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Abstract Concurrent constraint programming(ccp) is a model of concurrency
for systems in which agents (also called processes) interact with one another by
telling and asking information in a shared medium.Timed(or temporal) ccp ex-
tends ccp by allowing agents to be constrained by time requirements. The novelty
of timed ccp is that it combines in one framework anoperational and algebraic
view based upon process calculi with adeclarativeview based upon temporal
logic. This allows the model to benefit from two well-established theories used in
the study of concurrency.
This essay offers an overview of timed ccp covering its basic background and
central developments. The essay also includes an introduction to a temporal ccp
formalism called thentcc calculus.

1 Introduction

Concurrency theoryhas made progress by extending well-established models of com-
putation to capture new and wider phenomena. These extensions should not come as a
surprise since the field is indeed large and subject to the advents of new technology. One
particular phenomenon, for which extensions of the very first theories of concurrency
were needed, is the notion oftime.

Time is not only a fundamental concept in concurrency but also in science at large.
Just like modal extensions of logic for temporal progression study time in logic reason-
ing, mature models of concurrency were extended to study time in concurrent activity.
For instance, neither Milner’s CCS [23], Hoare’s CSP [18], nor Petri Nets [31], in their
original form, were concerned with temporal behavior but they all have been extended
to incorporate an explicit notion of time. Namely, Timed CCS [52], Timed CSP [34],
and Timed Petri Nets [53].

The notion ofconstraintis certainly not rare in concurrency. After all, concurrency
is about the interaction of agents and such an interaction often involves constraints of
some sort (e.g., synchronization constraints, access-control, actions that must eventually
happen, actions that cannot happen, etc).

Saraswat’sconcurrent constraint programming(ccp) [44] is a well-established for-
malism for concurrency based upon the shared-variables communication model where
interaction arises via constraint-imposition over shared-variables. In ccp, agents can in-
teract byadding(or telling) partial information in a medium, a so-calledstore. Partial
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information is represented byconstraints(i.e., first-order formulae such asx > 42) on
the shared variables of the system. The other way in which agents can interact is by
askingpartial information to the store. This provides the synchronization mechanism of
the model; asking agents are suspended until there is enough information in the store to
answer their query.

As other models of concurrency, ccp has been extended to capture aspects such as
mobility [8, 36, 12], stochastic behavior [13], and most prominently time [39, 5, 41, 14].
Timedccp extends ccp by allowing agents to be constrained by time requirements.

A distinctive feature of timed ccp is that it combines in one framework anoper-
ational and algebraicview based upon process calculi with adeclarativeview based
upon temporal logic. So, processes can be treated as computing agents, algebraic terms
and temporal formulae. At this point it is convenient to quote Robin Milner:

I make no claim that everything can be done by algebra ... It is perhaps equally true
that not everything can be done by logic; thus one of the outstanding challenges in
concurrency is to find the right marriage between logic and behavioral approaches

— Robin Milner, [23]

In fact, the combination in one framework of the alternative views of processes
mentioned above allows timed ccp to benefit from the large body of techniques of well
established theories used in the study of concurrency and, in particular,timed systems.

Furthermore, timed ccp allows processes to be (1) expressed using a vocabulary and
concepts appropriate to thespecific domain(of some application under consideration),
and (2) read and understood as temporal logicspecifications. This feature is suitable
for timed systems as they often involvespecific domains(e.g., controllers, databases,
reservation systems) and have time-constraintsspecifyingtheir behavior (e.g., the lights
must be switched on within the next three seconds). Indeed, several timed extensions
of ccp have been developed in order to provide settings for the modeling, programming
and specification of timed systems [39, 42, 5, 14].

This paper offers an overview of timed ccp with its basic background and various
approaches explored by researchers in this field. Furthermore, it offers an introduction
to a timed ccp process calculus calledntcc . The paper is organized as follows. In
Section 2 we discuss briefly those issues from models of concurrency, in particular
process calculi, relevant to temporal ccp. In Sections 3 and 4 we give an overview of
ccp and timed ccp. Section 5 is devoted to address, in the context of timed ccp and by
usingntcc , those issues previously discussed in Section 2. Finally in Section 6 we
discuss central developments in timed ccp.

2 Background: Models of Concurrency

Concurrencyis concerned with the fundamental aspects of systems consisting of mul-
tiple computing agents, usually calledprocesses, that interact among each other. This
covers a vast variety of systems, so-calledconcurrent systems, which nowadays most
people can easily relate to due to technological advances such as the Internet, pro-
grammable robotic devices and mobile computing . For instance,timed systems, in
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which agents are constrained by temporal requirements. Some example of timed sys-
tems are: Browser applications which are constrained by timer-based exit conditions
(i.e., time-outs) for the case in which a sever cannot be contacted; E-mailer applica-
tions can be required to check for messages everyk time units. Also, robots can be
programmed with time-outs (e.g., to wait for some signal) and with timed instructions
(e.g., to go forward for 42 time-units).

Because of the practical relevance, complexity and ubiquity of concurrent systems,
it is crucial to be able to describe, analyze and, in general, reason about concurrent
behavior. This reasoning must be precise and reliable. Consequently, it ought to be
founded upon mathematical principles in the same way as the reasoning about the be-
havior of sequential programs is founded upon logic, domain theory and other mathe-
matical disciplines.

Nevertheless, giving mathematical foundations to concurrent computation has be-
come a serious challenge for computer science. Traditional mathematical models of
(sequential) computation based on functions from inputs to outputs no longer apply.
The crux is that concurrent computation, e.g., in a reactive system, is seldom expected
to terminate, it involves constant interaction with the environment, and it isnondeter-
ministicowing to unpredictable interactions among agents.

Models of Concurrency: Process Calculi.Computer science has therefore taken up the
task of developingmodels, conceptually different from those of sequential computation,
for the precise understanding of the behavior of concurrent systems. Such models, as
other scientific models of reality, are expected to comply with the following criteria:
They must besimple(i.e., based upon few basic principles),expressive(i.e., capable
of capturing interesting real-world situations),formal (i.e., founded upon mathematical
principles), and they must providetechniquesto allow reasoning about their particular
focus.

Process calculi are one of the most common frameworks for modeling concurrent
activity. These calculi treat processes much like the�-calculus treats computable func-
tions. They provide a language in which the structure oftermsrepresents the structure
of processes together with anoperational semanticsto represent computational steps.
For example, the termP k Q, which is built fromP andQ with theconstructork, rep-
resents the process that results from the parallel execution of those represented byP and
Q. An operational semantics may dictate that ifP can evolve intoP 0 in a computational
stepP 0 thenP k Q can also evolve intoP 0 k Q in a computational step.

An appealing feature of process calculi is theiralgebraic treatment of processes.
The constructors are viewed as theoperatorsof an algebraic theory whose equations
and inequalities among terms relate process behavior. For instance, the constructk can
be viewed as a commutative operator, hence the equationP k Q � Q k P states that
the behavior of the two parallel compositions are the same. Because of this algebraic
emphasis, these calculi are often referred to asprocess algebras.

There are many different process calculi in the literature mainly agreeing in their
emphasis upon algebra. The main representatives are CCS [23], CSP [18], and the pro-
cess algebra ACP [2]. The distinctions among these calculi arise from issues such as the
process constructions considered (i.e., the language of processes), the methods used for
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giving meaning to process terms (i.e. the semantics), and the methods to reason about
process behavior (e.g., process equivalences or process logics).

Semantics.The methods by which process terms are endowed with meaning may in-
volve at least three approaches:operational, denotationalandalgebraicsemantics. The
operational methodwas pioneered by Plotkin [32]. An operational semantics interprets
a given process term by using transitions (labeled or not) specifying its computational
steps. A labeled transitionP

a
�! Q specifies thatP performsa and then behaves asQ.

Thedenotational methodwas pioneered by Strachey and provided with a mathematical
foundation by Scott. A denotational semantics interprets processes by using a function
[[�]] which maps them into a more abstract mathematical object (typically, a structured
set or a category). The map[[�]] is compositionalin that the meaning of processes is
determined from the meaning of its sub-processes. Thealgebraic methodhas been ad-
vocated by Bergstra and Klop [2]. An algebraic semantics attempts to give meaning
by stating a set of laws (or axioms) equating process terms. The processes and their
operations are then interpreted as structures that obey these laws.

Behavioral Analysis.Much work in the theory of process calculi, and concurrency in
general, involves the analysis of process equivalences. Let us say that our equivalence
under consideration is denoted by�. Two typical questions that arise are: (1) Is the
equivalence decidable ? (2) Is the equivalence a congruence ? The first question refers
to the issue as to whether there can be an algorithm that fully determines (or decides)
for everyP andQ if P � Q or P 6� Q. Since most process calculi can model Turing
machines most natural equivalences are therefore undecidable. So, the interesting ques-
tion is rather for what subclasses of processes is the equivalence decidable. The second
question refers to the issue as to whether the fact thatP andQ are equivalent implies
that they are still equivalent in any process context. A process contextC can be viewed
as a term with a hole[�] such that placing a process in the hole yields a process term.
Hence, the equivalence is a congruence ifP � Q impliesC[P ] � C[Q] for every pro-
cess contextC. The congruence issue is fundamental for algebraic as well as practical
reasons; one may not be content with havingP � Q equivalent butR k P 6� R k Q
(here the context isC = R k [�]):

Specification and Logic.One often is interested in verifying whether a given process
satisfies a specification; the so-calledverification problem. But process terms them-
selves specify behavior, so they can also be used to express specifications. Then this
verification problem can be reduced to establishing whether the process and the speci-
fication process are related under some behavioral equivalence (or pre-order). Another
way of expressing process specifications, however, is by using temporal logics. These
logics were introduced into computer science by Pnueli [33] and thereafter proven to be
a good basis for specification as well as for (automatic and machine-assisted) reasoning
about concurrent systems. Temporal logics can be classified into linear and branching
time logics. In thelinear case at each moment there is only one possible future whilst
in thebranchingcase at may split into alternative futures.
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3 Concurrent Constraint Programming

In his seminal PhD thesis [38], Saraswat proposed concurrent constraint programming
as a model of concurrency based on the shared-variables communication model and a
few primitive ideas taking root in logic. As informally described in this section, the ccp
model elegantly combines logic concepts and concurrency mechanisms.

Concurrent constraint programming traces its origins back to Montanari’s pioneer-
ing work [26] leading to constraint programming and Shapiro’s concurrent logic pro-
gramming [45]. The ccp model has received a significant theoretical and implementa-
tional attention: Saraswat, Rinard and Panangaden [44] as well as De Boer, Di Pierro
and Palamidessi [6] gave fixed-point denotational semantics to ccp whilst Montanari
and Rossi [35] gave it a (true-concurrent) Petri-Net semantics; De Boer, Gabrielli et
al [7] developed an inference system for proving properties of ccp processes; Smolka’s
Oz [47] as well as Haridi and Janson’s AKL [17] programming languages are built upon
ccp ideas.

Description of the model.A fundamental issue of the ccp model is thespecification
of concurrent systemsin terms of constraints. A constraint is a first-order formula rep-
resentingpartial informationabout the shared variables of the system. For example,
the constraintx + y > 42 specifies possible values forx andy (those satisfying the
inequation). The ccp model is parameterized in aconstraint systemwhich specifies the
constraints of relevance for the kind of system under consideration and anentailment
relation j= between constraints (e.g,x+ y > 42 j= x+ y > 0).

During computation, the state of the system is specified by an entity called the
storewhere items of information about the variables of the system reside. The store is
represented as a constraint and thus it may provide only partial information about the
variables. This differs fundamentally from the traditional view of a store based on the
Von Neumann memory model, in which each variable is assigned a uniquely determined
value (e.g.,x = 42 andy = 7) rather than a set of possible values.

Some readers may feel uneasy as the notion of store in ccp suggests a model of
concurrency with central memory. This is, however, an abstraction that simplifies the
presentation of the model. The store can be distributed in several sites according to the
agents that share the same variables (see [38] for further discussions about this matter).
Conceptually, the store in ccp is themediumthrough which agents interact with each
other.

The ccp processes can update the state of the system only byadding(or telling)
information to the store. This is represented as the (logical) conjunction of the constraint
being added and the store representing the previous state. Hence, the update is not about
changing the values of the variables but rather about ruling out some of the previously
possible values. In other words, the store ismonotonically refined.

Furthermore, processes can synchronize byaskinginformation to the store. Asking
is blocked until there is enough information in the store toentail(i.e., answer positively)
their query. The ask operation is seen as determining whether the constraint representing
the store entails the query.

A ccp computation terminates whenever it reaches a point, calledrestingor qui-
escentpoint, in which no more new information is added to the store. The final store,
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also calledquiescent store(i.e,. the store at the quiescent point), is the output of the
computation.

Example 1.To make the description of the ccp model clearer, consider the simple ccp
scenario illustrated in Figure 1. We have four agents (or processes) wishing to interact
through an initially empty medium. Let us name them, starting from the upper rightmost
agent in a clockwise fashion,A1; A2; A3 andA4, respectively. Suppose that they are
scheduled for execution in the same order they were named.

This wayA1 moves first and tells the others through the medium that the temper-
ature value is greater than 42 degrees but without specifying the exact value. In other
wordsA1 gives the others partial information about the temperature. This causes the
addition of the item “temperature>42” to the previously empty store.

Now A2 asks whether the temperature is exactly 50 degrees, and if so it wishes to
execute a processP . From the current information in the store, however, it cannot be
determined what the exact value of the temperature is. The agentA2 is then blocked
and so is the agentA3 since from the store it cannot be determined either whether the
temperature is between 0 and 100 degrees.

The turn is forA4 which tells that the temperature is less than 70 degrees. The store
becomes “temperature> 42 ^ temperature< 70”. Now A3 can executeQ as its query
is entailed by the information in the store . The other ask agentA2 is doomed to be
blocked forever unlessQ adds enough information to the store to entail its query.ut

temperature=50?.Ptemperature>42

temperature<70 0<temperature<100?.Q

S T O R  E
(MEDIUM)

Figure1. A simple ccp scenario

The CCP Process Language.In the spirit of process calculi, the language of processes
in the ccp model is given with a reduced number of primitive operators or combina-
tors. Rather than giving the actual syntax of the language, we content ourselves with
describing the basic intuition that each construct embodies. So, in ccp we have:

– The tell action, for expressing tell operations. E.g., agentA1 above.
– The ask action (or prefix action), for expressing an ask operation that prefixes an-

other process; its continuation. E.g., the agentA2 above.
– Parallel composition, which combines processes concurrently. E.g., the scenario in

Figure 1 can be specified as the parallel composition ofA1, A2, A3 andA4.
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– Hiding (or locality), for expressing local variables that delimit the interface through
which a process can interact with others.

– Summation, which expresses a disjunctive combination of agents to allow alternate
courses of action.

– Recursion, for defining infinite behavior.

It is worth pointing out that without summation, the ccp model is deterministic in the
sense that the quiescent or final store is always the same, independently from the exe-
cution order (scheduling) of the parallel components [44].

4 Timed Concurrent Constraint Programming

The first timed ccp model was introduced by Saraswat et al [39] as an extension of ccp
aimed at programming and modeling timed, reactive systems. This model, which has
attracted growing attention during the last five years or so, elegantly combines ccp with
ideas from the paradigms of Synchronous Languages [3, 15].

As any other model of computation, the tcc model makes an ontological commit-
ment about computation. It emphasizes the view of reactive computation as proceed-
ing deterministicallyin discrete time units (or timeintervals). More precisely, time is
conceptually divided into discrete intervals. In each time interval, a deterministic ccp
process receives a stimulus (i.e. a constraint) from the environment, it executes with
this stimulus as theinitial store, and when it reaches its resting point, it responds to the
environment with thefinal store. Also, the resting point determines a residual process,
which is then executed in the next time interval.

This view of reactive computation is particularly appropriate for programming reac-
tive systems such as robotic devices, micro-controllers, databases and reservation sys-
tems. These systems typically operate in a cyclic fashion; in each cycle they receive and
input from the environment, compute on this input, and then return the corresponding
output to the environment.

The fundamental move in the tcc model is to extend the standard ccp withdelay
and time-outoperations. These operations are fundamental for programming reactive
systems. The delay operation forces the execution of a process to be postponed to the
next time interval. The time-out (or weakpre-emption) operation waits during the cur-
rent time interval for a given piece of information to be present and if it is not, triggers
a process in thenext time interval.

Pre-emption and multi-form time.In spite of its simplicity, the tcc extension to ccp is
far-reaching. Many interesting temporal constructs can be expressed, in particular:

– doP watching c . This interrupt process executesP continuously until the item of
information (e.g, a signal)c is present (i.e., entailed by the information in the store);
whenc is presentP is killed from the next time unit onwards. This corresponds to
the familiarkill command in Unix or clicking on the stop bottom of your favorite
web browser.

– ScAd(P ). This pre-emption process executesP continuously untilc is present;
whenc is presentP is suspendedfrom the next time unit onwards. The processP
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is reactivatedwhend is present. This corresponds to the familiar (ctrl -Z, fg )
mechanism in Unix.

– timeP on c . This denotes a process whosenotion of timeis the occurrence of the
item of informationc. That is,P evolves only in those time intervals wherec holds.

In general, tcc allows processes to be “clocked” by other processes. This provides
meaningful pre-emption constructs and the ability of definingmultiple forms of time
instead of only having a unique global clock.

4.1 More Timed CCP Models

Thentcc calculus is generalization of the tcc model originated in [28] by Palamidessi,
Nielsen and the present author. The calculus is built upon few basic ideas but it cap-
tures several aspects of timed systems. As tcc,ntcc can model unit delays, time-outs,
pre-emption and synchrony. Additionally, it can modelunbounded but finite delays,
bounded eventuality, asynchronyandnondeterminism. The applicability of the calculus
has been illustrated with several examples of discrete-time systems involving , mutable
data structures, robotic devices, multi-agent systems and music applications [37].

Another interesting extension of tcc, which does not consider nondeterminism or
unbounded finite-delay, has been proposed in [42]. This extension adds strong pre-
emption: the time-out operations can trigger activity in the current time interval. In
contrast,ntcc can only express weak pre-emption. Other extensions of tcc have been
proposed in [14]. In [14] processes can evolve continuously as well as discretely. None
of these extensions consider nondeterminism or unbounded finite-delay.

The tccp framework, introduced in [5] by Gabrielli et al, is a fundamental repre-
sentative model of (nondeterministic) timed ccp. The authors in [5] also advocate the
need of nondeterminism in the context of timed ccp. In fact, they use tccp to model
interesting applications involving nondeterministic timed systems (see [5]). The major
difference between tccp andntcc is that the former extends the original ccp while
the latter extends the tcc model (so, except for allowing nondeterminism, it makes the
same commitments about computation). In tccp the information about the store is car-
ried through the time units, thus the semantic setting is completely different. The notion
of time is also different; in tccp each time unit is identified with the time needed to ask
and tell information to the store. As for the constructs, unlikentcc , tccp provides for
arbitrary recursion and does not have an operator for specifying unbounded but finite
delays.

As briefly described in this section, there are several models of timed ccp, and it
would be hard to introduce all of them in detail. I shall introduce in detail the gener-
alization of Saraswat’s tcc, thentcc calculus, and then indicate as related work the
developments in other models which appear to me to be central.

5 The ntcc process calculus

This section gives an introduction to thentcc model. We shall give evidence of the
compliance ofntcc with the criteria for models of concurrency previously mentioned
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(i.e., it is simple, expressive, formal and it provides reasoning techniques). First, we
shall see that it captures fundamental aspects of concurrency (i.e., discrete-time reactive
computations, nondeterminism, synchrony and asynchrony) whilst keeping a pleasant
degree ofsimplicity. Second, the expressiveness ofntcc will be illustrated by mod-
eling robotic devices. Furthermore, we shall see thatntcc is founded uponformal
theories such as process calculi and first-order logic. Finally, we shall present some of
the techniques thatntcc provides to reason about concurrent activity. Namely,

1. Severalequivalences, characterized operationally, to compare the behavior of pro-
cesses much like the behavioral equivalences for existing process calculi (e.g.,
bisimilarity and trace-equivalence).

2. A denotational semanticswhich interprets a given process as the set of sequences
of actions it can potentially exhibit while interacting with arbitrary environments.

3. A process logicwith an associatedinference systemthan can be used much like the
Hoare’s program logic for sequential computation. The logic can be used to express
required timed behaviors of processes, i.e.,temporal specifications. The inference
system can be used to prove that a process fulfills the specification.

We shall begin with an informal description of the process calculus with examples.
These examples are also meant to give a flavor of the range of application of timed ccp.

5.1 Intuitive Description of Constraint Systems

In this section we introduce the basic ideas underlying thentcc calculus in an informal
way. We shall begin by introducing the notion of a constraint system, which is central
to concurrent constraint programming. We then describe the basic process constructs
by means of examples. Finally, we shall describe some convenient derived constructs.

The ntcc processes are parametric in aconstraint system.A constraint system
provides asignaturefrom which syntactically denotable objects calledconstraintscan
be constructed and anentailment relationj= specifying inter-dependencies between
these constraints.

A constraint represents a piece of information (orpartial information) upon which
processes may act. For instance, processes modeling temperature controllers may have
to deal with partial information such as42 < tsensor < 100 expressing that the
sensor registers an unknown (or not precisely determined) temperature value between
42 and100. The inter-dependencyc j= d expresses that the information specified byd
follows from that byc, e.g.,(42 < tsensor < 100) j= (0 < tsensor < 120):

We can set up the notion of constraint system by using first-order logic. Let us
suppose that� is a signature (i.e., a set of constants, functions and predicate symbols)
and that� is a consistent first-order theory over� (i.e., a set of sentences over�
having at least one model). Constraints can be thought of as first-order formulae over
�. We can then decree thatc j= d if the implicationc ) d is valid in�. This gives us
a simple and general formalization of the notion of constraint system as a pair(�;�).

In the examples below we shall assume that, in the underlying constraint system,
� is the setf=; <; 0; 1 : : :g and� is the set of sentences over� valid on the natural
numbers.
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Intuitive Description of Processes

We now proceed to describe with examples the basic ideas underlying the behavior of
ntcc processes. For this purpose we shall model simple behavior of controllers such
as Programmable Logic Controllers (PLC’s) and RCX bricks.

PLC’s are often used in timed systems of industrial applications [9], whilst RCX
bricks are mainly used to construct autonomous robotic devices [20]. These controllers
have external input and output ports. One can attach, for example, sensors of light,
touch or temperature to the input ports, and motors, lights or alarms to the output ports.
Typically PLC’s and RCX bricks operate in a cyclic fashion. Each cycle consist of
receiving an input from the environment, computing on this input, and returning the
corresponding output to the environment.

Our processes will operate similarly. Time is conceptually divided intodiscrete in-
tervals (or time units). In a particular time interval, a processPi receives astimulusci
from the environment (see Equation 1 below). The stimulus is some piece of informa-
tion, i.e., a constraint. The processPi executes with this stimulus as the initial store, and
when it reaches its resting point (i.e., a point in which no further computation is pos-
sible), it respondsto the environment with a resulting storedi. Also the resting point
determines a residual processPi+1, which is then executed in the next time interval.

The following sequence illustrates the stimulus-response interactions between an
environment that inputsc1; c2; : : : and a process that outputsd1; d2; : : : on such inputs
as described above.

P1
(c1;d1)
====) P2

(c2;d2)
====) : : : Pi

(ci;di)
====) Pi+1

(ci+1;di+1)
======) : : : (1)

Communication: Telling and Asking Information.Thentcc processes communicate
with each other by posting and reading partial information about the variables of system
they model. The basic actions for communication provide thetelling and askingof
information. A tell action adds a piece of information to the common store. An ask
action queries the store to decide whether a given piece of information is present in it.
The store as a constraint itself. In this way addition of information corresponds to logic
conjunction and determining presence of information corresponds to logic implication.

The tell and ask processes have respectively the form

tell(c) andwhen c do P: (2)

The only action of a tell processtell(c) is to add, within a time unit,c to the current
stored. The store then becomesd ^ c. The addition ofc is carried out even if the store
becomes inconsistent, i.e.,(d ^ c) = false , in which case we can think of such an
addition as generating afailure.

Example 2.Suppose thatd = (motor 1_speed > motor 2_speed ). Intuitively, d
tells us that the speed of motor one is greater than that of motor two. It does not tell us
what the specific speed values are. The execution in stored of process

tell(motor 2_speed > 10)
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causes the store to become(motor 1_speed > motor 2_speed > 10) in the current
time interval, thus increasing the information we know about the system – we now know
that both speed values are greater than 10.

Notice that in the underlying constraint systemd j= motor 1_speed > 0, there-
fore the process

tell(motor 1_speed = 0)

in stored causes a failure. ut

The processwhen c do P performs the action of askingc. If during the current
time intervalc can eventually be inferred from the stored (i.e., d j= c ) thenP is
executed within the same time interval. Otherwise,when c do P is precluded from
execution in any future time interval (i.e., it becomes constantly inactive).

Example 3.Suppose thatd = (motor 1_speed > motor 2_speed ) is the store.
The process

P = when motor 1_speed > 0 do Q

will executeQ in the current time interval sinced j= motor 1_speed > 0, by contrast
the process

P 0 = when motor 1_speed > 10 do Q

will not executeQ unless more information is added to the store, during the current
time interval, to entailmotor 1_speed > 10.

The intuition is that any process ind = (motor 1_speed > motor 2_speed )
can execute a given action if and only if it can do so whenevermotor 1_speed and
motor 2_speed are set to arbitrary values satisfyingd. So,P above executesQ if
motor 1_speed andmotor 2_speed take on any value satisfyingd. ut

The above example illustrates the partial information allows us to model the actions
that a system can perform, regardless of the alternative values a variable may assume,
as long they comply with the constraint representing the store.

Nondeterminism. As argued above, partial information allows us to model behavior
for alternative values that variables may take on. In concurrent systems it is often con-
venient to model behavior foralternative coursesof action, i.e., nondeterministic be-
havior.

We generalize the processes of the formwhen c do P described above to guarded-
choice summation processes of the form

X
i2I

when ci do Pi (3)

whereI is a finite set of indices. The expression
P

i2I when ci do Pi represents a
process that, in the current time interval,must nondeterministicallychoose a process
Pj (j 2 I) whose corresponding constraintcj is entailed by the store. The chosen
alternative, if any, precludes the others. If no choice is possible during the current time
unit, all the alternatives are precluded from execution.

In the following example we shall use “+” for binary summations.
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Example 4.Often RCX programs operate in a set of simple stimulus-response rules of
the formIF E THEN C. The expressionE is a condition typically depending on the
sensor variables, andC is a command, typically an assignment. In [11] these programs
respond to the environment by choosing a rule whose condition is met and executing its
command.

If we wish to abstract from the particular implementation of the mechanism that
chooses the rule, we can model the execution of these programs by using the summation
process. For example, the program operating in the set�

(IF sensor 1 > 0 THEN motor 1_speed := 2);
(IF sensor 2 > 99 THEN motor 1_speed := 0)

�

corresponds to the summation process

P =

when sensor 1 > 0 do tell(motor 1_speed = 2)
+
when sensor 2 > 99 do tell(motor 1_speed = 0):

In the stored = (sensor 1 > 10), the processP causes the store to become
d ^ (motor 1_speed = 2) sincetell(motor 1_speed = 2) is chosen for execution
and the other alternative is precluded. In the storetrue , P cannot add any information.
In the storee = (sensor 1 = 10 ^ sensor 2 = 100), P causes the store to become
eithere ^ (motor 1_speed = 2) or e ^ (motor 1_speed = 0). ut

Parallel Composition.We need a construct to represent processes actingconcurrently.
GivenP andQ we denote their parallel composition by the process

P k Q (4)

In one time unit (or interval) processesP andQ operate concurrently, “communicating”
via the common store by telling and asking information.

Example 5.LetP be defined as in Example 4 and

Q =

when motor 1_speed = 0 do tell(motor 2_speed = 0)
+
when motor 2_speed = 0 do tell(motor 1_speed = 0):

Intuitively Q turns off one motor if the other is detected to be off. The parallel
compositionP k Q in the stored = (sensor 2 > 100) will, in one time unit, cause
the store to becomed ^ (motor 1_speed = motor 2_speed = 0). ut

Local Behavior. Most process calculi have a construct to restrict the interface through
which processes can interact with each other, thus providing for the modeling oflocal
(or hidden)behavior. We introduce processes of the form

(localx)P (5)

The process(localx)P declares a variablex, private toP . This process behaves
like P , except that all the information aboutx produced byP is hidden from external
processes and the information aboutx produced by other external processes is hidden
fromP .
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Example 6.In modeling RCX or PLC’s one uses “global” variables to represent ports
(e.g., sensor and motors). One often, however, uses variables which do not represent
ports, and thus we may find it convenient to declare such variables as local (or private).

Suppose thatR is a given process modeling some controller task. Furthermore, sup-
pose thatR uses a variablez, which is set at random, with some unknown distribution,
to a valuev 2 f0; 1g. Let us define the process

P = (
X

v2f0;1g

when true do tell(z = v)) k R

to represent the behavior ofR underz’s random assignment.
We may want to declarez in P to be local since it does not represent an input or

output port. Moreover, notice that if we need to run two copies ofP , i.e., processP k P ,
a failure may arise as each copy can assign a different value toz. Therefore, the behavior
of R under the random assignment toz can be best represented asP 0 = (local z)P .
In fact, if we run two copies ofP 0, no failure can arise from the random assignment to
thez’s as they are private to eachP 0. ut

The processes hitherto described generate activity within the current time interval
only. We now turn to constructs that can generate activity in future time intervals.

Unit Delays and Time-Outs.As in the Synchronous Languages [3] we have constructs
whose actions can delay the execution of processes. These constructs are needed to
model time dependency between actions, e.g., actions depending on the absence or
presence of preceding actions. Time dependency is an important aspect in the modeling
of timed systems.

The unit-delay operators have the form

nextP and unless c nextP (6)

The processnextP represents the activation ofP in the next time interval. The
processunless c nextP is similar, butP will be activated only ifc cannot be inferred
from the resulting (or final) stored in the current time interval, i.e.,d 6j= c. The “unless”
processes add time-outs to the calculus, i.e., they wait during the current time interval
for a piece of informationc to be present and if it is not, they trigger activity in the next
time interval.

Notice thatunless c nextP is not equivalent towhen :c do nextP sinced 6j= c
does not necessarily implyd j= :c. Notice thatQ = unless false nextP is not
the same asR = nextP since unlikeQ, even if the store containsfalse , R will
still activateP in the next time interval (and the store in the next time interval may not
containfalse ).

Example 7.Let us consider the following process:

P = when false do next tell(motor 1_speed = motor 2_speed = 0):

P turns the motors off by decreeing thatmotor 1_speed = motor 2_speed = 0 in
the next time interval if a failure takes place in the current time interval. Similarly, the
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process

unless false next (tell(motor 1_speed > 0) k tell(motor 2_speed > 0))

makes the motors move at some speed in the next time unit, unless a failure takes place
in the current time interval. ut

Asynchrony. We now introduce a construct that, unlike the previous ones, can describe
arbitrary (finite) delays. The importance of this construct is that it allows us to model
asynchronous behavior across the time intervals.

We use the operator “?” which corresponds to the unbounded but finite delay oper-
ator for synchronous CCS [24]. The process

?P (7)

represents an arbitrary long but finite delay for the activation ofP . Thus,? tell(c) can
be viewed as a messagec that is eventually delivered but there is no upper bound on the
delivery time.

Example 8.Let S = ? tell(malfunction (motor 1_status )). The processS can
be used to specify thatmotor 1, at some unpredictable point in time, is doomed to
malfunction ut

Infinite Behavior. Finally, we need a construct to define infinite behavior. We shall use
the operator “!” as a delayed version of the replication operator for the��calculus [25].
Given a processP , the process

!P (8)

representsP k (nextP ) k (nextnextP ) k � � � k!P , i.e., unboundedly many copies
of P , but one at a time. The process!P executesP in one time unit and persists in the
next time unit.

Example 9.The processR below repeatedly checks the state ofmotor 1. If a malfunc-
tion is reported,R tells thatmotor 1 must be turned off.

R = !when malfunction (motor 1_status ) do tell(motor 1_speed = 0)

Thus,R k S with S = ? tell(malfunction (motor 1_status )) (Example 8) even-
tually tells thatmotor 1 is turned off. ut

Some Derived Forms

We have informally introduced the basic process constructs ofntcc and illustrated
how they can be used to model or specify system behavior. In this section we shall
illustrate how they can be used to obtain some convenient derived constructs.

In the following we shall omit “when true do ” if no confusion arises. The
“blind-choice” process

P
i2I when true do Pi, for example, can be written asP

i2I Pi. We shall use
Q

i2I Pi, whereI is finite, to denote the parallel composition of
all thePi’s. We usenextn(P ) as an abbreviation fornext(next(: : : (nextP ) : : : )),
wherenext is repeatedn times.
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Inactivity. The process doing nothing whatsoever,skip can be defined as an abbrevia-
tion of the empty summation

P
i2; Pi. This process corresponds to the inactive proce-

sses0 of CCS andSTOP of CSP. We should expect the behavior ofP k skip to be
the same as that ofP under any reasonable notion of behavioral equivalence.

Abortion. Another useful construct is the processabort which is somehow to the
opposite extreme ofskip. Whilst havingskip in a system causes no change whatso-
ever, havingabort can make the whole system fail. Henceabort corresponds to the
CHAOS operator in CSP. In Section 5.1 we mentioned that a tell process causes a fail-
ure, at the current time interval, if it leaves the store inconsistent. Therefore, we can
defineabort as! tell(false ), i.e., the process that once activated causes a constant
failure. Therefore, any reasonable notion of behavioral equivalence should not distin-
guish betweenP k abort andabort.

Asynchronous Parallel Composition.Notice that inP k Q bothP andQ are forced
to move in the current time unit, thus our parallel composition can be regarded as being
a synchronous operator. There are situations where an asynchronous version of “k” is
desirable. For example, modeling the interaction of several controllers operating con-
currently where some of them could be faster or slower than the others at responding to
their environment.

By using the star operator we can define a(fair) asynchronousparallel composition
P j Q as

(P k ? Q) + (? P k Q)

A move ofP j Q is either one ofP or one ofQ (or both). Moreover, bothP andQ
are eventually executed (i.e. a fair execution ofP j Q). This process corresponds to the
asynchronous parallel operator described in [24].

We should expect operator “j” to enjoy properties of parallel composition. Namely,
we should expectP j Q to be the same asQ j P andP j (Q j R) to be the same
as(P j Q) j R. Unlike in P k skip, however, inP j skip the execution ofP may
be arbitrary postponed, therefore we may want to distinguish betweenP j skip and
P . Similarly, unlike inP k abort, in P j abort the execution ofabort may be
arbitrarily postponed. In a timed setting we may want to distinguish between a process
that aborts right now and one that may do so sometime later after having done some
work.

Bounded Eventuality and Invariance.We may want to specify that a certain behavior
is exhibited within a certain number of time units, i.e.,bounded eventuality, or during a
certain number of time units, i.e.,bounded invariance. An example of bounded eventu-
ality is “the light must be switched off within the next ten time units” and an example
of bounded invariance is “the motor should not be turned on during the next sixty time
units”.

The kind of behavior described above can be specified by using the bounded ver-
sions of!P and?P , which can be derived using summation and parallel composition
in the obvious way. We define!IP and?IP , whereI is a closed interval of the natural
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numbers, as an abbreviation for

Y
i2I

nextiP and
X
i2I

nextiP

respectively. Intuitively,?[m;n]P means thatP is eventually active between the nextm
andm+ n time units, while![m;n]P means thatP is always active between the nextm
andm+ n time units.

Nondeterministic Time-Outs.The ntcc calculus generalizes processes of the form
when c do P by allowing nondeterministic choice over them. It would therefore be
natural to do the same with processes of the formunless c nextP . In other words,
one may want to have anondeterministic time-out operator

X
i2I

unless ci nextPi

which chooses onePi such thatci cannot be eventually inferred from the store within
the current time unit (if no choice is possible then the summation is precluded from
future execution). Notice that this is not the same as having a blind-choice summation
of theunless ci nextPi operators. It is not difficult to see, however, that the behavior
of such a nondeterministic time-out operator can be described by thentcc process:.

(local I 0) (
Y
i2I

(unless ci next tell(i 2 I 0)) k next
X
i2I

when i 2 I 0 do Pi)

wherei 2 I 0 holds iff i is in the setI 0.

5.2 The Operational Semantics ofntcc

In the previous section we gave an intuitive description ofntcc . In this section we shall
make precise such a description. We shall begin by defining the notion of constraint sys-
tem and the formal syntax ofntcc . We shall then give meaning to thentcc processes
by means of an operational semantics. The semantics, which resembles the reduction
semantics of the�-calculus [25], providesinternal andexternaltransitions describing
process evolutions. The internal transitions describe evolutions within a time unit and
thus they are regarded as being unobservable. In contrast, the external transitions are
regarded as being observable as they describe evolution across the time units.

Constraint Systems.For our purposes it will suffice to consider the notion of constraint
system based on first-order logic, as was done in [46].

Definition 1 (Constraint System).A constraint system (cs)is a pair (�;�) where�
is a signature of function and predicate symbols, and� is a decidable theory over�
(i.e., a decidable set of sentences over� with a least one model).
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Given a constraint system(�;�), let (�;V ;S) be its underlying first-order lan-
guage, whereV is a countable set of variablesx; y; : : :, andS is the set of logic sym-
bols :;^;_;); 9;8; true and false . Constraintsc; d; : : : are formulae over this
first-order language. We say thatc entailsd in �, written c j= d, iff c ) d is true in
all models of�. The relationj=; which is decidable by the definition of�; induces an
equivalence� given byc � d iff c j= d andd j= c. Henceforth,C denotesthe set of
constraints under considerationmodulo� in the underlying cs. Thus, we simply write
c = d iff c � d:

Definition (Processes,Proc). ProcessesP , Q, . . .2 Proc are built from constraints
c 2 C and variablesx 2 V in the underlying constraint system by:

P;Q; : : : ::= tell(c) j
P
i2I

when ci do Pi j P k Q j (localx)P

j nextP j unless c nextP j ? P j !P

Intuitively, tell(c) adds an item of informationc to the store in the current time inter-
val. Theguarded-choice summation

P
i2I when ci do Pi; whereI is a finite set of

indexes, chooses in the current time interval one of thePi’s whoseci is entailed by the
store. If no choice is possible, the summation is precluded from execution. We write
when ci1 do Pi1 + : : :+when cin do Pin if I = fi1; : : : ; ing: We omit the “

P
i2I ”

if jI j = 1 and useskip for
P

i2; Pi.
The processP k Q represents theparallel executionof P andQ. In one time unit

P andQ operate concurrently, communicating through the store.
The process(localx)P behaves likeP , except that all the information aboutx

produced byP can only be seen byP and the information aboutx produced by other
processes cannot be seen byP . In other words(localx)P declares anx local to P ,
and thus we say that itbindsx in P . Thebound variablesbv (Q) (free variablesfv (Q))
are those with a bound (a not bound) occurrence inQ.

Theunit-delayprocessnextP executesP in the next time interval. Thetime-out
unless c nextP is also a unit-delay, butP will be executed only ifc cannot eventually
be entailed by the store during the current time interval. Note thatnextP is not the
same asunless false nextP since an inconsistent store entailsfalse . We use
nextnP for next(next(: : : (nextP ) : : : )), wherenext is repeatedn times.

The operator “?” represents anarbitrary (or unknown) but finite delay(as “�” in
SCCS [24]) and allows asynchronous behavior across the time intervals. Intuitively,
?P meansP + nextP + next2P + : : :, i.e., an unbounded finite delay ofP .

Thereplicationoperator “!” is a delayed version of that of the�-calculus [25]:!P
meansP k nextP k next2P k : : : k !P , i.e., unboundedly many copies ofP but
one at a time.

A Transition Semantics.

The structural operational semantics (SOS) ofntcc considerstransitionsbetween
process-storeconfigurationsof the formhP; ci with stores represented as constraints
and processes quotiented by� below. Intuitively� describes irrelevant syntactic as-
pects of processes.
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Definition 2 (Structural Congruence).Let� be the smallest congruence satisfying:
(1)P k skip � P , (2)P k Q � Q k P , and (3)P k (Q k R) � (P k Q) k R. Extend
� to configurations by decreeing thathP; ci � hQ; ci iff P � Q.

Following standard lines, we extend the syntax with a constructlocal (x; d) inP , to
represent the evolution of a process of the formlocalx inQ, whered is the local in-
formation (or store) produced during this evolution. Initiallyd is “empty”, so we regard
localx inP aslocal (x; true ) in P .

The transitions of the SOS are given by the relations�! and=) defined in Table 1.
The internal transitionhP; di �! hP 0; d0i should be read as “P with stored reduces, in

one internal step, toP 0 with stored0 ”. The observable transitionP
(c;d)
====) R should

be read as “P on inputc, reduces in onetime unittoR and outputsd”. The observable
transitions are obtained from terminating sequences of internal transitions.

TELL
htell(c); di �! hskip; d ^ ci

SUM
d j= cj j 2 I


P
i2I when ci do Pi; d

�
�! hPj ; di

PAR
hP; ci �!



P 0; d

�

hP k Q; ci �!


P 0

k Q; d
� LOC

hP; c ^ 9xdi �!


P 0; c0

�

h(localx; c)P; di �!


(localx; c0)P 0; d ^ 9xc

0
�

UNL
hunless c nextP; di �! hskip; di

if d j= c

REP
h!P; di �! hP k next !P; di

STAR
h?P; di �! hnext nP; di

if n � 0

STR

1 �! 
2


01 �! 
02

if 
1 � 
01 and
2 � 
02

OBS
hP; ci �!�

hQ; di 6�!

P
(c;d)
====) R

if R � F (Q)

Table1.Rules for internal reduction�! (upper part) and observable reduction=) (lower part).

 6�! in OBS holds iff for no
0; 
 �! 
0.� andF are given in Definitions 2 and 3.

We shall only describe some of the rules of in Table 1 due to space restrictions
(see [28] for further details). As clarified below, the seemingly missing cases for “next”
and “unless” processes are given byOBS. The ruleSTAR specifies an arbitrary delay
of P . REP says that!P creates a copy ofP and then persists in the next time unit.
We shall dwell a little upon the description of RuleLOC as it may seem somewhat
complex. Let us consider the process

Q = (localx; c)P

in RuleLOC. The global store isd and the local store isc. We distinguish between
theexternal(corresponding toQ) and theinternal point of view (corresponding toP ).
From the internal point of view, the information aboutx, possibly appearing in the
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“global” stored, cannot be observed. Thus, before reducingP we should first hide the
information aboutx thatQ may have ind. We can do this by existentially quantifying
x in d. Similarly, from the external point of view, the observable information about
x that the reduction of internal agentP may produce (i.e.,c0) cannot be observed.
Thus we hide it by existentially quantifyingx in c0 before adding it to the global store
corresponding to the evolution ofQ. Additionally, we should makec0 the new private
store of the evolution of the internal process for its future reductions.

RuleOBS says that an observable transition fromP labeled with(c; d) is obtained
from a terminating sequence of internal transitions fromhP; ci to ahQ; di. The process
R to be executed in the next time interval is equivalent toF (Q) (the “future” ofQ).
F (Q) is obtained by removing fromQ summations that did not trigger activity and any
local information which has been stored inQ, and by “unfolding” the sub-terms within
“next” and “unless” expressions.

Definition 3 (Future Function). LetF : Proc * Proc be defined by

F (Q) =

8>><
>>:

skip if Q =
P

i2I when ci do Qi

F (Q1) k F (Q2) if Q = Q1 k Q2

(localx)F (R) if Q = (localx; c)R
R if Q = nextR or Q = unless c nextR

Remark 1.F need no to be total since whenever we need to applyF to aQ (OBS in
Table 1), everytell(c), abort, ?R and!R inQwill occur within a “next” or “unless”
expression.

5.3 Observable Behavior

In this section we recall some notions introduced in [29] of what an observer can see
from a process behavior . We shall refer to such notions asprocess observations. We
assume that what happens within a time unit cannot be directly observed, and thus we
abstract from internal transitions. Thentcc calculus makes it easy to focus on the
observation of input-output events in which a given process engages and the order in
which they occur.

Notation 1 Throughout this paperC! denotes the set of infinite (or!) sequences of
constraints in the underlying set of constraintsC. We use�; �0; : : : to range overC!.

Let� = c1:c2: : : : and�0 = c01:c
0
2: : : :. Suppose thatP exhibits the following infinite

sequence of observable transitions (orrun): P = P1
(c1;c

0
1)

====) P2
(c2;c

0
2)

====) : : : : Given

this run ofP , we shall use the notationP
(�;�0)
====)

!.

IO and Output Behavior.Observe the above run ofP . At the time uniti, the environ-
mentinputsci to Pi which then responds with an outputc0i. As observers, we can see

that on�, P responds with�0. We refer to the set of all(�; �0) such thatP
(�;�0)
====)

!

as theinput-output (io) behaviorof P . Alternatively, if� = true !, we interpret the
run as an interaction among the parallel components inP without the influence of any
(external) environment; as observers what we see is thatP produces� on its own. We

refer to the set of all�0 such thatP
(true ! ;�0)
====)

! as theoutputbehavior ofP .
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Quiescent Sequences and SP.Another observation we can make of a process is its
quiescent input sequences. These are sequences on input of whichP can run without

adding any information; we observe whether� = �0 wheneverP
(�;�0)
====)

!.
In [28] it is shown that the set of quiescent sequences of a givenP can be alter-

natively characterized asthe set of infinite sequences thatP can possibly output under
arbitrary environments; the strongest postcondition (sp) ofP .

The following definition states the various notions of observable behavior men-
tioned above.

Definition 4 (Observable Behavior).The behavioral observations that can be made
of a process are:

1. Theinput-output (or stimulus-response) behaviorofP , written,io(P ), defined as

io(P ) = f(�; �0) j P
(�;�0)
====)!g:

2. The(default) output behaviorofP , writteno(P ), defined as

o(P ) = f�0 j P
(true !;�0)
====) !g:

3. Thestrongest postconditionbehavior ofP , writtensp(P ), defined as

sp(P ) = f� j P
(�0;�)
====)! for some�0g:

The following are the obvious equivalences and congruences induced by our behav-
ioral observations. (Recall the notion of congruence given in Section 2.)

Definition 5 (Behavioral Equivalences).Let l 2 fio; o; spg: DefineP �l Q iff
l(P ) = l(Q): Furthermore, let�l the congruence induced by�l, i.e., P �l Q iff
C[P ] �l C[Q] for every process contextC:

We shall refer to equivalences defined above as observational equivalences as they
identify processes whose internal behavior may differ widely (e.g. in the number of
internal actions). Such an abstraction from internal behavior is essential in the theory of
several process calculi; most notably in weak bisimilarity for CCS [23].

Example 10.Let a; b; c; d ande be mutually exclusive constraints. Consider the proce-
ssesP andQ below:

when a do next

when b do next tell(d)

+

when c do next tell(e)
| {z }

;

when a do nextwhen b do next tell(d)

+

when a do nextwhen c do next tell(e)
| {z }

P Q

The reader may care to verify thatP �o Q sinceo(P ) = o(Q) = ftrue !g:
However,P 6�io Q norP 6�sp Q since if� = a:c: true ! then(�; �) 2 io(Q) and
� 2 sp(Q) but (�; �) 62 io(P ) and� 62 sp(P ): ut
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Congruence and Decidability Issues.Several typical questions about these equiva-
lence may then arise. For example, one may wonder which of them coincides with their
corresponding induced congruences and whether there are interesting relationships be-
tween them.

In [28] it is proven that none of the equivalences is a congruence. However,�sp is
a congruence in a restricted sense; Namely, if we confine our attention to the so-called
locally-independentfragment of the calculus. This fragment only forbids non-unary
summations (and “unless” processes) whose guards depend on local variables.

Definition 6 (Locally-Independent Processes).P is locally-independentiff for every
unless c nextQ and

P
i2I when ci do Qi (jI j � 2) in P , neitherc nor theci’s

contain variables inbv(P ) (i.e., the bound variables ofP ).

The locally-independent fragment is indeed very expressive. Every summation pro-
cess whose guards are either all equivalent or mutually exclusive can be encoded in
this fragment [50]. Moreover, the applicability of this fragment is witnessed by the fact
all the ntcc application the author is aware of [28, 29, 50] can be model as locally-
independent processes. Also, the (parameterless-recursion) tcc model can be expressed
in this fragment as, from the expressiveness point of view, the local operator is re-
dundant in tcc with parameterless-recursion [27]. Furthermore, the fragment allows
us to express infinite-state processes [51](i.e., processes that can evolve into infinitely
many other processes). Hence, it is rather surprising that�sp is decidable for the local-
independent fragment as recently proved in [51].

As for the input-output and output equivalences, in [50] it is shown how to character-
ize their induced congruence in a satisfactory way. Namely,P �o Q iff U(P;Q)[P ] �o

U(P;Q)[Q] whereU(P;Q) is a context which, givenP andQ, can be effectively con-
structed. Also [50] shows that although�io is stronger than�o ; their induced congru-
ences match. Perhaps the most significant theoretical value of these two results is its
computational consequence:Both input-output and output congruence are decidable if
output equivalence is decidable.

In fact, output equivalence is decidable for processes with a restricted form of non-
determinism [29]. Namely,? -free processes in which local operators do not exhibit
nondeterminism. This also represent a significant fragment of the calculus including all
the application examples in [28, 29, 50] and the parameterless-recursion fragment of the
tcc model. It then follows, from the previously mentioned results, that�io and�o are
also decidable if we restrict our attention to these restricted nondeterministic processes.

5.4 Denotational Semantics

In the previous section we introduced the notion of strongest-postcondition ofntcc
processes in operational terms. Let us now show the abstract denotational model of this
notion first presented in [30]. Such a model is of great help when arguing about the
strongest-postcondition ofntcc processes.

The denotational semantics is defined as a function[[�]] which associates to each pro-
cess a set of infinite constraint sequences, namely[[�]] : Proc ! P(C!). The definition
of this function is given in Table 2. Intuitively,[[P ]] is meant to capture the set of all
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DTELL: [[tell(c)]] = fd:� j d j= cg

DSUM: [[
P

i2I
when ci do Pi ]] =

S
i2I

fd:� j d j= ci andd:� 2 [[Pi]]g [
T
i2I

fd:� j d 6j= cig

DPAR: [[P k Q]] = [[P ]]\ [[Q]]

DLOC: [[(localx)P ]] = f� j there exists�0 2 [[P ]] s.t.9x�
0 = 9x�g

DNEXT: [[nextP ]] = fd:� j � 2 [[P ]]g

DUNL: [[unless c nextP ]] = fd:� j d j= cg [ fd:� j d 6j= c and� 2 [[P ]]g

DREP: [[!P ]] = f� j for all �;�0 s.t.� = �:�0; we have�0 2 [[P ]]g

DSTAR: [[?P ]] = f�:� j � 2 [[P ]]g

Table2. Denotational semantics ofntcc . Symbols� and�0 range over the set of infinite se-
quences of constraintsC!; � ranges over the set of finite sequences of constraintsC

�. Notation
9x� denotes the sequence resulting by applying9x to each constraint in�.

sequencesP can possibly output. For instance, the sequences thattell(c) can output
are those whose first element is stronger thanc (see DTELL, Table 2). ProcessnextP
has not influence in the first element of a sequence, thusd:� can be output by it iff� is
can be output byP (see DNEXT, Table 2). A sequence can be output by!P iff every
suffix of it can be output byP (see DREP, Table 2). The other cases can be explained
analogously.

From [7], however, we know that there cannot be af : Proc ! P(C!); composi-
tionally defined, such thatf(P ) = sp(P ) for all P . Nevertheless, as stated in the the-
orem below, Palamidessi et al [30] showed that that sp denotational semantics matches
its operational counter-part for the local independent-fragment, which as argued before
is very expressive.

Theorem 1 (Full Abstraction). For everyntcc processP , sp(P ) � [[P ]] and ifP is
locally-independent then[[P ]] � sp(P ):

The full-abstraction result has an important theoretical value; i.e., for a significant
fragment of the calculus we can abstract away from operational details by working with
[[P ]] rather thansp(P ). In fact, the congruence result for�sp mentioned in the previous
section is a corollary of the above theorem.

5.5 LTL Specification and Verification

Processes inntcc can be used to specify properties of timed systems, e.g., that an ac-
tion must happen within some finite but not fixed amount of time. It is often convenient,
however, to express specifications in another formalism, in particular a logical one. In
this section we present thentcc logic first introduced in [30]. We start by defining a
linear-time temporal logic (LTL) to expresses temporal properties over infinite sequen-
ces of constraints. We then define what it means for a process to satisfy a specification
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given as a formula in this logic. We shall then say thatP satisfies a specificationF iff
every infinite sequenceP can possibly output (on inputs from arbitrary environments)
satisfiesF , i.e., iff the strongest-postcondition ofP impliesF . Finally, we present an
inference system aimed at proving whether a process fulfills a given specification.

A Temporal Logic. Thentcc LTL expresses properties over sequences of constraints
and we shall refer to it asCLTL . We begin by giving the syntax of LTL formulae and
then interpret them with theCLTL semantics.

Definition 7 (LTL Syntax). The formulaeF;G; ::: 2 F are built from constraints
c 2 C and variablesx 2 V in the underlying constraint system by:

F;G; : : : := c j _true j _false j F _̂ G j F __G j _:F j _9x F j ÆF j �F j }F

The constraintc (i.e., a first-order formula in the cs) represents astate formula. The
dotted symbols represent the usual (temporal) boolean and existential operators. As
clarified later, the dotted notation is needed as inCLTL these operators do not always
coincide with those in the cs. The symbolsÆ, �, and} denote the LTL modalities
next, alwaysandeventually. We useF _)G for _:F __G: Below we give the formulae a
CLTL semantics. First, we need some notation and the notion ofx-variant. Intuitively,
d is anx-variant ofc iff they are the same except for the information aboutx.

Notation 2 Given a sequence� = c1:c2: : : :, we use9x� to denote the sequence
9xc19xc2 : : : : We shall use�(i) to denote thei-th element of�.

Definition 8 (x-variant). A constraintd is anx-variantof c iff 9xc = 9xd. Similarly
�0 is anx-variantof� iff 9x� = 9x�

0:

Definition 9 (CLTL Semantics). We say that the infinite sequence� satisfies (or that
it is a model of)F in CLTL , written� j=CLTL F , iff h�; 1i j=CLTL F , where:

h�; ii j=CLTL _true h�; ii 6j=CLTL _false
h�; ii j=CLTL c iff �(i) j= c
h�; ii j=CLTL _:F iff h�; ii 6j=CLTL F
h�; ii j=CLTL F _̂ G iff h�; ii j=CLTL F andh�; ii j=CLTL G
h�; ii j=CLTL F __G iff h�; ii j=CLTL F or h�; ii j=CLTL G
h�; ii j=CLTL ÆF iff h�; i+ 1i j=CLTL F
h�; ii j=CLTL �F iff for all j � i h�; ji j=CLTL F
h�; ii j=CLTL }F iff there is aj � i such thath�; ji j=CLTL F

h�; ii j=CLTL
_9x F iff there is anx-variant�0 of� such thath�0; ii j=CLTL F:

Define[[F ]]=f� j� j=CLTL Fg. F is CLTL valid iff [[F ]] = C!; andCLTL satisfiableiff
[[F ]] 6= ;:

Let us discuss a little about the difference between the boolean operators in the
constraint system and the temporal ones to justify our dotted notation. A state formula
c is satisfied only by thosee:�0 such thate j= c. So, the state formulafalse has at
least one sequence that satisfies it; e.g.false !. On the contrary the temporal formula

_false has no models whatsoever. Similarly,c __ d is satisfied by thosee:�0 such that
eithere j= c or e j= d holds. Thus, in general[[c __ d]] 6= [[c _ d]]: The same holds true
for :c and _: c.
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LTELL: tell(c) ` c LPAR:
P ` F Q ` G

P k Q ` F _̂ G

LSUM:
8i 2 I Pi ` Fi

X

i2I

when ci do Pi `
__

i2I

(ci _̂ Fi) __
_̂

i2I

_: ci

LLOC:
P ` F

(localx)P ` _9x F

LNEXT:
P ` F

nextP ` ÆF

LUNL:
P ` F

unless c nextP ` c __ÆF

LREP:
P ` F

!P ` �F

LSTAR:
P ` F

?P ` }F

LCONS:
P ` F

P ` G

if F _)G

Table3.A proof system for linear-temporal properties ofntcc processes

Example 11.Let e = c _ d with c = (x = 42) andd = (x 6= 42). One can verify that
C! = [[c _ d]] 3 e! =2 [[c __ d]] and also that[[:c]] 3 false ! =2 [[ _: c]]: ut

From the above example, one may be tempted to think ofCLTL as being intuition-
istic. Notice, however, that statements like_:F __F and _: _:F _)F areCLTL valid.

Process Verification.Intuitively, P j=CLTL F iff every sequence thatP can possibly
output, on inputs from arbitrary environments, satisfiesF . In other words if every se-
quence in the strongest-postcondition ofP is a model ofA:.

Definition 10 (Verification). P satisfiesF , writtenP j=CLTL F , iff sp(P ) � [[F ]].

So, for instance,? tell(c) j=CLTL }c as in every sequence output by? tell(c) there
must be ane entailingc. AlsoP = tell(c)+tell(d) j=CLTL c_d andP j=CLTL c __ d as
everye output byP entails eitherc or d. Notice, however, thatQ = tell(c _ d) j=CLTL

c _ d butQ 6j=CLTL (c __ d) in general, sinceQ can output ane which certainly entails
c_ d and still entails neitherc nord - takee; c andd as in Example 11. Therefore,c __ d
distinguishesP fromQ. The reader may now see why we wish to distinguishc __ d from
c _ d.

Proof System for Verification.In order to reason about statements of the formP j=CLTL

F , [30] proposes aproof (or inference) systemfor assertions of the formP ` F . In-
tuitively, we wantP ` F to be the “counterpart” ofP j= F in the inference system,
namelyP ` F should approximateP j=CLTL F as closely as possible (ideally, they
should be equivalent). The system is presented in Table 3.

Definition 11 (P ` F ). We say thatP ` F iff the assertionP ` F has a proof in the
system in Table 3.
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Inference Rules.Let us now describe some of the inference rules of the proof system.
The inference rule for the tell operator is given by

LTELL: tell(c) ` c

Rule LTELL gives a proof saying that every output oftell(c) on inputs of arbitrary
environments should definitely satisfy the atomic propositionc, i.e.,tell(c) j=CLTL c.

Consider now the rule for the choice operator:

LSUM:
8i 2 I Pi ` FiX

i2I

when ci do Pi `
__

i2I

(ci _̂ Fi) __
_̂

i2I

_: ci

Rule LSUM can be explained as follows. Suppose that forP =
P

i2I when ci do Pi
we are given a proof that eachPi satisfiesFi. Then we certainly have a proof saying that
every output ofP on arbitrary inputs should satisfy either: (a) some of the guardsci and
their correspondingFi (i.e., _

W
i2I(ci _̂ Fi)), or (b) none of the guards (i.e.,_

V
i2I _: ci).

The inference rule for parallel composition is defined as

LPAR:
P ` F Q ` G

P k Q ` F _̂ G

The soundness of this rule can be justified as follows. Assume that each output ofP ,
under the influence of arbitrary environments, satisfiesF . Assume the same aboutQ
andG. In P k Q, the processQ can be thought as one of those arbitrary environment
under whichP satisfiesF . ThenP k Q must satisfyF . Similarly, P can be one of
those arbitrary environment under whichQ satisfiesG. Hence,P k Q must satisfyG
as well. We therefore have grounds to conclude thatP k Q satisfiesF _̂ G:

The inference rule for the local operator is

LLOC:
P ` F

(localx)P ` _9x F

The intuition is that since the outputs of(localx)P are outputs ofP with x hidden
then ifP satisfiesF , (localx)P should satisfyF with x hidden, i.e.,_9x F .

The following are the inference rules for the temporalntcc constructs:

LNEXT:
P ` F

nextP ` ÆF

LUNL:
P ` F

unless c nextP ` c __ÆF

LREP:
P ` F

!P ` �F

LSTAR:
P ` F

?P ` }F

Assume thatP satisfiesF . Rule LNEXT says that ifP is executed next, then in the next
time unit it will also satisfyF . Hence,nextP satisfiesÆF . Rule LUNL is similar,
except thatP can also be precluded from execution if some environment providesc.
Thusunless c nextP satisfies eitherc or ÆF . Rule LREP says that ifP is executed
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in each time interval, thenF is always satisfied byP . Therefore,!P satisfies�F . Rule
LSTAR says that ifP is executed in some time interval, then in that time intervalP
satisfiesF . Therefore,?P satisfies}F .

Finally, we have a rule that allows reasoning about temporal formulae to be incor-
porated in proofs about processes satisfying specifications:

LCONS:
P ` F

P ` G
if F _)G

Rule LCONS simply says that ifP satisfies a specificationF then it also satisfies any
weaker specificationG.

Notice that the inference rules reveal a pleasant correspondence betweenntcc op-
erators and the logic operators. For example, parallel composition and locality corre-
sponds to conjunction and existential quantification. The choice operator corresponds
to some special kind of conjunction. The next, replication and star operators correspond
to the next, always, and eventuality temporal operator.

The Proof System at Work.Let us now give a simple example illustrating a proof in
inference system.

Example 12.Recall Example 9. We have a processR which was repeatedly checking
the state ofmotor 1. If a malfunction is reported,R would tell thatmotor 1 must
be turned off. We also have a processS stating that motormotor 1 is doomed to
malfunction. LetR =!when c do tell(e) andS = ? tell(c) with the constraints
c = malfunction (motor 1_status ) ande = (motor 1_speed = 0). We want
to provide a proof of the assertion:R k S ` } e: Intuitively, this means that the par-
allel execution ofR andS satisfies the specification stating thatmotor 1 is eventually
turned off. The following is a derivation of the above assertion.

when c do tell(e) ` (c _̂ e) __ _: c
LSUM

when c do tell(e) ` c _) e
LCONS

R ` � (c _) e)
LREP

tell(c) ` c
LTELL

S ` } c
LSTAR

R k S ` � (c _) e) _̂ }c
LPAR

R k S ` } e
LCONS

More complex examples of the use of the proof system for proving the satisfaction of
processes specification can be found in [28]—in particular for proving properties of
mutable data structures. ut

Let us now state how close the relation` to the verification relationj=CLTL.

Theorem 2 (Relative Completeness).Suppose thatP is a locally-independent pro-
cess. ThenP ` F iff P j=CLTL F:

The reason why the above result is called “relative completeness” is because we
need to determine the validity of the temporal implication in the rule LCONS. This
means that our proof system is complete, if we are equipped with an oracle that is
guaranteed to provide a proof or a confirmation of each valid temporal implication.
Because of the validity issues above mentioned, one may wonder about decidability of
the validity problem for our temporal logic. We look at these issues next.
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Decidability Results.In [51] it is shown that the verification problem (i.e., givenP and
F whetherP j=CLTL F ) is decidable for the locally independent fragment and negation-
free CLTL formulae. A noteworthy aspect of this result is that, as mentioned before,
thentcc fragment above admits infinite-state processes. Another interesting aspect is
thatCLTL is first-order. Most first-order LTL’s in computer science are not recursively
axiomatizable let alone decidable [1].

Furthermore, [51] proves the decidability of the validity problem for implication
of negation-freeCLTL formulae. This is done by appealing to the close connection
betweenntcc processes and LTL formulae to reduce the validity of implication to the
verification problem. More precisely, it is shown that given two negation-free formulae
F andG one can construct a processPF such thatsp(PF ) = [[F ]] and then it follows
thatPF j=CLTL G iff F _)G. As a corollary of this result, we obtain the decidability of
satisfiabilityfor the negation-free first-order fragment ofCLTL —recallG is satisfiable
iff G _) false is not valid.

A theoretical application of the theory ofntcc is presented in [51] by stating a
new positive decidability result for a first-order fragment of Pnueli’s first-orderLTL
[21]. The result is obtained from a reduction toCLTL satisfiability and thus it also
contributes to the understanding of the relationship between (timed) ccp and (temporal)
classic logic.

6 Concluding Remarks and Related Work

There are several developments of timed ccp and, due to space restriction, it would be
difficult to do justice to them all. I shall indicate a few which appear to me to be central.

Related Work. Saraswat el al were the first proposing a denotational semantics and
proof system for timed ccp in the context of tcc [39]. The denotational semantics is
fully abstract and it was later generalized by Palemidessi et al for thentcc case. The
proof system of [39] is based on an intuitionistic logic enriched with a next operator—
the logic for thentcc case is classic. The system is complete for hiding-free and finite
processes.

Gabrielli et al also provided a fully-abstract denotational semantics [5] and proof
system [4] for the tccp model (see Section 4). The underlying second-order linear tem-
poral logic in [4] can be used for describing input-output behavior. In contrast, the
ntcc logic can only be used for the strongest-postcondition, but also it is semantically
simpler and defined as the standard first-order linear-temporal logic of [21].

The decidability results for thentcc equivalences here presented are based on
reductions fromntcc processes into finite-state automata [29, 27, 51]. The work in [42]
also shows how to compile tcc into finite-state machines. Rather than a direct way of
verifying process equivalences, such machines provide an execution model of tcc.

Nielsen et al [27] compared, relatively to the notion of input-output behavior, the
expressive power of various tcc variants differing in their way of expressing infinite be-
havior. It is shown that: (1) recursive procedures with parameters can be encoded into
parameterless recursive procedures with dynamic scoping, and vice-versa. (2) replica-
tion can be encoded into parameterless recursive procedures with static scoping, and
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vice-versa. (3) the languages from (1) are strictly more expressive than the languages
from (2). Furthermore, it is shown that behavioral equivalence is undecidable for the
languages from (1), but decidable for the languages from (2). The undecidability result
holds even if the process variables take values from a fixed finite domain.

Also Tini [48] explores the expressiveness of tcc languages, but focusing on the
capability of tcc to encode synchronous languages. In particular, Tini shows that Argos
[22] and a version of Lustre restricted to finite domains [16] can be encoded in tcc.

In the context of tcc, Tini [49] introduced a notion of bisimilarity, an elemental
process equivalence in concurrency, with a complete and elegant axiomatization for
the hiding-free fragment of tcc. The notion of bisimilarity has also been introduced for
ntcc by the present author in his PhD thesis [50].

On the practical side, Saraswat el al introduced Timed Gentzen [40], a particu-
lar tcc-based programming language for reactive-systems implemented in PROLOG.
More recently, Saraswat el al released jcc [43], an integration of timed (default) ccp
into the popular JAVA programming language. Rueda et al [37] demonstrated that es-
sential ideas of computer generated music composition can be elegantly represented in
ntcc . Hurtado and Muñoz [19] in joint work with Fernández and Quintero [10] gave a
design and efficient implementation of anntcc -based reactive programming language
for LEGO RCX robots [20]—the robotic devices chosen in Section 5.1 as motivating
examples.

Future Work. Timed ccp is still under development and certainly much remain to be
explored. I shall indicate briefly a few research directions that I believe are necessary
for the development of timed ccp as a well-established model of concurrency. Future re-
search in timed ccp should address those issues that are central to other matured models
of concurrency. In particular, the development of solid theories and tools for behavioral
equivalences, which at present time is still very immature. For instance, currently there
are neither axiomatizations nor automatic tools for reasoning about process equivalen-
ces. Furthermore, the decision algorithms for the verification problem, are very costly as
the initial interest in them was purely theoretical. For practical purposes, it is then fun-
damental to conduct studies on the design and implementation of efficient algorithms
for this problem.

Acknowledgments.I am specially grateful to the people with whom I have worked on
temporal ccp with great pleasure: Mogens Nielsen, Catuscia Palamidesi, and Camilo
Rueda.
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