DefineP ~; Q iff
I(P) = I(Q). Furthermore, letx; the congruence induced by, i.e., P =~; Q iff
C[P] ~; C[Q] for every process contekt

We shall refer to equivalences defined above as observational equivalences as they
identify processes whose internal behavior may differ widely (e.g. in the number of
internal actions). Such an abstraction from internal behavior is essential in the theory of
several process calculi; most notably in weak bisimilarity for CCS [23].

Example 10.Leta, b, ¢, d ande be mutually exclusive constraints. Consider the proce-
ssesP and@ below:
when b do next tell(d) when a do next when b do next tell(d)
when a do next + , +
when c do next tell(e) when a do next when ¢ do next tell(e)

N AN v
~~ ~~

P Q
The reader may care to verify th&t ~, @Q sinceo(P) = o(Q) = {true “}.
However,P «#;, Q nor P 4, Q since ifa = a.c.true ¢ then(a,a) € io(Q) and
a € sp(Q) but(a, ) & io(P) anda & sp(P). a
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Congruence and Decidability IssuesSeveral typical questions about these equiva-
lence may then arise. For example, one may wonder which of them coincides with their
corresponding induced congruences and whether there are interesting relationships be-
tween them.

In [28] it is proven that none of the equivalences is a congruence. Howeygis
a congruence in a restricted sense; Namely, if we confine our attention to the so-called
locally-independenfragment of the calculus. This fragment only forbids non-unary
summations (and “unless” processes) whose guards depend on local variables.

Definition 6 (Locally-Independent Processes)P is locally-independeriff for every
unless c next Q and ), ;, when ¢; do Q; (|I| > 2) in P, neitherc nor thec;'s
contain variables irhv(P) (i.e., the bound variables d?).

The locally-independent fragment is indeed very expressive. Every summation pro-
cess whose guards are either all equivalent or mutually exclusive can be encoded in
this fragment [50]. Moreover, the applicability of this fragment is witnessed by the fact
all thentcc application the author is aware of [28, 29, 50] can be model as locally-
independent processes. Also, the (parameterless-recursion) tcc model can be expressed
in this fragment as, from the expressiveness point of view, the local operator is re-
dundant in tcc with parameterless-recursion [27]. Furthermore, the fragment allows
us to express infinite-state processes [51](i.e., processes that can evolve into infinitely
many other processes). Hence, it is rather surprising~ats decidable for the local-
independent fragment as recently proved in [51].

As for the input-output and output equivalences, in [50] it is shown how to character-
ize their induced congruence in a satisfactory way. Nanfely,, Q iff U(P, Q)[P] ~,
U(P,Q)[Q] whereU (P, Q) is a context which, give® and@, can be effectively con-
structed. Also [50] shows that although, is stronger than-,, their induced congru-
ences match. Perhaps the most significant theoretical value of these two results is its
computational consequence:Both input-output and output congruence are decidable if
output equivalence is decidable.

In fact, output equivalence is decidable for processes with a restricted form of non-
determinism [29]. Namelyk-free processes in which local operators do not exhibit
nondeterminism. This also represent a significant fragment of the calculus including all
the application examplesin [28, 29, 50] and the parameterless-recursion fragment of the
tcc model. It then follows, from the previously mentioned results, #hgtand~, are
also decidable if we restrict our attention to these restricted nondeterministic processes.

5.4 Denotational Semantics

In the previous section we introduced the notion of strongest-postconditinttof
processes in operational terms. Let us now show the abstract denotational model of this
notion first presented in [30]. Such a model is of great help when arguing about the
strongest-postcondition oftcc processes.

The denotational semantics is defined as a fundtijpwhich associates to each pro-
cess a set of infinite constraint sequences, nafgly Proc — P(C*). The definition
of this function is given in Table 2. Intuitivelj,P] is meant to capture the set of all
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DTELL: [tell(c)] = {d.o | d |= ¢}

DSUM: [ ;c;whenc;do P = U{da|dfcandd.a € [P} UN;c {da|dEci}
i€l

DPAR: [P || Q] = [PIN[Q]

DLOC: [(localz)P] = {a|thereexistsr’ € [P]s.t.3,a’ = I, a}
DNEXT: [next P] = {d.a|a € [P]}

DUNL: [unlesscnext P] = {d.a | d |= ¢} U{d.a | d }£ canda € [P]}
DREP: [!P] = {a| forall3,a’ st.a = B.a’', we havea’ € [P]}

DSTAR: [*P] = {B.a| @ € [P]}

Table2. Denotational semantics oitcc . Symbolsa anda’ range over the set of infinite se-
guences of constraints”; g ranges over the set of finite sequences of constréintdotation
3.« denotes the sequence resulting by applyipdo each constraint in.

sequenceg$ can possibly output. For instance, the sequencesttiiic) can output

are those whose first element is stronger thésee DTELL, Table 2). Processext P

has not influence in the first element of a sequence,dhusan be output by it iffx is

can be output byP? (see DNEXT, Table 2). A sequence can be output Byiff every
suffix of it can be output by? (see DREP, Table 2). The other cases can be explained
analogously.

From [7], however, we know that there cannot b¢ aProc — P(C*), composi-
tionally defined, such that(P) = sp(P) for all P. Nevertheless, as stated in the the-
orem below, Palamidessi et al [30] showed that that sp denotational semantics matches
its operational counter-part for the local independent-fragment, which as argued before
is very expressive.

Theorem 1 (Full Abstraction). For everyntcc processP, sp(P) C [P] andif P is
locally-independent thefP] C sp(P).

The full-abstraction result has an important theoretical value; i.e., for a significant
fragment of the calculus we can abstract away from operational details by working with
[P] rather tharsp(P). In fact, the congruence result fer;, mentioned in the previous
section is a corollary of the above theorem.

5.5 LTL Specification and Verification

Processes intcc can be used to specify properties of timed systems, e.g., that an ac-
tion must happen within some finite but not fixed amount of time. It is often convenient,
however, to express specifications in another formalism, in particular a logical one. In
this section we present thecc logic first introduced in [30]. We start by defining a
linear-time temporal logic (LTL) to expresses temporal properties over infinite sequen-
ces of constraints. We then define what it means for a process to satisfy a specification
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given as a formula in this logic. We shall then say tRasatisfies a specificatioR iff
every infinite sequencP can possibly output (on inputs from arbitrary environments)
satisfiesF’, i.e., iff the strongest-postcondition &f implies F'. Finally, we present an
inference system aimed at proving whether a process fulfills a given specification.

A Temporal Logic. Thentcc LTL expresses properties over sequences of constraints
and we shall refer to it aSLTL . We begin by giving the syntax of LTL formulae and
then interpret them with th€LTL semantics.

Definition 7 (LTL Syntax). The formulaeF, G, ... € F are built from constraints
¢ € C and variablest € V in the underlying constraint system by:

F,G,...:=c|true |false |FAG|FVG|~F|3,F|oF|OF|F

The constraint (i.e., a first-order formula in the cs) representdate formulaThe
dotted symbols represent the usual (temporal) boolean and existential operators. As
clarified later, the dotted notation is needed a€liffL these operators do not always
coincide with those in the cs. The symbdais [J, and<} denote the LTL modalities
next alwaysandeventuallyWe useF = G for -~ F'V G. Below we give the formulae a
CLTL semantics. First, we need some notation and the notiepvairiant Intuitively,
d is anz-variant ofc iff they are the same except for the information about

Notation 2 Given a sequence = c¢;.ce...., We used,«a to denote the sequence
3130 . ... We shall usex(i) to denote thé-th element ofv.

Definition 8 (xz-variant). A constraintd is anz-variantof ¢ iff 3,¢ = 3,d. Similarly
o' is anz-variantof a iff 3, = 3,a’.

Definition 9 (CLTL Semantics). We say that the infinite sequeneesatisfies (or that
itis a model of)F" in CLTL , writtena |=c1. F, iff (o, 1) =cure F, where:

(a Z) |—c|_‘|'|_ true (a Z) %CLTL false
@, i) =eur ¢ iff  a(i)Fc
J) Fcoue ~F it (i) o F
,Z) |—CLTL FAG iff <Oé,Z> ':CLTL F and (a,i) ':CLTL G
,Z) |—CLTL FvG@G iff <Oé,Z> ':CLTL For <Oé,i> ':CLTL G
i) el OF  iff (a,i+ 1) Four F
,Z) |—c|_‘|'|_ OF iff forall ] > ) (a,j) |:c|_‘|'|_ F
, 1) FEeitL OF iff thereisaj > suchthata,j) =curL F
(1) Eeime 3, F iff thereisanz-varianta’ of a such that{a/, ) EcirL F.

Define[F|={a|a |Ecir. F}. Fis CLTL validiff [F] = ¢, andCLTL satisfiablaff
[F] # 0.

Let us discuss a little about the difference between the boolean operators in the
constraint system and the temporal ones to justify our dotted notation. A state formula
c is satisfied only by those.a’ such that |= c. So, the state formultalse has at
least one sequence that satisfies it; &lge “. On the contrary the temporal formula
false has no models whatsoever. Similaryy d is satisfied by those.o”’ such that
eithere |= c ore = d holds. Thus, in generdt Vv d] # [c V d]. The same holds true
for =c and-ec.
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P+ F QF G
LTELL: tell(c) + ¢ LPAR: —M8™
PlQ F FAG
Viel P; - F; PFrF
LSUM: - - LLo¢C —
> whencidoP; + \/(ci AF)V \ =es (localz) P + 3, F
i€l i€l ier
P+ F P+ F
LNEXT: —M8M8M8 LUNL:
next P - OF unless cnext P + ¢V OF
P+ F P+ F
LREP; —— LSTAR: —
'P + OF *P F OF
LCONS: if F=G
P+ G

Table3. A proof system for linear-temporal propertiesraéc processes

Example 11.Lete = ¢V d with ¢ = (z = 42) andd = (z # 42). One can verify that
CY =[evd] > e“ ¢ [cVd] and also thaf—c] > false “ ¢ [ (]. 0

From the above example, one may be tempted to thikldlL as being intuition-
istic. Notice, however, that statements liké¢" vV F and- - F = F areCLTL valid.

Process Verification. Intuitively, P |=c.1. F iff every sequence tha® can possibly
output, on inputs from arbitrary environments, satisfiédn other words if every se-
quence in the strongest-postconditionfofs a model of4..

Definition 10 (Verification). P satisfiesF’, written P |=c.r. F, iff sp(P) C [F1].

So, for instancex tell(c) [=curL $c as in every sequence outputbyell(c) there
must be are entailinge. Also P = tell(c) + tell(d) =c.1. ¢Vd andP |=ciL ¢V das
everye output by P entails either or d. Notice, however, thaf) = tell(c V d) EcimL
eV dbut@ Wcim (eVd) in general, sinc&) can output are which certainly entails
¢V d and still entails neither nord - takee, c andd as in Example 11. Thereforey d
distinguishes” from Q. The reader may now see why we wish to distingeishi from
cVd.

Proof System for VerificationIn order to reason about statements of the fétra-c .

F, [30] proposes aroof (or inference) systemor assertions of the forn? + F'. In-
tuitively, we wantP  F' to be the “counterpart” oP |= F' in the inference system,
namelyP  F should approximaté® |=c.t. F as closely as possible (ideally, they
should be equivalent). The system is presented in Table 3.

Definition 11 (P + F). We say thai’ + F' iff the assertionP + F' has a proof in the
system in Table 3.
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Inference RulesLet us now describe some of the inference rules of the proof system.
The inference rule for the tell operator is given by

LTELL: tell(c) F ¢

Rule LTELL gives a proof saying that every outputtedfll(c) on inputs of arbitrary

environments should definitely satisfy the atomic propositiare., tell(c) =cii c.
Consider now the rule for the choice operator:

Viel P, + F;

thenci do P, + \/(ci/\Fi)V/\ S

el iel icl

LSUM:

Rule LSUM can be explained as follows. Suppose thatfet ), when ¢; do P;

we are given a proof that eaéh satisfiesF;. Then we certainly have a proof saying that

every output of” on arbitrary inputs should satisfy either: (a) some of the guaraisd

their corresponding; (i.e.,\/;-;(c; A F})), or (b) none of the guards (i.e)\;c; = ¢:).
The inference rule for parallel composition is defined as

P-rF QFG
P|Q+ FAG

LPAR:

The soundness of this rule can be justified as follows. Assume that each output of
under the influence of arbitrary environments, satishieAssume the same abo@t
and@. In P || Q, the processg) can be thought as one of those arbitrary environment
under whichP satisfiesF. ThenP || Q must satisfyF'. Similarly, P can be one of
those arbitrary environment under whi¢hsatisfiesG. Hence,P || Q must satisfyG
as well. We therefore have grounds to conclude thtQ satisfiesF' A G.

The inference rule for the local operator is

PrF

LLOC: :
(localz)P + 3, F

The intuition is that since the outputs fbcalz) P are outputs of” with z hidden
then if P satisfiesF’, (local z;) P should satisfyF’ with z hidden, i.e.3, F.
The following are the inference rules for the tempartalc  constructs:

P+ F P+ F
LNEXT: ———  LUNL:
nextP - OF unless cnext P - ¢VOF
P+ F P+ F
LREP———— LSTAR:
'P + OF *P F OF

Assume thaP satisfiesF'. Rule LNEXT says that i is executed next, then in the next
time unit it will also satisfyF'. Hence,next P satisfiesOF'. Rule LUNL is similar,
except thatP can also be precluded from execution if some environment provides
Thusunless ¢ next P satisfies eithet or OF'. Rule LREP says that i is executed
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in each time interval, theR' is always satisfied by’. Therefore] P satisfied1F'. Rule
LSTAR says that ifP is executed in some time interval, then in that time intefal
satisfiest'. Thereforex P satisfies( F'.

Finally, we have a rule that allows reasoning about temporal formulae to be incor-
porated in proofs about processes satisfying specifications:

PrF

LCONS: if =G
Rule LCONS simply says that # satisfies a specificatioR then it also satisfies any
weaker specificatioty.

Notice that the inference rules reveal a pleasant correspondence betaeenp-
erators and the logic operators. For example, parallel composition and locality corre-
sponds to conjunction and existential quantification. The choice operator corresponds
to some special kind of conjunction. The next, replication and star operators correspond
to the next, always, and eventuality temporal operator.

The Proof System at WorkLet us now give a simple example illustrating a proof in
inference system.

Example 12.Recall Example 9. We have a procdgsvhich was repeatedly checking
the state ofmotor ;. If a malfunction is reportedR would tell thatmotor ; must
be turned off. We also have a proce$sstating that motomotor ; is doomed to
malfunction. LetR =!when ¢ do tell(e) andS = xtell(c) with the constraints
¢ = malfunction  (motor ;_status ) ande = (motor ;_speed = 0). We want
to provide a proof of the assertioR: || S + < e. Intuitively, this means that the par-
allel execution ofR and S satisfies the specification stating timabtor ; is eventually
turned off. The following is a derivation of the above assertion.

when cdo tell(e) F (cAe) Ve LSUM
when cdo tell(e) Fc=>e LCONS tell(c) F ¢ LTELL
RrOc=>e " §roc SR
RISFD(cse)Ade LPAR
RISEGe LCONS

More complex examples of the use of the proof system for proving the satisfaction of
processes specification can be found in [28]—in particular for proving properties of
mutable data structures. O

Let us now state how close the relatiorto the verification relatiof=cr .

Theorem 2 (Relative Completeness)Suppose thaP is a locally-independent pro-
cess. TheP + F'iff P |=c.1_ F.

The reason why the above result is called “relative completeness” is because we
need to determine the validity of the temporal implication in the rule LCONS. This
means that our proof system is complete, if we are equipped with an oracle that is
guaranteed to provide a proof or a confirmation of each valid temporal implication.
Because of the validity issues above mentioned, one may wonder about decidability of
the validity problem for our temporal logic. We look at these issues next.
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Decidability Results.In [51] it is shown that the verification problem (i.e., givErand
F whetherP =ci1. F) is decidable for the locally independent fragment and negation-
free CLTL formulae. A noteworthy aspect of this result is that, as mentioned before,
thentcc fragment above admits infinite-state processes. Another interesting aspect is
thatCLTL is first-order. Most first-order LTL's in computer science are not recursively
axiomatizable let alone decidable [1].

Furthermore, [51] proves the decidability of the validity problem for implication
of negation-freeCLTL formulae. This is done by appealing to the close connection
betweemtcc processes and LTL formulae to reduce the validity of implication to the
verification problem. More precisely, it is shown that given two negation-free formulae
F and@ one can construct a proceBs such thatsp(Pr) = [F] and then it follows
thatPr =cirL G iff F'= G. As a corollary of this result, we obtain the decidability of
satisfiabilityfor the negation-free first-order fragment@fTL —recallG is satisfiable
iff G=false is notvalid.

A theoretical application of the theory otcc is presented in [51] by stating a
new positive decidability result for a first-order fragment of Pnueli’s first-otdér
[21]. The result is obtained from a reduction @.TL satisfiability and thus it also
contributes to the understanding of the relationship between (timed) ccp and (temporal)
classic logic.

6 Concluding Remarks and Related Work

There are several developments of timed ccp and, due to space restriction, it would be
difficult to do justice to them all. | shall indicate a few which appear to me to be central.

Related Work. Saraswat el al were the first proposing a denotational semantics and
proof system for timed ccp in the context of tcc [39]. The denotational semantics is
fully abstract and it was later generalized by Palemidessi et al fantttee case. The
proof system of [39] is based on an intuitionistic logic enriched with a next operator—
the logic for thentcc case is classic. The system is complete for hiding-free and finite
processes.

Gabrielli et al also provided a fully-abstract denotational semantics [5] and proof
system [4] for the tccp model (see Section 4). The underlying second-order linear tem-
poral logic in [4] can be used for describing input-output behavior. In contrast, the
ntcc logic can only be used for the strongest-postcondition, but also it is semantically
simpler and defined as the standard first-order linear-temporal logic of [21].

The decidability results for thetcc equivalences here presented are based on
reductions froomtcc  processes into finite-state automata [29, 27, 51]. The work in [42]
also shows how to compile tcc into finite-state machines. Rather than a direct way of
verifying process equivalences, such machines provide an execution model of tcc.

Nielsen et al [27] compared, relatively to the notion of input-output behavior, the
expressive power of various tcc variants differing in their way of expressing infinite be-
havior. It is shown that: (1) recursive procedures with parameters can be encoded into
parameterless recursive procedures with dynamic scoping, and vice-versa. (2) replica-
tion can be encoded into parameterless recursive procedures with static scoping, and
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vice-versa. (3) the languages from (1) are strictly more expressive than the languages
from (2). Furthermore, it is shown that behavioral equivalence is undecidable for the
languages from (1), but decidable for the languages from (2). The undecidability result
holds even if the process variables take values from a fixed finite domain.

Also Tini [48] explores the expressiveness of tcc languages, but focusing on the
capability of tcc to encode synchronous languages. In particular, Tini shows that Argos
[22] and a version of Lustre restricted to finite domains [16] can be encoded in tcc.

In the context of tcc, Tini [49] introduced a notion of bisimilarity, an elemental
process equivalence in concurrency, with a complete and elegant axiomatization for
the hiding-free fragment of tcc. The notion of bisimilarity has also been introduced for
ntcc by the present author in his PhD thesis [50].

On the practical side, Saraswat el al introduced Timed Gentzen [40], a particu-
lar tcc-based programming language for reactive-systems implemented in PROLOG.
More recently, Saraswat el al released jcc [43], an integration of timed (default) ccp
into the popular JAVA programming language. Rueda et al [37] demonstrated that es-
sential ideas of computer generated music composition can be elegantly represented in
ntcc . Hurtado and Mufioz [19] in joint work with Fernandez and Quintero [10] gave a
design and efficient implementation of attc -based reactive programming language
for LEGO RCX robots [20]—the robotic devices chosen in Section 5.1 as motivating
examples.

Future Work. Timed ccp is still under development and certainly much remain to be
explored. | shall indicate briefly a few research directions that | believe are necessary
for the development of timed ccp as a well-established model of concurrency. Future re-
search in timed ccp should address those issues that are central to other matured models
of concurrency. In particular, the development of solid theories and tools for behavioral
equivalences, which at present time is still very immature. For instance, currently there
are neither axiomatizations nor automatic tools for reasoning about process equivalen-
ces. Furthermore, the decision algorithms for the verification problem, are very costly as
the initial interest in them was purely theoretical. For practical purposes, it is then fun-
damental to conduct studies on the design and implementation of efficient algorithms
for this problem.

Acknowledgments. am specially grateful to the people with whom | have worked on
temporal ccp with great pleasure: Mogens Nielsen, Catuscia Palamidesi, and Camilo
Rueda.
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