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Abstract. In this note I will review some of the recent results that have
been obtained in the probabilistic approach to the random satisfiability
problem. At the present moment the results are only heuristic. In the
case of the random 3-satisfiability problem a phase transition from the
satisfiable to the unsatisfiable phase is found at α = 4.267. There are
other values of α that separates different regimes and they will be de-
scribed in details. In this context the properties of the survey decimation
algorithm will also be discussed.

1 Introduction

Recently many progresses [1,2] have been done on the analytic and numerical
study of the random K-satisfiability problem [3,4,5,6], using the approach of
survey-propagation that generalizes the more old approach based on the belief-
propagation algorithm 1 [9,7,10,11] . Similar results have also been obtained for
the coloring a of random graph [12].

In the random K-sat problem there are N variables σ(i) that may be true
of false (the index i will sometime called a node). An instance of the problem is
given by a set of M ≡ αN clauses. In this note we will consider only the case
K = 3. In this case each clause c is characterized by set of three nodes (ic1,i

c
2,

ic
3
), that belong to the interval 1−N and by three Boolean variables (bc

1
,bc

2
, bc

3
,

i.e. the signatures in the clause). In the random case the i and b variables are
random with flat probability distribution. Each clause c is true if the expression

Ec ≡ (σ(ic
1
)XORbc

1
) OR (σ(ic

2
)XORbc

2
) OR (σ(ic

3
)XORbc

3
) (1)

is true 2.
1 The belief propagation algorithm (sometimes called “Min-Sum”) is the the zero
temperature limit of the “Sum-Product” algorithm. In the statistical mechanics lan-
guage [7] the belief propagation equations are the extension of the TAP equations
for spin glasses [8,13] and the survey-propagation equations are the TAP equations
generalized to the broken replica case.

2 When all the bc are false Ec = σ(ic1) OR σ(ic2) OR σ(ic3) while when all the bc are
true Ec = σ(ic

1
) OR σ(ic

2
) OR σ(ic

3
).
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The problem is satisfiable iff we can find a set of the variables σ such that
all the clauses are true (i.e. a legal configuration); in other words we must find a
truth value assignment. The entropy [11] of a satisfiable problem is the logarithm
of the number of the different sets of the σ variables that make all the clauses
true, i.e the number of legal configurations.

The goal of the analytic approach consists in finding for given α and for
large values of N the probability that a random problem (i.e. a problem with
random chosen clauses) is satisfiable. The 0 − 1 law [4,6,16] is supposed to be
valid: for α < αc all random systems (with probability one when N goes to
infinity) are satisfiable and their entropy is proportional to N with a constant
of proportionality that does not depend on the problem. On the other hand,
for α > αc no random system (with probability one) is satisfiable. An heuristic
argument[1,2] suggests that αc = α∗ ≈ 4.267 where α∗ can be computed using
the survey-propagation equations defined later. There is already a proof [17] that
the value of α∗ computed with the techniques of survey-propagation is a rigorous
upper bound to αc (the proof has been obtained only for even K, the extension
to odd K is technically difficult).

2 Results

Generally speaking we are interested to know not only the number of legal con-
figurations, but also the properties of the set of all legal configurations. At this
end it is convenient to say that two configurations are adjacent if their Hamming
distance is less than ǫN , where ǫ is a small number.

We can argue that in the limit of large N :

1. In the interval α < αd ≈ 3.86 the set of all legal configurations is connected,
i.e. there is a path of mutually adjacent configurations that joins two con-
figurations of the set. In this region the belief-propagation equations (to be
define later) have an unique solution.

2. In the interval αd < α < αc ≈ 4.267 the set of all the legal configurations
breaks in an large number of different disconnected regions that are called
with many different names in the physical literature [14,15] (states, valleys,
clusters, lumps. . . ). Roughly speaking the set of all the legal configurations
can be naturally decomposed into clusters of proximate configurations, while
configurations belonging to different clusters (or regions) are not close. This
phenomenon is called in spontaneous replica symmetry breaking in the phys-
ical literature. The core of the approach of this note is the analysis of this
phenomenon and of the methods used to tame its consequences 3. The pre-
cise definition of these regions is rather complex [18]; roughly speaking we
could say that two legal configurations belongs to the same region if they are

3 Other models, where this phenomenon is not present, like random bipartite matching
can be analyzed in a much simple way, although 15 years have been needed from the
statements of the main result (i.e. the length of the shortest matching in the infinite
N limit is ζ(2)) to the rigorous proof of this fact.



in some sense adjacent, i.e. they belongs to a different region if their Ham-
ming distance is greater than ǫN . In this way the precise definition of these
regions depends on ǫ, however it can be argued that there is an interval in
ǫ where the definition is non-trivial and is independent from the value of ǫ:
for a rigorous definition of these regions see [20,21,19]. The number of these
regions is given by exp(ΣN(α)), where ΣN(α) is the total complexity; for
large N the total complexity is asymptotically given by ΣN(α) = NΣ(α)
where Σ(α) is the complexity density. In this interval the belief-propagation
equations have many solutions and each of these solution is associated to
a different cluster. The statistical properties of the set of the solutions of
the belief-propagation equations can be studied using the belief-propagation
equations (to be defined later).

3. Only in the interval αb ≈ 3.92 < α < αc there are literals σ that are frozen,
i.e. they take the same value in all the legal configurations of a region 4.
We could say that the frozen variables form the backbone of a region. It is
important to realize that a given clause may simultaneously belong to the
backbone of one region and not belong to the backbone of an other region.

The arguments run as follow. Let us start with a given instance of the prob-
lem. We first write the belief propagation equations. For each clause that contains
the node i (we will use the notation c ∈ i although it may be not the most ap-
propriate) pT (i, c) is defined to be the probability that the variable σ(i) would
be true in absence of the clause c when we average over the set of all the legal
configuration (pF (i, c) = 1 − pT (i, c) is the probability to be false). If the node
ic1 were contained in only one clause, we would have that

pT (i
c
1
) = uT (pT (i

c
2
, c), pT (i

c
3
, c), bc

1
, bc

2
, bc

3
) ≡ uT (i1, c) ,

pF (i
c
1
) = 1− uT (i1, c) , (2)

where uT is an appropriate function that is defined by the previous relation. An
easy computation shows that when all the b are false, the variable σ(ic

1
) must be

true if both variable σ(ic2) and σ(ic3) are false, otherwise it can have any value.
Therefore we have in this case that

uT (i, c) =
1

2− pF (ic2, c)pF (i
c
3
, c)

. (3)

In a similar way, if some of the b variable are true, we should exchange the indices
T and F for the corresponding variables, i.e., if bc

1
is true, then uT (u1) becomes

uF (u1). Finally we have that

pT (i, c) =

∏
d∈i,d 6=c uT (i, d)

Z0(i, c)

4 The distinction between αd [5] a and αb [1] is not usually done in the literature and
sometimes it is wrongly assumed that αb = αd.



pF (i, c) =

∏
d∈i,d 6=c uF (i, d)

Z0(i, c)

Z0(i, c) =
∏

d∈i,d 6=c

uT (i, d) +
∏

d∈i,d 6=c

uF (i, d). (4)

We note the previous formulae can be written in a more compact way if we
introduce a two dimensional vector p, with components pT and pF . We define
the product of these vector

cT = aT bT cF = aF bF , (5)

if c = a · b.
If the norm of a vector is defined by

|a| = aT + aF , (6)

the belief propagation equations are defined to be

p(i, c) =

∏
d∈i,d 6=c u(i, d)

|
∏

d∈i,d 6=c u(i, d)|
. (7)

In total there are 3M variables pT (i, c) and 3M equations. These equations
in the limit of large N should have an unique solution in the interval α < αd

and the solution should give the correct values for the probabilities pT (i, c). In
this interval the entropy (apart corrections that are subleading when N goes to
infinity) is given by

S = −
∑

i=1,N

log(Z1(i)) + 2
∑

c=1,M

log(Z2(c)) . (8)

Here the first sum runs over the nodes and the second one runs over the clauses;
Z2(c) is the probability that the clause c would be satisfied in a system where
the validity of the clause c is not imposed. One finds that in the case where all
the b variables are false

Z2(c) = 1− pF (i
c
1)pF (i

c
2)pF (i

c
2) . (9)

In a similar way Z1(i) is the probability that all we can find a legal configuration
containing the site i starting from a configuration where the site i is not present
and it is given by:

Z1(i) = |
∏

d∈i

u(i, d)| (10)

The belief propagation equations can also be written as :

∂S

∂p(i, c)
= 0 . (11)

The belief-propagation equations can be formally derived by a local analysis by
assuming that, in the set of the legal configurations of the system where all the



clauses c ∈ i are removed, the variables σ(k) that would enter in these clauses
are not correlated. This cannot is not true for finite N , but this statement may
be correct in the limit N → ∞ with the appropriate qualifications.

Generally speaking for a given sample these equations may not have an exact
solution, but they do have quasi-solutions [24] (i.e. approximate solutions, where
the approximation becomes better and better when N goes to infinity 5): these
equations have been derived using a local analysis that is correct only in the
limit N → ∞.

In the interval αd < α < αb the variables pF and pT are different from 0 and
1; however in the region αb < α < αc there solutions (or quasi-solutions) of the
belief equations have a fraction of the variables pF and pT that are equal to 0
or 1.

When the number of solutions of the belief propagation equations is large,
the properties of the sets of solutions of the belief propagation equations can be
obtained by computing the solution of the survey propagation equations defined
as follows. In the general approach in each node we introduce the probability
(Pi,c(p)) to find a solution of the belief-propagation equations with pT (i, c) = p.
With some effort we can write down local equations for this probability. These
are the full survey equations that allow the computation of the total entropy.

This approach is computationally heavy. As far as the computation of the
complexity is concerned, we can use a simpler approach, where we keep only a
small part of the information contained in the function Pi,c(p), i.e. the weight
of the two delta function at p = 0 and p = 1. More precisely we introduce the
quantity sT (i, c) that is defined as the probability of finding pT (i, c) = 1, in the
same way sF (i, c) is the probability of finding pT (i, c) = 0 and sI(i, c) is the
probability of finding 0 < pT (i, c) < 1. It is remarkable that it is possible to
write closed equations also for these probabilities (these equations are usually
called the survey propagation equations [1]).

We can use a more compact notation by introducing a three dimensional
vector s given by

s = {sT , sI , sF } . (12)

Everything works as before with the only difference that we have a three com-
ponent vector instead of a two component vector. Generalizing the previous
arguments one can introduce the quantity u(i, c) that is the value that the sur-
vey at i would take if only the clause c would be present in i (in other words
u(i, c) is the message that arrives to the site i coming from the clause c). In the
case where all the b are false, a simple computation gives

u(i, c) = {sF (i
c
2, c)sF (i

c
3, c), 1− sF (i

c
2, c)sF (i

c
3, c), 0} . (13)

5 More precisely if we have N equations Ei[σ] = 0 for i = 1, N a solution σ of
this system of equation satisfies the condition N1sumi=1,N)(Ei[σ])

2 = 0; a quasi-
solution satisfies the weaker condition N1sumi=1,N)(Ei[σ])

2 < h(N), where h(N)
is a function that goes to zero when N goes to infinity. The definition of a quasi-
solution depends on the properties of the function h(N) and this point must be
further investigated: it may turn out at the end that quasi-solutions are not needed.



The formula can generalized as before 6 to the case of different values of b. One
finally finds the survey propagation equations:

s(i, c) =

∏
d∈i,d 6=cu(i, d)

|
∏

d∈i,d 6=c u(i, d)|
, (14)

where we have defined product in such a way that

ab = {aT bT + aIbT + aT bI , aIbI , aF bF + aI bF + aF bI}. (15)

It is convenient to introduce the reduced complexity (ΣR(α)), that counts
the number of solutions of the belief equations where two different solutions are
considered equals if they coincide in the points where the beliefs are 0 or 1 7.
In other words two solutions of the beliefs equations with an identical backbone
enters only once in the counting that leads to the reduced complexity.

If there is an unique solution to the survey propagation equations, it is pos-
sible to argue that the reduced total complexity should be given by

ΣR = −
∑

i=1,N

ln(Z1(i)) + 2
∑

c=1,M

ln(Z2(c)) (16)

where now the definition of the Z’s is changed and it is done using the surveys,
not the beliefs:

Z1(i) = ln(|
∏

d∈i

u(i, d)|), Z2(c) = ln(|s(i, c)u(i, c)|) (17)

The reduced complexity ΣR(α) it is particularly interesting because it hat been
conjecture that it should vanishes at the critical point αc. This allow the com-
putation of the point αc.

It is interesting that also in this case the survey propagation equations can
be written in a simple form:

∂ΣR

∂s(i, c)
= 0 . (18)

One finally finds that the survey-propagation equations do not have an unique
solution when α > αU ≈ 4.36. The fact is not of direct importance because
αU > αc. Indeed in the region α > αc the complexity is negative so that the there
are no solutions of the belief-propagation equations associated to the solution of
the survey-propagation equation.

It is evident that for α > αc there are no more legal configurations and
ΣR(α) is not well defined. A negative value ΣR(α) can be interpreted by saying

6 It always happens that the vector u has only one zero component (uTuF = 0). This
fact may be used to further simplify the analysis.

7 It is not clear at the present moment if there are different solutions of the belief
equations that coincide in all the points where the probability is 0 or 1: in other
words we would like to know if ΣR(α) = Σ(α), where Σ(α) counts the total number
of solutions of the belief equations.



that the probability of finding a legal configuration goes to zero exponentially
with N . We stress that the entropy density remains finite at αc, the conjecture
that ΣR(α) vanishes at αc implies that the reduced complexity is captures the
number of essentially different regions of legal configuration. A priori a finite
value ΣR(αc) cannot be excluded.

3 Methods

We now show how to obtain the above results on the solutions of the belief
propagation equations (and of the survey propagation equations) for a large
random system in the limit of large N . These equations are interesting especially
in the infinite N limit where the factor graph does not contain short loop. For
finite N in the random case, (or in the infinite N limit for a non-random case)
the belief equations may have solutions, but the properties of these solutions do
not represent exactly the properties of the systems. If the number of short loops
is small, perturbative techniques may be used to compute the corrections to the
belief equations. If short loops are very common (e.g. if the literals are on the
sites of an f.c.c. lattice and the clauses are on faces of the same lattice), it is
rather likely that the beliefs equations are useless and they could only used as
starting point of much more sophisticated approaches.

We attack this problem by studying the solution of the belief propagation
equations (and of the survey propagation equations) on an random infinite tree.
Sometimes the solution is unique, i.e. it does not depends on the boundary con-
ditions at infinity, and sometimes it is not not unique. The statistical properties
of the solution of these equations can be studied with probabilistic method. One
arrives to integral equations that can be solved numerically using the method
of population dynamics [1,2,14,15]. The numerical solutions of these integral
equations can be used to compute αd, αb, αc, and αU .

The generalization of the Aldous construction [22,23] of an infinite rooted tree
associated to a graph can play the role of a bridge between a finite instance of the
problems and the infinite random tree where analytic computations [1,2,14,15]
are done. For example it could be used to prove the existence and the uniqueness
of the beliefs and survey propagation equation in the appropriate intervals.

In this way one can argue that the properties on an infinite random tree are
relevant for the behaviour of a given random system in the limit of large N .

We can check that the results we have obtained in these way for the solution
of the belief and survey propagation equations are correct by computing in an
explicit way the solution (when it is unique) of the equations for a given sample
for large N (e.g N = 104 − 106). For example we may compare the distribution
of the beliefs or of the surveys in a large system with the one obtained by solving
the integral equations for the probabilities: the agreement is usually very good.

In the same spirit the validity of the result for αd may be checked by study-
ing the convergence of the iterative procedure for finding the solution of the
belief-propagation equations on a given large problem One finds that just at αd

the iterative procedure for finding a solution does not converge anymore and



this is likely a sign of the existence of many solutions to the belief-propagation
equations. In a similar way we can check the correctness of αU .

4 Survey decimation algorithm

The survey decimation algorithm has been proposed [1,2,25,26,27] for finding
the solution of the random K-satisfiability problem [4,5,6].

We start by solving the survey propagation equation. If a survey (s(i)) is
very near to (1, 0, 0) (or to (0, 0, 1)) in most of the legal solutions of the beliefs
equations (and consequently in the legal configurations) the corresponding local
variables will be true (or false).

The main step in the decimation procedure consists is starting from a problem
with N variables and to consider a problem with N − 1 variables where s(i) is
fixed to be true (or false). We denote

∆(i) = ΣN −ΣN−1 . (19)

If ∆(i) is small, the second problem it is easier to solve: it has nearly the same
number of solutions of the belief equations and one variable less. (We assume that
the complexity can be computed by solving the survey propagation equations).

The decimation algorithm proceeds as follows. We reduces by one the number
of variables choosing the node i in the appropriate way, e.g. by choosing the node
with minimal ∆(i). We recompute the solutions of the survey equations and we
reduce again the number of variables. At the end of the day two things may
happen:

1. We arrive to a negative complexity (in this case the reduced problem should
have no solutions and we are lost),

2. The denominator in equation (14) becomes zero, signaling the presence of a
contradiction (and also in this case we are lost),

3. The non-trivial solution of the survey equation disappears. If this happens
the reduced problem is now easy to be solved.

The quantity ∆(i) may be estimated analytically so that it is possible to
choose the variable with minimal ∆(i). A careful analysis of the results for large,
but finite N [27] shows that the algorithm works in the limit of infinite N up to
αA ≈ 4.252, that is definite less, but very near to αc.

Unfortunately at the present moment this result for αA can be obtained only
analyzing how the argument works on a finite sample and we are unable to
write down integral equations for the probability distributions of the solution of
the survey propagation equations. This drawback leads to the impossibility of
computing analytically αA: it is a rather difficult task to understand in details
why for αA it so near to αc. It is interesting to note that for α < αA the survey
decimation algorithm takes a time that is polynomial in N and using a smart
implementation the time is nearly linear in N . It is important to stress that
survey algorithm is an incomplete search procedure which may not be able to



find any solution to a satisfiable instance. This actually happens with a non-
negligible probability e.g. for sizes of the order of a few thousands of variables
also when α < αA, however in the limit N → ∞, it should work as soon α < αA.

In the interval αA < α < αc the decimation procedure leads to a regime of
negative complexity so that the algorithm does not work. Unfortunately there
is no analytic computation of αA. It is likely that the fact that αU = 4.36 is not
far from αc is related to the fact the αc − αA iss small.

It would be very interesting to understand better if such a relation is true
and to put in a quantitative form. In this regard it would be be important to
study the K dependence of αc − αA and αU − αc. This analysis may give some
hints why αc − αA is so small in 3-SAT.

5 Conclusions

Similar problems have been studied by physicists in the case of infinite range
spin glasses [7]: here the problem consists in finding the minimum EJ of the
quantity:

HJ [τ ] ≡
∑

i,k=1,N

Ji,kτiτk (20)

where the minimum is done respect to the variables τi = ±1 and the J are
independent Gaussian variables with zero average and variance N−1/2. Physical
intuition tells us that in the limit N goes to infinity the intensive quantity

eJ =
EJ

N
(21)

should be (with probability 1) independent from N and it will be denoted by
e∞. In 1979 it was argued using the so called replica method (that will be
not discussed in this note) that e∞ was equal to the maximum of a certain
functional F [q], where q(x) is a function defined in the interval [0− 1]. Later on,
1985 the same results were rederived using heuristical probabilistic consideration,
similar to those presented here (but much more complex). In this note we have
introduced a hierarchical construction, where three levels (configurations, beliefs,
surveys) are presents: in the case of spin glasses an infinite number of levels
is needed (in the spin glass case the survey equations do not have an unique
solution and we have to consider higher and higher levels of abstraction). Only
very recently Talagrand [28], heavily using Guerra’s ideas and results, was able
to prove that the value for e∞, computed 24 year before, was correct.

The possibility of using these techniques for deriving eventually exact results
on the K-SAT problem is a very recent one: only a few year ago [14,15] the
previous techniques has been extended to more complex spin glass models where
the matrix J is sparse (it has an average number of elements per raw that does
not increase with N).

The field is very young and rigorous proofs of many steps of the construction
(also those that would likely be relatively simple) are lacking. We only know,



as a consequence of general theorems, that this methods give an upper bound
to the value of αc, and this upper bound should be computed by maximizing
an appropriate functional of the probability distribution of the surveys. This
upper bound is rigorous one [17]: it essentially use positivity arguments (the
average of a non-negative function is non-negative) in a very smart way and it
does not depend on the existence or uniqueness of the solutions of the equations
for the probability distribution of the survey. On the contrary the way we have
followed to compute this upper bound (i.e. α∗) require some extra work before
becoming fully rigorous. I stress that this upper bounds and the Talagrand’s
exact result do not need in any way considerations on the solutions of the survey
propagation equations (or of their generalization) on a finite sample. The survey
propagation equations are crucial for giving an intuitive image of the situation
(i.e. at a metaphoric level) and for constructing the survey decimation algorithm.
The heuristic derivation could have been done using the replica method, where
survey propagation equations are never mentioned, but the argument is much
more difficult to follow and to transform in a rigorous one.

The other results come from empirical (sometimes very strong) numerical
evidence and from heuristic arguments. For example at my knowledge there
is no proof that the integral equations for the probability of the surveys (or of
the beliefs) have an unique solution and that the population dynamics algorithm
converges (to that unique solution). Proofs in this direction would be very useful
and are a necessary step to arrive to a rigorous quantitative upper bounds and
eventually exact results. On the other hand the proof of existence of an unique
solutions (or quasi-solutions) of the surveys (or beliefs) propagation equations
in the large N limit is lacking for any value of α, although the analysis with
the population dynamics (whose precise mathematical properties have to be
clarified) tell us which should the maximum values (αU and αb respectively,
below which these uniqueness properties hold. Many steps have to be done, but
a rigorous determination of αc seems to be a feasible task in a not too far future.
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