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Vorwort

Das Erfüllbarkeitsproblem der Aussagenlogik wird gerne als Prototyp eines NP-
vollständigen Problems herangezogen. In Bezug auf die Klasse der PSPACE-
vollständigen Probleme findet indes das Erfüllbarkeitsproblem der Quantifizier-
ten Aussagenlogik, welches unter dem Namen QSAT bekannt ist, als Standard-
problem Verwendung. QSAT, welches eine Verallgemeinerung des Erfüllbarkeits-
problems der Aussagenlogik darstellt, ist jedoch nicht nur zur Charakterisie-
rung der Klasse PSPACE geeignet. Vielmehr ermöglichen einfache syntaktische
Einschränkungen des Problems die Beschreibung einer ganzen Hierarchie von
Komplexitätsklassen, welche sich von P bis PSPACE erstreckt. Diese Hierarchie,
welche in [38] eingeführt wird, ist als Polynomielle Hierarchie bekannt.

Neben den offensichtlichen Vorteilen eines kanonischen Standardproblems für
Betrachtungen theoretischer Natur wird die Sprache der quantifizierten boole-
schen Formeln seit einiger Zeit als Zielsprache für die Übersetzung unterschied-
lichster Probleme aus dem Bereichen der Artificial Intelligence und des Auto-
matischen Beweisens herangezogen [6, 18, 20, 41].

Es kann gezeigt werden, dass das allgemeine QSAT Problem ohne Beschränkung
der Allgemeinheit auf eine syntaktische Teilmenge von Formeln eingeschränkt
werden kann, nämlich auf die Menge der Formeln in konjunktiver Pränex-Nor-
malform. Es läßt sich auch zeigen, dass eine entsprechende Normalformtransfor-
mation in polynomieller Zeit durchgeführt werden kann.

Die Anwendung dieses Resultats hatte zur Folge, dass heute eine Vielzahl moder-
ner Entscheidungsprozeduren für QSAT nur Formeln in konjunktiver Prenex-
Normalform verarbeiten können. Während gegenwärtig viel Aufwand für die
Optimierung aktueller Entscheidungsprozeduren betrieben wird, halten sich die
Investitionen in das Verständnis von Normalformtransformationen in Grenzen.
Das Wissen über das Verhalten solcher Transformationen in praktischen Anwen-
dungen kann sicherlich als unzureichend bezeichnet werden. Insbesondere sind
die Auswirkungen der Transformationen auf die praktische Durchführbarkeit
von Erfüllbarkeitstests mittels konkreter Entscheidungsprozeduren unklar, was
nicht zuletzt auf die hohe Komplexität solcher Prozeduren zurückzuführen ist.

In [20] wurden bereits erste Forschungsergebnisse präsentiert, die einen deut-
lichen Zusammenhang zwischen der Anwendung unterschiedlicher Strategien
während der Normalformtransformation und der Laufzeit aktueller Entschei-
dungsprozeduren erkennen lassen. Bei den dort verwendeten Formeln handelte
es sich um Übersetzungen von Nested Counterfactuals [21].

In der vorliegenden Arbeit versuchen wir, die Resultate aus [20] durch eine ge-
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nauere Analyse des Zusammenspiels zwischen unterschiedlichen Strategien zur
Normalformtransformation und einer Auswahl moderner Entscheidungsproze-
duren [23, 31, 32, 33, 37, 43] zu untermauern.



Preface

Whereas the satisfiability problem of propositional logic is widely recognized
as the prototypical problem for the class of NP-complete problems, a gener-
alization of that problem has gained similar significance as a representative of
the class of PSPACE-complete problems: The satisfiability problem of quantified
propositional logic, QSAT. Even more importantly, simple syntactic restrictions
of QSAT lead to a class of decision problems that are prototypical of an entire
hierarchy of complexity classes spanning from P to PSPACE, which is commonly
known as the polynomial hierarchy [38].

Apart from this value as a canonical problem for theoretical works, efforts have
recently been made to harness the language of quantified boolean formulas as
target language for the compilation of various problems from the fields of arti-
ficial intelligence and automated reasoning [6, 16, 18, 19, 20, 22, 26, 27, 41, 48].

It can be shown that the general QSAT problem for arbitrary formulas can, with-
out loss of generality, be restricted to a certain syntactic subset of formulas—
namely those in prenex conjunctive normal form—and that a corresponding
translation can be performed in polynomial time.

It is for this reason that many contemporary decision procedures for QSAT
assume their input to be in prenex conjunctive normal form. However, less
effort than into optimizing state of the art decision procedures has been put
into the apprehension of normal form transformations. The practical behavior
of these translations is little understood, and even less are the effects they have
on the tractability of the problems with respect to existing decision procedures.
However, the latter aspect is not very surprising, considering the high complexity
of modern QSAT decision procedures.

We have presented some preliminary experimental results in [20], which show
that the utilization of different strategies during normal form transformation
has a considerable impact on the running time of contemporary decision pro-
cedures w.r.t. a particular class of formulas that represent encodings of nested
counterfactuals [21, 29].

In the present work we confirm the results from [20] by performing a broad anal-
ysis of the interaction between various normal form transformation strategies
on a number of contemporary decision procedures [23, 31, 32, 33, 37, 43].
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Chapter 1

Basics of Quantified

Propositional Logic

In this chapter, we formally introduce quantified propositional logic. We define
the set of quantified boolean formulas, defining the syntax and the semantics of
these objects in Sections 1.1 and 1.2, respectively. In Section 1.3, we consider
the basic reasoning tasks associated with quantified propositional logic. Next,
in Section 1.4, we introduce the concept of a normal form, along with the
most common normal forms for quantified boolean formulas, most importantly
prenex conjunctive normal form. The section concludes with a presentation of
some simple normal form transformations.

1.1 The Syntax of QBFs

The principal object of interest in quantified propositional logic is the set of
quantified boolean formulas (QBFs). We introduce this set and present many
useful notions and notations that capture syntactic properties of such formulas.

1.1.1 Formulas and their Components

Definition 1.1.1 (Quantified Boolean Formulas)
1. Quantified boolean formulas are words over the following alphabet:

(a) v0, v1, . . . (propositional variables or atoms);

(b) >,⊥ (propositional constants);

(c) ¬ (unary connective);

(d) ∧,∨ (binary connectives);

(e) ∃ (existential quantifier symbol);

(f) ∀ (universal quantifier symbol);

(g) (, ) (parentheses).

2. The set of propositional variables is written as V .

1



2 CHAPTER 1. BASICS OF QUANTIFIED PROPOSITIONAL LOGIC

3. The set Q of quantifiers is defined by Q = {(∃q), (∀q) | q ∈ V}.

4. The set F of quantified boolean formulas is inductively defined by

(a) >,⊥ ∈ F ;

(b) q ∈ F , if q ∈ V ;

(c) ¬A ∈ F , if A ∈ F ;

(d) (Qq)A ∈ F , if (Qq) ∈ Q and A ∈ F ;

(e) (A1 ∧ A2) ∈ F , if A1 ∈ F and A2 ∈ F ;

(f) (A1 ∨ A2) ∈ F , if A1 ∈ F and A2 ∈ F .

The readings of the symbols >,⊥,¬,∧,∨, ∃, and ∀, introduced above, are (in
order): verum, falsum, not, and, or, exists, and for all. Formulas of the form
A ∧ B (resp. A ∨ B) are called conjunctions (resp. disjunctions). A formula of
the form (Qq)A is called a quantifier application of (Qq) on A.

Many authors introduce additional connectives implies and equivalent (which
are usually written as → and ↔, respectively). Semantically, these connectives
can be explained in terms of not, or, and and. We prefer to view them as mere
shorthand notation.

Notation 1.1.1 (Shorthands)
We introduce the following shorthands:

1. The notation A→ B as a shorthand for the formula ¬A ∨B;

2. The notation A↔ B as a shorthand for the formula (A → B)∧ (B → A);

3. The notation
∧n

i=k Ai as a shorthand for the formula >, if k > n, or

Ak ∧ (Ak+1 ∧ (. . . ∧ (An−1 ∧An))),

if k ≤ n;

4. The notation
∨n

i=k Ai as a shorthand for the formula ⊥, if k > n, or

Ak ∨ (Ak+1 ∨ (. . . ∨ (An−1 ∨An))),

if k ≤ n.

As a notational convention, we establish that parentheses may be omitted from
a formula, if the syntactic structure arising from Definition 1.1.1 remains clear.
In particular, this means that we may always omit the outermost parentheses
of a formula. To further simplify the handling of largish formulas, we introduce
the following precedence rules.

Convention 1.1.1 (Precedence Rules for Formulas)
1. Shorthands have a higher priority than all genuine operators, except for

the not operator and quantifier application;

2. The not operator and quantifier application have a higher priority than
shorthands.
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∀v0

∃v4

∧

v0 ¬

∨

v1 v2

Figure 1.1: The structure of Formula (3) from Example 1.1.1.

Example 1.1.1 (Formulas)
The following strings are examples of formulas:

1. v7;

2. v0 → (v1 ↔ v2);

3. (∀v0)(∃v4)(v0 ∧ ¬(v1 ∨ v2)).

Formula (1) is simply a variable and thus is one of the smallest possible formu-
las. Formula (2) contains shorthands from Notation 1.1.1. If we expand these
shorthands, we obtain

(¬v0 ∨ ((¬v1 ∨ v2) ∧ (v1 ∨ ¬v2))).

The structure of Formula (3) is visualized in Figure 1.1.

Convention 1.1.2 (Variable Naming)
1. Variable symbols A, . . . , P are used to denote arbitrary formulas.1

2. Variable symbols Q, . . . , U are used to denote arbitrary quantifier symbols.

3. Variable symbols q, . . . , u are used to denote arbitrary propositional vari-
ables.

4. The symbol ◦ is used to denote an arbitrary binary connective.

The symbols q, . . . , u are propositional metavariables. It is very easy to confuse
these with the concrete propositional variables v0, v1, . . .. Propositional vari-
ables are part of the language of QBFs, whereas propositional metavariables are
introduced because we want to make statements about QBFs that are indepen-
dent of their concrete propositional variables. Following this line of reasoning,
propositional metavariables are to be understood as universally quantified inside
such statements. For example, after having introduced the semantics of QBFs
in Section 1.2, we might observe that the (schematic) formula q∨¬r is not valid,
because some concrete formulas, e.g., v5 ∨¬v7, are not valid, even though some
special ones, like v1 ∨ ¬v1, may be.

1Of course, conventions like this one always include derivative symbols, e.g., indexed vari-
ants.
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We sometimes collect several interesting formulas in a set. Such a set is usually
called a theory.

Definition 1.1.2 (Theory)
A theory T is any arbitrary subset of F .

Definition 1.1.3 (Complementary Quantifier Symbol)
The complementary quantifier symbol (notation Q) of a quantifier symbol Q is
defined by

Q =

{

∀ if Q = ∃;
∃ if Q = ∀.

Definition 1.1.4 (Root Symbol)
The root symbol root(A) of a formula A is defined by

root(A) =















A if A ∈ {>,⊥}∪ V ;
¬ if A = ¬B;
Qq if A = (Qq)B;
◦ if A = B1 ◦B2.

We often want to speak about sub-formulas, i.e., those parts of a formula that
are formulas in turn. To be able to precisely point at sub-formulas, we need a
notion of position in a formula.

Positions are words over the alphabet {1, 2}, with ε denoting the empty word.
We associate positions with their corresponding sub-formulas.

Definition 1.1.5 (Positions in a Formula)
1. The set pos(A) of positions in a formula A is recursively defined by:

pos(A) =







{ε} if A ∈ {>,⊥} ∪ V;
{ε, 1π | π ∈ pos(B)} if A = ¬B or A = (Qq)B;
{ε, iπi | πi ∈ pos(Bi), i ∈ {1, 2}} if A = B1 ◦B2.

2. The position ε is called root position, or simply root.

Convention 1.1.3 (Position Naming)
The variables π and % are used to denote arbitrary positions.

It can easily be shown that the set of all positions is closed under the usual string
concatenation operation, and that ε is unit w.r.t. that operation. Therefore, we
usually drop the symbol ε when writing down positions, unless, of course, the
position is the root position.

We can even order positions through the usual prefix order on the set {1, 2}? of
words over {1, 2}.

Definition 1.1.6 (Order over Positions, Parallelism of Positions)
1. A position % is said to be below position π (π � %), if there exists a position
π′, such that ππ′ = %.

2. A position % is said to be strictly below position π (π ≺ %), if π � %, but
π 6= %.
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3. Two positions π and % are said to be parallel (π ‖ %), if π � % and % � π.

Definition 1.1.7 (Sub-Formula, Occurrence)
1. Let π be a position in a formula A, i.e., π ∈ pos(A). Then the sub-formula

of A at position π, written as A|π, is recursively defined by

A|π =







A if π = ε;
B|% if π = 1% and either A = ¬B or A = (Qq)B;
Bi|% if π = i% and A = B1 ◦B2.

2. A formula B is said to occur in A at position π, if A|π = B. In that case,
we also speak of the occurrence of B in A at position π.

3. A quantifier Qq is said to occur in A at position π, if A|π = (Qq)B. In
that case, we also speak of the quantifier occurrence of Qq in A at position
π.

4. A formula B is called a sub-formula of A if A|π = B, for some position π.
We then write A � B.

5. A formula B is called a proper sub-formula of A if A|π = B, for some
position π 6= ε. We then write A ≺ B.

6. A formula B is called an immediate sub-formula of A if A|π = B, for some
position π ∈ {1, 2}.

7. If A � B, and B is a special kind of formula (e.g., a variable, a disjunction,
etc.), we say that B is, respectively, a variable, a disjunction, etc. in A.

Example 1.1.2 (Positions)
Consider the formula

A = (∀q)(∃r)(q ↔ r),

which, by Notation 1.1.1, is a shorthand for the actual formula

(∀q)(∃r)((¬q ∨ r) ∧ (¬r ∨ q)).

Then the set of positions of A is

pos(A) = {ε, 1, 11, 111, 1111, 11111, 1112, 112, 1121, 11211, 1122}.

The positions 111 and 1121 are parallel, and 112 is strictly below 1. The sub-
formula at position 112 is A|112 = ¬r ∨ q. It is a proper, but not an immediate
sub-formula, of A.

We sometimes want to introduce new variables that are independent of some
previously mentioned formulas.

Definition 1.1.8 (Fresh Variable)
When a variable q is introduced in a context (a definition, an algorithm, etc.)
where some formulas A0, . . . , An occur, then q is called a fresh variable under
the premise that it does not occur in any of these formulas, i.e., none of of the
conditions A0 � q, . . . , An � q is satisfied.
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Example 1.1.3 (Fresh Variable)
Consider the formulas

A = v0 ∨ (∀v1)(v2 ∨ v1) and B = (v3 ∨ ¬v0) ∧ (v4).

In this context, v5 is a fresh variable. The variables v0 through v4 are not fresh,
as they already occur in at least one of the formulas A and B.

For complexity discussions, we need a measure for the size of a formula. De-
pending on what we regard a formula as (a string, a tree, a DAG2, etc.), different
measures suggest themselves, and their choice has indeed an influence on the
complexity analysis of algorithms or problems.

However, for “natural” measures, this impact is small and typically manifests
itself as a polynomial factor in complexity terms (see, e.g., Section 2.2. of [39]).
Note, however, that DAGs are an exception here, in the sense that they can
efficiently encode trees, i.e., for certain trees the corresponding DAG is expo-
nentially smaller.

We choose a measure that is based on the tree notion of formulas that is sug-
gested by the inductive definition of formulas. Our measure simply counts the
number of nodes in such a representation, following the intuition that each node
can be represented by a memory segment of a fixed size k, containing a rep-
resentation of the node name and a maximum of two pointers to its successor
nodes. More precisely, we define the following standard machine representation
of formulas.

Definition 1.1.9 (Standard Machine Representation)
By the standard representation of a formula A, we mean a machine representa-
tion of A that consists of |pos(A)| + 1 memory segments of some fixed size k,
which we sometimes call nodes. For each position π ∈ A, there is exactly one
segment that encodes the value of root(A|π). Furthermore, each segment con-
tains a maximum of two pointers to the segments that represent the immediate
sub-formulas of A|π. Lastly, there is one special, marked segment, called root
segment (or root node), which merely holds an initial pointer to the segment
corresponding to position ε.

One might object that the assumption of memory segments of fixed size disre-
gards the fact that there is an infinite number of propositional variables. How-
ever, since

1. any real machine is constrained by a limited amount of memory, and

2. binary numbers can efficiently encode a huge range of variables,

we can neglect this aspect for all cases with practical relevance.

Definition 1.1.10 (Cardinality of Formulas)
The cardinality |A| of a formula A is defined by |A| = |pos(A)|.

2DAG: directed acyclical graph.
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Example 1.1.4 (Cardinality of Formulas)
Consider the formula

A = (∀q)(∃r)((¬q ∨ r) ∧ (q ∨ r)).

Then the set of positions in A is

pos(A) = {ε, 1, 11, 111, 1111, 11111, 1112, 112, 1121, 1122},

so the cardinality of A is 10.

We now turn towards certain classes of formulas that are so interesting that they
have been given special names in literature. In particular, we consider literals,
simple formulas, short definitions, clauses, and c-conjunctions3.

Definition 1.1.11 (Literal)
A formula L is called a literal, if it is either a propositional variable q (called a
positive literal) or its negation ¬q (called a negative literal).

Definition 1.1.12 (Relative Literal Variable Position)
Let L be a literal. Then the relative literal variable position lvp(L) of L is
defined by

lvp(L) =

{

ε if L = q;
1 if L = ¬q.

Definition 1.1.13 (Literal Variable)
Let L be a literal. Then the literal variable bLc of L is defined by

bLc = L|lvp(L).

For any given set A of literals, we define

bAc = {bLc | L ∈ A}.

Definition 1.1.14 (Complementary Literal)
The complementary literal L of a literal L is defined by

L =

{

¬q if L = q;
q if L = ¬q.

Definition 1.1.15 (Simple Formula)
A formula is called simple, if each of its proper sub-formulas is either a literal
or a constant.

Definition 1.1.16 (Partial Short Definition)
A formula is called a (partial) short definition, if it has one of the forms q → A
or A → q, where A is a simple formula.

Definition 1.1.17 (Clause)
A formula is called a clause, if it is of the form

∨n
i=1 Li where L1, . . . , Ln are

literals. The clause
∨0

i=1 Li = ⊥ is called the empty clause.

3Our non-standard name for conjunctions of clauses.
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Definition 1.1.18 (C-Conjunction)
A formula is said to be a c-conjunction, if it is of the form

∧n
i=1 Ci, where

C1, . . . , Cn are clauses. The c-conjunction
∧0

i=1 Ci = > is called the empty
c-conjunction.

Definition 1.1.19 (Counts for C-Conjunctions)
Let

A =

m
∧

i=1

ki
∨

j=1

Li,j

be a c-conjunction. Then

1. the clause count ccnt(A) of A is defined by

ccnt(A) = m;

2. the literal count lcnt(A,L, n) of a literal L in clauses of A with a length
of exactly n is defined by

lcnt(A,L, n) =
∑

1≤i≤m
ki=n

∑

1≤j≤ki

Li,j=L

1;

3. the maximal clause length mcl(A) in A is defined by

mcl(A) = max
1≤i≤m

(ki).

Example 1.1.5 (Counts for C-Conjunctions)
Consider the formula

A = (q ∨ r ∨ ¬s) ∧ (q ∨ ¬r ∨ ¬s) ∧ (q ∨ r) ∧ (¬q ∨ s).

Then ccnt(A) = 4, lcnt(A, r, 3) = 1, lcnt(A,¬s, 3) = 2, and mcl(A) = 3.

Convention 1.1.4 (Special Formula Naming)
1. The variable C denotes an arbitrary clause.

2. The variable D denotes a short definition.

3. The variable L denotes an arbitrary literal.4

Example 1.1.6 (Special Formulas)
Consider the following formulas:

1. ⊥;

2. ¬r;

3. ¬q ∧ ¬r;

4Many authors like to use lower case letters for literals, because they generalize the concept
of variables. However, we find upper case letters more appropriate, since literals actually are

formulas.
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4. ¬q ∨ (s ∨ ¬r);

5. (q ∨ ¬r) ∧ (r ∨ s).

Of these, only formula (2) is a literal. Formulas (1), (2) and (4) are clauses,
whereas (3) and (5) are not. Just formula (3) is a simple formula. Only formula
(4) is a short definition, and all six formulas are c-conjunctions.

Polarity is an important syntactic property that tells us something about the se-
mantic qualities of sub-formulas. In particular, it characterizes the semantically
interesting case of pure literals, which is given below.

Definition 1.1.20 (Polarity)
1. Let π be a position in A. Then the polarity pol(A, π) of the sub-formula

of A at position π is recursively defined by

pol(A, π) =







+1 if π = ε;
(−1) · pol(A, %)
(+1) · pol(A, %)

if A|% = ¬B
otherwise

}

if π = %i, i ∈ {1, 2}.

2. Let A be a formula with A|π = B. If pol(A, π) = +1, we say that B occurs
positively at position π of A. Otherwise, B is said to occur negatively at
position π of A.

Definition 1.1.21 (Pure Literal)
Let L be a literal that occurs at position π of some formula A. If

|{pol(A, %) | A|% = bLc, % ∈ pos(A)}| = 1,

i.e., bLc occurs either only positively or only negatively in A, then we say that
L is pure in A with polarity x = pol(A, π).

Example 1.1.7 (Polarity and Pure Literal)
Consider the formula A = (q ∨ r) ∧ ¬(¬q ∨ r). Then

1. The formula q ∨ r occurs positively at position 1;

2. The formula q occurs positively at positions 11 and 2111;

3. The formula ¬q occurs negatively at position 211;

4. The formula r occurs positively at position 12, but negatively at position
212;

5. The literals q and ¬q are pure in A, whereas r is not.

1.1.2 Variable Binding

For literals, we distinguish between free and bound occurrences.

Definition 1.1.22 (Bound and Free Occurrence)
Let L be a literal that occurs at some position π of a formula A.
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1. If there exist positions π1, π2 such that π = π1π2 and root(A|π1
) = QbLc,

we say that L occurs bound at position π of A. Otherwise, we say that L
occurs free at position π of A.

2. If L has only bound (resp. only free) occurrences in A, we say that L is
bound (resp. is free) in A.

3. We denote the set of all literals that have free occurrences in A by free(A).
Likewise, bound(A) denotes the set of all literals that have bound occur-
rences in A. A formula A with free(A) = ∅ is called closed. Otherwise, it
is called open. For sets A of formulas, we define

free(A) =
⋃

A∈A

free(A)

and
bound(A) =

⋃

A∈A

bound(A).

From a semantic point of view (c.f. Section 1.2), a literal L that occurs bound
at a position π of a formula is associated with exactly one quantifier occurrence.
That quantifier occurrence is the one which is nearest to L, i.e., the one for which
π2 from Definition 1.1.22 is minimal w.r.t. �. This leads us to the definition
of the associated quantifier position and the associated quantifier of a bound
literal.

Definition 1.1.23 (Associated Quantifier)
Let L be a literal that occurs bound at position π of a formula A.

1. By Definition 1.1.22, there exist positions π1, π2 such that π = π1π2 and
root(A|π1

) = QbLc. Choose the minimal π2 (w.r.t. �) that satisfies the
above condition. We then call the position π1 the associated quantifier
position of the literal occurrence at position π of the formula A, and
designate this position by qpos(A, π).

2. The associated quantifier quant(A, π) of a literal that occurs bound at
position π of a formula A is defined by

quant(A, π) = QbLc, where QbLc = root(A|qpos(A,π)).

Definition 1.1.24 (Existential and Universal Binding)
1. Let L be a literal that occurs bound at position π of a formula A and

let % = qpos(A, π). We say that L occurs existentially bound at position
π, if either root(A|%) = ∃bLc and pol(A, %) = +1, or root(A|%) = ∀bLc
and pol(A, %) = −1. Otherwise, we say that L occurs universally bound
at position π. If L has only existentially bound (resp. universally bound)
occurrences in A, we say that L is existentially bound (resp. is universally
bound) in A.

2. The set of all literals that are existentially bound in A, is written as lit∃(A).

3. The set of all literals that are universally bound in A, is written as lit∀(A).
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Example 1.1.8 (Bound and Free Occurrence)
Consider the formula

A = ¬((∃q)(¬q ∧ r)) ∨ (∃s)(q ∨ s).

The variable q occurs bound at position 11111 and free at position 211. Fur-
thermore, with % = qpos(A, 11111) = 11, it can be seen that root(A|%) = ∃q
and pol(A, %) = −1, and therefore the variable q (and also the literal ¬q) occurs
universally bound at position 11111.

However, it is not true that q is universally bound in A, because there is a
free occurrence of q too. For s, on the other hand, all occurrences are existen-
tially bound, so s is existentially bound in A. Furthermore, A is open, because
free(A) = {q, r}.

Example 1.1.9 (Bound Literals in Formula)
Consider the formula

(∃q)(∀r)(∃t)((¬q ∨ r ∨ ¬s) ∧ (q ∨ ¬r ∨ t) ∧ (q ∨ r ∨ ¬u)).

Then lit∃(A) = {q,¬q, t} and lit∀(A) = {r,¬r}.

The framework presented for dealing with the binding properties of variables so
far is a bit cumbersome to use. Therefore, most literature introduces the notion
of a cleansed formula.

Definition 1.1.25 (Cleansed Formula)
1. A formula A is said to be cleansed, if the following conditions hold:

(a) If (Qq)B and (Rr)C are sub-formula occurrences at different posi-
tions in A, then q 6= r.

(b) If (Qq)B is a sub-formula of A, then q /∈ free(A) and q ∈ free(B).

2. The set of all cleansed formulas is written as Ḟ .

Example 1.1.10 (Cleansed Formula)
Consider the following formulas:

1. q ∨ (∀q)q;

2. (∃r)q ∨ (∀q)q;

3. (∃q)q ∨ (∀q)q;

4. (∃r)r ∨ (∀q)q.

Of these formulas, only the last one is a cleansed formula.

Theorem 1.1.1 (Cleansed Formula)
Let A be a cleansed formula. Then the following propositions hold:

1. If L is a literal in A, then L is either free in A, or bound in A.

2. If L is a literal that occurs bound at position π of A, then there exists
exactly one position π1 with root(A|π1

) = QbLc.
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3. If root(A|π) = Qq for some π, then A contains a bound occurrence of the
variable q.

Proof.

1. Assume that L is a literal in A that is neither free nor bound in A, i.e.,
there is at least one free and at least one bound occurrence of L in A.
Then A certainly contains a sub-formula of the form (QbLc)B. Since A
is cleansed, it follows that bLc /∈ free(A), i.e., there cannot be any free
occurrence of L in A, which contradicts our assumption.

2. Assume that L is a literal that occurs bound at position π of A. The proof
that there is at least one position π1 with root(A|π1

) = QbLc is trivial,
because π1 = quant(A, π) is such a position.

Now assume another position π2 such that root(A|π2
) = QbLc. Because

A is cleansed, we can conclude, by the contraposition of the first part of
the definition of a cleansed formula that π1 = π2, i.e., there is at most
one position π1 with root(A|π1

) = QbLc. Altogether, we have shown that
there is exactly one position π1 with root(A|π1

) = QbLc.

3. Assume that root(A|π1
) = Qq for some π1. Then (Qq)B is a sub-formula of

A, for someB. Since A is cleansed, it follows that q ∈ free(B). Therefore, q
is clearly a literal that occurs at some position π2 in B. The corresponding
position of q in A is then π = π1π2, and, by our assumption, root(A|π1

) =
Qq, i.e., q occurs bound at position π of A.

�

The first part of this theorem tells us that we never need to refer to particular
positions when talking about the binding status of a literal in a cleansed formula.
The second part tells us that, within a cleansed formula, there always exists a
single associated quantifier position for all bound occurrences of the literals L
and L.

Taking both these parts of the theorem together, it follows that we can simply
talk about the associated quantifier position of a given literal that is bound in
a cleansed formula, without referring to a particular occurrence.

As a consequence we may—for cleansed formulas only—overload the definitions
of qpos( ·, · ) and quant( ·, · ), such that they accept literals in their second argu-
ment. This will simplify our handling of cleansed formulas.

Definition 1.1.26 (Associated Quantifier for Cleansed Formulas)
Let L be a literal that occurs bound in a cleansed formula A.

1. The associated quantifier position of the literal L in A is defined by

qpos(A,L) = qpos(A, π),

where π is chosen such that A|π = L.

2. The associated quantifier of the literal L in A is defined by

quant(A,L) = A|qpos(A,L).
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Example 1.1.11 (Associated Quantifier for Cleansed Formulas)
Consider the formula

A = (∃q)(q ∧ ¬q) ∧ (∀r)(r ∧ s).

We can see that qpos(A,¬q) = 1 and quant(A,¬q) = (∃q). The expressions
qpos(A, s) and quant(A, s) are undefined, because s is not bound in A.

The third part of Theorem 1.1.1 tells us that cleansed formulas never contain
superfluous quantifiers that could immediately be removed from a formula with-
out affecting its semantics. If some quantifier occurs in a given formula, we can
assume that formula also contains a bound occurrence of the corresponding vari-
able. In other words, the relation between bound literals and quantifiers is a
surjection, for any fixed cleansed formula.

These properties make cleansed formulas very appealing for day-to-day work.
Later, in Section 1.2, we will see that it is, without loss of generality, possible
to restrict oneself to cleansed formulas in discussions of quantified propositional
logic.

1.1.3 Modifying Formulas

Sometimes we want to replace a sub-formula by another (arbitrary) formula.
This can be achieved by substituting in a given position.

Definition 1.1.27 (Substitution at Position)
Let π be a position in A. Then A[B]π denotes the formula obtained from A by
replacing the sub-formula at position π of A by B. Formally:

A[B]π =























B if π = ε;
¬(C[B]%) if π = 1% and A = ¬C ;
(Qq)(C[B]%) if π = 1% and A = (Qq)C ;
(C1[B]%) ◦ C2 if π = 1% and A = C1 ◦ C2;
C1 ◦ (C2[B]%) if π = 2% and A = C1 ◦ C2.

Another useful form of replacement that complements substitution at positions
is substitution of free occurrences of a variable.

Definition 1.1.28 (Substitution of Free Variables)
Let A be a formula and q a propositional variable. A[q/B] denotes the result of
replacing each free occurrence of q in A by B, and is defined as follows:

A[q/B] =































A if A ∈ {>,⊥} ∪ V and A 6= q;
B if A = q;
¬(C[q/B]) if A = ¬C;
(Qq)C if A = (Qq)C;
(Qr)(C[q/B]) if A = (Qr)C and r 6= q;
C1[q/B] ◦ C2[q/B] if A = C1 ◦ C2.

Notation 1.1.2 (Shorthand for Sequences of Substitutions)
As a shorthand for a sequence (. . . ((A[q1/B1])[q2/B2]) . . . [qn/Bn]) of substitu-
tions, we simply write A[q1/B1, q2/B2, . . . , qn/Bn].
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Example 1.1.12 (Substitutions)
Consider the formulas

A = (∃s)((∃r)(q ∧ ((¬q ∨ r) ∧ s)) ∨ (∀q)(¬q)) and B = (∃q)(q ∨ s).

Then the formula obtained from A by replacing the sub-formula at position
1211 by B is

A[B]1211 = (∃s)((∃r)(q ∧ ((¬q ∨ r) ∧ s)) ∨ (∀q)(¬(∃q)(q ∨ s))).

On the other hand, the formula obtained from A by replacing each free occur-
rence of q by B is

A[q/B] = (∃s)((∃r)((∃q)(q ∨ s) ∧ ((¬(∃q)(q ∨ s) ∨ r) ∧ s)) ∨ (∀q)(¬q)).

Obviously, only substituting at a position allows us to replace bound vari-
ables. Note that formulas resulting from either kind of substitution need not
be cleansed, even if both arguments of the substitution are. Also note how s,
which is free in B, becomes bound during substitution. Usually, we want to
avoid such effects by working with fresh variables (c.f. Definition 1.1.8) and by
performing appropriate changes of bound variable (see below).

Definition 1.1.29 (Change of Bound Variables)
We say that a formula A′ is obtained from a formula A by a change of variables
bound at position π into r, if A|π = (Qq)B and A′ = A[(Qr)(B[q/r])]π , where
r /∈ free(B).

Definition 1.1.30 (Elimination of Superfluous Quantifier)
We say that a formula A′ is obtained from a formula A by an elimination of
a superfluous quantifier at position π, if there exists a position π such that
A|π = (Qq)B with q /∈ free(B) and A′ = A[B]π .

Example 1.1.13 (Change of Bound Var., Elim. of Sup. Quantifier)
Consider, once again, the formula

A[B]1211 = (∃s)((∃r)(q ∧ ((¬q ∨ r) ∧ s)) ∨ (∀q)(¬(∃q)(q ∨ s)))

from Example 1.1.12. Then the formula

(∃s)((∃t)(q ∧ ((¬q ∨ t) ∧ s)) ∨ (∀q)(¬(∃q)(q ∨ s)))

is obtained from A[B]1211 by a change of bound variables. Furthermore,

(∃s)((∃r)(q ∧ ((¬q ∨ r) ∧ s)) ∨ (¬(∃q)(q ∨ s)))

is obtained from A[B]1211 by the elimination of a superfluous quantifier. If we
repeatedly apply both operations, we can derive the cleansed formula

(∃s)((∃r)(q ∧ ((¬q ∨ r) ∧ s)) ∨ (¬(∃t)(t ∨ u))).

As we have already mentioned in the above example, changes of bound variables
and elimination of superfluous quantifiers can serve as basic operations in the
conversion of formulas into cleansed form.

In the following section, we will, amongst others, see that both operations pre-
serve the semantics of formulas.
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1.2 The Semantics of QBFs

1.2.1 Basic Semantic Definitions

The semantics of QBFs is defined through the notions of truth, interpretation,
and model. We formally introduce these notions along with the important se-
mantic concepts of tautology, contradiction, logical entailment, and logical equiv-
alence. Then we present some important results concerning the semantic prop-
erties of QBFs.

Definition 1.2.1 (Interpretation, Truth Value)
An interpretation is a function φ : V → {0, 1}, which maps every propositional
variable q ∈ V to a truth value φ(q). We denote the set of all possible interpre-
tations by I.

Definition 1.2.2 (Evaluation Function)
The evaluation function vqbf : F × I → {0, 1} is recursively defined by:

vqbf(A, φ) =















































1 if A = >;
0 if A = ⊥;
φ(A) if A ∈ V ;
1 − vqbf(B, φ) if A = ¬B;
min(vqbf(B, φ), vqbf(C, φ)) if A = B ∧ C;
max(vqbf(B, φ), vqbf(C, φ)) if A = B ∨ C;
vqbf(B[q/>] ∧B[q/⊥], φ) if A = (∀q)B;
vqbf(B[q/>] ∨B[q/⊥], φ) if A = (∃q)B.

Definition 1.2.3 (Satisfiability, Model, Validity)
1. A formula A is satisfied by an interpretation φ, if vqbf(A, φ) = 1. In

that case, we write φ |= A and call φ a model of A. We denote the set
of all models of A by M(A). A formula A with M(A) 6= ∅ is said to
be satisfiable. Otherwise, it is said to be unsatisfiable. An unsatisfiable
formula is also called a contradiction. A formula A, for which M(A) = I,
is said to be valid. Such a formula is also called a tautology.

2. A theory T is satisfied by an interpretation φ (notation φ |= T ), if
vqbf(A, φ) = 1 for every A ∈ T . The definitions of model, satisfiabil-
ity, unsatisfiability, validity and M for theories are then analogous to the
corresponding definitions for formulas. Satisfiable theories are also called
consistent, unsatisfiable ones are called inconsistent.

3. The denotation of a formula is the set of its models.

Example 1.2.1 (Satisfiability, Model, Validity)
Consider the formulas

A = (∀q)(∃r)((¬q ∨ r) ∧ (q ∨ ¬r)) and B = s ∨ (t ∧ ¬t).

Then vqbf(A, φ) = 1 for every interpretation φ ∈ I, i.e., M(A) = I, and there-
fore A is a valid formula. It is easy to see that every valid formula is also a satis-
fiable formula, so A is also a satisfiable formula. On the other hand, vqbf(B, φ)
evaluates to 1 for every φ with φ(s) = 1, but to 0, otherwise. Therefore, B is
satisfiable, but not valid. The theory T = {A,B} is consistent.
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Definition 1.2.4 (Maximal Consistent Subtheories)
Let T be a theory. Then the set of maximal A-consistent subtheories of T ,
mct(A, T ), is defined by

mct(A, T ) = {A | A ⊆ T ,A 0 ¬A,A ⊂ A′ ⊆ T ⇒ A′ ` ¬A}.5

By the given semantics, it is clear that ordinary propositional logic can be viewed
as a fragment of quantified propositional logic, so that we can define the set of
boolean formulas as a subset of F :

Definition 1.2.5 (Boolean Formulas)
The set B of boolean formulas is the set of all quantified boolean formulas that
do not contain any quantifier symbol.

1.2.2 Entailment and Equivalence

Definition 1.2.6 (Entailment and Equivalence)
1. A formula A logically entails a formula B, if M(A) ⊆ M(B). We then

write A ` B.

2. A theory T logically entails a formula B, if M(T ) ⊆ M(B). We then
write T ` B.

3. Two formulas A and B are logically equivalent, if M(A) = M(B). We
then write A ≡ B.

4. Two formulas A and B are satisfiability equivalent, if either both, M(A) =
∅ and M(B) = ∅, or both, M(A) 6= ∅ and M(B) 6= ∅. We then write

A ≡
sat

B.

Example 1.2.2 (Entailment, Equivalence)
Consider the formulas

A = (∀r)(s ∧ (q ∨ r)), B = (∀r)(s ∧ (¬q ∨ r)) and C = s ∧ ¬q.

We can see that φ |= A, for every φ with φ(s) = 1 and φ(q) = 1, but not for
any other φ. Moreover, φ |= B for every φ with φ(s) = 1 and φ(q) = 0, but not
for any other φ. Finally, only interpretations φ with φ(s) = 1 and φ(q) = 0 are
models of C. Therefore, by comparing the models of B and C, we can see that
these two formulas are logically equivalent.

On the other hand, we can see that A and B are not logically equivalent. We
can perform the same test once more to conclude that A and C are not logically
equivalent, but this follows more easily from the fact that the relation ≡ is
reflexive.

Reflexivity and the rest of the equivalence properties are stated in the below.
Next, we can see that all three formulas are pairwise satisfiability equivalent,
since each of them has at least one model. Concerning entailment, we see that B
entails C and vice versa. This is generally true for logically equivalent formulas.

5Please note the (typographically subtle) difference between A and A.
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It is easy to see that ≡ and ≡
sat

inherit the three defining properties of an equiva-
lence relation—reflexivity, symmetry, and transitivity—from the corresponding
properties of the set equivalence relation, on which the definition of either rela-
tion is based.

Theorem 1.2.1 (Equivalence Properties)
The relations ≡ and ≡

sat

are reflexive, symmetric and transitive.

The following theorem allows us to replace equals by equals, even within a for-
mula. This enables the kind of reasoning known as “reasoning by substitution”.

Theorem 1.2.2 (Equivalent Replacement)
Let A be a formula such that A|π = B and B ≡ B′. Then A[B′]π ≡ A.

Proof. We only give a sketch of a complete proof. Assume that B and B ′ are
logically equivalent, i.e., for every φ, it holds that vqbf(B, φ) = vqbf(B

′, φ).

For π = ε, the proof follows directly from the symmetry property of the relation
≡, considering that A|ε = A and A[B′]ε = B′.

Next, by using Definition 1.2.2, it is then easy to show, via a simple case dis-
tinction, that vqbf(A[B]i, φ) = vqbf(A[B′]i, φ), i.e., that A[B]i ≡ A[B′]i, for
i ∈ {1, 2}.

For formulas A with A|i = B, it is clear that A = A[B]i, so we have shown the
theorem for the case where π ∈ {1, 2}. The general case can now be shown by
a simple inductive argument. �

There is another important replacement theorem, which allows replacement be-
tween formulas B and B′ where B ` B′, under an additional premise concerning
polarities. The resulting formula is not necessarily logically equivalent to the
original one, but when we are concerned with satisfiability, the theorem can
serve as a sufficient (un)satisfiability criterion.

Theorem 1.2.3 (Monotonic Replacement)
Let A,B, and B′ be formulas such that A|π = B and M(B) ⊆ M(B′) (i.e.,
B ` B′). Then it holds that

1. A entails A[B′]π, provided that pol(A, π) = +1;

2. A[B′]π entails A, provided that pol(A, π) = −1.

There are many useful equivalences, which we might use for reasoning by sub-
stitution. We get even more comfort, if we use them as left-to-right oriented
replacement rules that perform formula rewriting in just the same way that
term rewrite rules perform term rewriting.6 Note however, that we won’t usu-
ally use commutativity as a rewrite rule, because it could lead to looping when
applied unrestrictedly.

6The major difference is that we cannot easily interpret QBFs as terms over a finite signa-
ture. We would either have to introduce an infinite number of function symbols (one for each
quantifier) or resort to more intricate vehicles, like higher order terms.
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Theorem 1.2.4 (Useful Equivalences)
The following equivalences hold:

1.
A ∧ B ≡ B ∧ A
A ∨ B ≡ B ∨ A

}

(commutativity);

2.
(A ∧ B) ∧ C ≡ A ∧ (B ∧ C)
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C)

}

(associativity);

3.
A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)
(A ∨ B) ∧ C ≡ (A ∧ C) ∨ (B ∧ C)

}

(distributivity of ∧);

4.
A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)
(A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)

}

(distributivity of ∨);

5.
A ∧ A ≡ A
A ∨ A ≡ A

}

(idempotency);

6.

A ∧ (A ∨B) ≡ A
(A ∨ B) ∧ A ≡ A
A ∨ (A ∧B) ≡ A
(A ∧ B) ∨ A ≡ A















(adjunctivity);

7.
¬(A ∧ B) ≡ (¬A) ∨ (¬B)
¬(A ∨ B) ≡ (¬A) ∧ (¬B)

}

(De Morgan’s law);

8.
¬> ≡ ⊥
¬⊥ ≡ >

}

(constant negation);

9.
A ∧ ⊥ ≡ ⊥
⊥ ∧ A ≡ ⊥

}

(least element);

10.
A ∨ > ≡ >
> ∨ A ≡ >

}

(greatest element);

11.
A ∧ > ≡ A
> ∧ A ≡ A

}

(1-element);

12.
A ∨ ⊥ ≡ A
⊥ ∨ A ≡ A

}

(0-element);

13.
¬A ∨ A ≡ >
A ∨ ¬A ≡ >

}

(excluded middle);

14.
¬A ∧ A ≡ ⊥
A ∧ ¬A ≡ ⊥

}

(contradiction);

15. ¬¬A ≡ A (double negation);

16.

(∀q)> ≡ >
(∃q)> ≡ >
(∀q)⊥ ≡ ⊥
(∃q)⊥ ≡ ⊥















(constant quantification);
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17.

(∀q)q ≡ ⊥
(∃q)q ≡ >
(∀q)¬q ≡ ⊥
(∃q)¬q ≡ >















(literal quantification);

18.
(∃q)B ≡ B[q/>] ∨ B[q/⊥]
(∀q)B ≡ B[q/>] ∧ B[q/⊥]

}

(quantifier elimination);

19. (Qq)(Qr)A ≡ (Qr)(Qq)A (quantifier commutability);

20. (Qq)(Qq)A ≡ (Qq)A (quantifier idempotency);

21.

((Qq)A) ∧B ≡ (Qq)(A ∧ B)
B ∧ ((Qq)A) ≡ (Qq)(A ∧ B)
((Qq)A) ∨B ≡ (Qq)(A ∨ B)
B ∨ ((Qq)A) ≡ (Qq)(A ∨ B)















q /∈ free(B) (binary quantifier shifting);

22. ¬((Qq)A) ≡ (Qq)(¬A) (unary quantifier shifting);

23.
((∀q)A) ∧ ((∀r)B) ≡ (∀q)(A ∧ B[r/q])
((∃q)A) ∨ ((∃r)B) ≡ (∃q)(A ∨ B[r/q])

}

(quantifier fusion).

Proof. All equivalences from the above theorem can be easily proved by using
the semantic definitions. �

One important insight that can be obtained from Equivalence 18 is that, com-
pared with ordinary propositional logic, quantified propositional logic does not
offer any more expressive power, since any QBF can be rewritten to a logically
equivalent boolean formula by using the mentioned equivalences. Some formulas
do, however, grow exponentially during this process (see Example 1.2.3). There
exists no translation with polynomial time complexity, unless NP=PSPACE.

Example 1.2.3 (Exponential Growth during Quantifier Elimination)
Consider the formula

An = (∀q0) . . . (∀qn)(q0 ∨ . . . ∨ qn),

for n ∈ N. Furthermore, let B0 = ⊥ and B1 = >. Then iterated applications of
the quantifier elimination rule eventually produces the formula

2n

∧

i=0

(Bai,1
∨ . . . ∨Bai,n

),

where the concatenation ai,1 . . . ai,n is the binary representation of the natural
number i, for 0 ≤ i ≤ 2n. Put in another way, the resulting formula contains
all 2n clause-like disjunctions7 that can be generated by selecting n times one
of the formulas > or ⊥.

As we have seen in Theorem 1.2.4, both ∨ and ∧ are commutative, associative
and idempotent. It therefore makes sense to abstract over these properties and
allow an interpretation of clauses as sets of literals and of c-conjunctions as sets
of clauses.

7Note that clauses cannot have > as a sub-formula, and the only clause that has ⊥ as a
sub-formula is the empty clause.
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Convention 1.2.1 (Set Notion for Clauses and C-Conjunctions)
Unless noted otherwise, we regard clauses as sets8 of literals and c-conjunctions
as sets of clauses.

When writing down such sets, we would be well advised to disambiguate clauses,
c-conjunctions and general sets of formulas.

Notation 1.2.1 (Set Notation for Clauses and C-Conjunctions)
1. We write 〈L1, . . . , Ln〉 to denote clauses that consist of (possibly duplicate)

occurrences of the literals L1, . . . , Ln.

2. We write [C1, . . . , Cn] to denote c-conjunctions that consist of (possibly
duplicate) occurrences of the clauses C1, . . . , Cn.

3. Apart from the special parentheses, both of these constructs are to be
regarded as sets.

As can easily be seen by the quantifier shifting and quantifier idempotency
rules of Theorem 1.2.4, we may represent certain adjacent quantifiers as sets of
variables that share the same quantifier symbol.

Notation 1.2.2 (Set Notation for Quantifiers)
We write (Q{q1, . . . , qn})A to denote formulas (Qf(q1)) . . . (Qf(qn))A, where f
is some permutation of the variables q1, . . . , qn.

Example 1.2.4 (Set Notations)
Consider the formula

A = (∀v1)(∀v2)(∃v3)((v1 ∨ (¬v2 ∨ v1)) ∧ ((¬v2 ∨ v2) ∨ v3))

Under the application of Notations 1.2.1 and 1.2.2, A would be represented as

(∀{v1, v2})(∃{v3})[〈v1,¬v2〉, 〈¬v2, v2, v3〉].

1.2.3 Formula Cleansing

We have already introduced the notions of a change of bound variables and of
an elimination of superfluous quantifiers. Now, after we have introduced the
semantics of QBFs, we will see how these notions, viewed as operations, can
be used to cleanse formulas. First, we show that either operation leaves the
semantic value of a formula unaffected.

Theorem 1.2.5 (Change of Bound Variables)
Let A′ be a formula that is obtained from another formula A by a change of
variables bound in some position π into r. Then it holds that A′ ≡ A.

Proof. By Definition 1.1.29, A|π = (Qq)B and A′ = A[(Qr)(B[q/r])]π , where
r /∈ free(B). Since r /∈ free(B), it is easy to see that

vqbf((Qr)(B[q/r])) = vqbf(B[q/r, r/>] ◦B[q/r, r/⊥], φ) =
= vqbf(B[q/>] ◦B[q/⊥], φ) = vqbf((Qq)B),

8We mean genuine sets, not multi-sets.
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i.e., (Qq)B and (Qr)(B[q/r]) are equivalent. Therefore, by way of the Equivalent
Replacement Theorem, it follows that A′ ≡ A. �

Theorem 1.2.6 (Elimination of Superfluous Quantifier)
Let A′ be a formula that is obtained from another formula A by elimination of
a superfluous quantifier. Then A′ ≡ A holds.

Proof. By Definition 1.1.30, there is some position π, such that A|π = (Qq)B
with q /∈ free(B) and A′ = A[B]π . Since q /∈ free(B), it is easy to see that

vqbf((Qq)B) = vqbf(B[q/>] ◦B[q/⊥], φ) = vqbf(B ◦B, φ) = vqbf(B, φ),

i.e., (Qq)B and B are equivalent. Therefore, by way of the Equivalent Replace-
ment Theorem, it follows that A′ ≡ A. �

By a simple inductive argument, it is now easy to show that the semantics of
a formula is preserved by any finite number of replacements of bound variables
and eliminations of superfluous quantifiers. This allows us to construct a simple
cleansing algorithm.

Algorithm 1.2.1 (Formula Cleansing)
Signature: F→Ḟ
Let A be a formula. Perform the following operations on A:

1. For all positions π in A′ with A′|π = (Qq)B, for some q and B, perform a
change of variables bound at position π into a fresh variable.

2. While applicable, perform eliminations of superfluous quantifiers. Call the
resulting formula A′.

Theorem 1.2.7 (Formula Cleansing Algorithm)
Algorithm 1.2.1 always terminates. If A is a formula, then the formula obtained
by applying the algorithm to it is cleansed and logically equivalent to A.

Proof.

Termination The first step of Algorithm 1.2.1 must terminate, because any
formula has only a finite number of positions. In Step (2) of the algorithm,
each elimination of a superfluous quantifier reduces the cardinality of the
formula. But cardinalities of formulas are natural numbers, so this step
must eventually terminate too.

Correctness Since the formula is only modified by steps of changes of bound
variables and elimination of superfluous quantifiers, the resulting formula
must, by Theorems 1.2.3 and 1.2.6, be equivalent to the original formula.
Step (1) assures that all quantifiers are different from each other and from
any free variables in the formula. Therefore, Part 1(a) and the first half
of Part 1(b) of Definition 1.1.25 are satisfied.

Because all bound variables are renamed along with their associated quan-
tifiers in Step (1), and because any quantifiers without associated bound
variables are eliminated in Step (2), the second half of Part (1b) of Defi-
nition 1.1.25 is satisfied too. Hence the application of Algorithm 1.2.1 to
a formula produces an equivalent cleansed formula.
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�

The fact that there are cleansing transformations with polynomial time com-
plexity, which, moreover, leave the syntactic structure of a formula essentially
unchanged, allows us to do most of our work using cleansed formulas. Therefore,
we impose the following convention.

Convention 1.2.2 (Assumption of Cleansed Formulas)
When talking about formulas, we always assume that appropriate cleansing has
been performed.

1.3 Reasoning Tasks

Looking at the semantic definitions of satisfiability, validity, logical entailment,
and logical equivalence that were given in the previous section, we can identify
at least four basic reasoning tasks that mirror these semantic concepts. There
may be more, but for our purpose, these four tasks will suffice. We state them
as decision problems.

1. Lsat = {A | A ∈ F ,M(A) 6= ∅} (all satisfiable QBFs);

2. Lvalid = {A | A ∈ F ,M(A) = I} (all valid QBFs);

3. Lunsat = {A | A ∈ F ,M(A) = ∅} (all unsatisfiable QBFs);

4. L≡ = {(A,B) | A,B ∈ F , A ≡ B} (Equality Theory of QBFs).

The problems of deciding the languages Lunsat and L≡ can be reduced to the
problem of deciding language Lvalid, by pushing the semantic negation (resp.
equivalence) down to the object level.

Theorem 1.3.1 (Object Level Negation and Equivalence)
1. A is unsatisfiable, iff ¬A is valid;

2. A ≡ B, iff (A ↔ B) is valid.

Proof.

1. By the semantics of QBFs, A is unsatisfiable, iff it has no model, i.e.,
vqbf(A, φ) = 0, for every φ ∈ I. In that case, however, vqbf(¬A, φ) =
1− vqbf(A, φ) = 1, for every φ ∈ I, i.e., ¬A is valid. If, on the other hand,
A is satisfiable, then there is some φ ∈ I such that vqbf(A, φ) = 1, and
vqbf(¬A, φ) = 1− vqbf(A, φ) = 0, hence A is not valid.

2. The formula C = (A ↔ B) is a shorthand for (¬A∨B)∧ (¬B ∨A). If we
expand vqbf(C, φ), we obtain

min(max(1 − vqbf(A, φ), vqbf(B, φ)),max(1 − vqbf(B, φ), vqbf(A, φ))).

A closer inspection of this term shows that it evaluates to 1, iff vqbf(A, φ) =
vqbf(B, φ). Therefore, A and B share the same set of models, if, and only
if, C is valid.
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�

Furthermore, we may decide Lsat and Lvalid by deciding corresponding sub-
languages of closed formulas, as can be seen by the last two parts of the next
theorem.

Lemma 1.3.1 (Constant Substitution)
Let A be a formula, q a variable and φ an interpretation. Furthermore, let
φ1 denote the interpretation with φ1(q) = 1 and φ1(r) = φ(r) for all r 6= q.
Likewise, let φ0 denote the interpretation with φ0(q) = 0 and φ0(r) = φ(r) for
all r 6= q. Then

1. φ |= A[q/>], iff φ1 |= A;

2. φ |= A[q/⊥], iff φ0 |= A.

Proof.

1. For φ1, it holds that vqbf(q, φ1) = vqbf(>, φ), for any interpretation φ. By
considering the evaluation function for formulas, it is then easy to see that
vqbf(A, φ1) = vqbf(A[q/>], φ), for any interpretation φ, i.e., φ |= A[q/>],
iff φ1 |= A.

2. The proof of the second part of the lemma is analogous.

�

Theorem 1.3.2 (Formula Closing)
Let A be a formula with free(A) = {q1, . . . , qn}, and let q be a variable. Then

1. A is satisfiable, iff (∃q)A is satisfiable;

2. A is valid, iff (∀q)A is valid;

3. A is satisfiable, iff (∃{q1, . . . , qn})A is satisfiable;

4. A is valid, iff (∀{q1, . . . , qn})A is valid.

Proof.

1. The formula (∃q)A is satisfiable, iff there exists some interpretation φ such
that

vqbf((∃q)A) = max(vqbf(A[q/>], φ), vqbf(A[q/⊥], φ)) = 1,

i.e., iff at least one of the terms vqbf(A[q/>], φ) and vqbf(A[q/⊥], φ) eval-
uates to 1. By Lemma 1.3.1, this is exactly the case, iff at least one of
the statements, φ1 |= A and φ0 |= A is true, which only happens, iff A is
satisfiable.
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2. The formula (∀q)A is valid, iff for any interpretation φ, it holds that

vqbf((∀q)A) = min(vqbf(A[q/>], φ), vqbf(A[q/⊥], φ)) = 1,

i.e., iff both of the terms vqbf(A[q/>], φ) and vqbf(A[q/⊥], φ) evaluate to
1. By Lemma 1.3.1, this is exactly the case, iff both of the statements,
φ1 |= A and φ0 |= A are true, which only happens, iff A is valid.

3. Part (3) of the theorem can be show easily by induction on the number n
of quantifiers, using Part (1), which has been proven above.

4. Part (4) of the theorem can be show easily by induction on the number n
of quantifiers, using Part (2), which has been proven above.

�

For closed QBFs, however, the notions of satisfiability and validity coincide.

Theorem 1.3.3 (Coincidence of Satisfiability and Validity)
Any closed formula A is valid, iff it is satisfiable.

Proof. It is an immediate consequence of Definition 1.2.1 that I 6= ∅, i.e., that
any formula has at least one interpretation. From this, it follows, by Definition
1.2.3, that any valid formula is also satisfiable.

For the second direction of the equivalence, we give an informal argument.
Assume that A is closed. Then any occurrence of a variable q at position π of A
has an associated quantifier position ρ = quant(A, π). It follows from Definition
1.1.23 that ρ � π.

It is now easy to see, by the definition of the evaluation functions for formu-
las, that every variable occurrence eventually gets substituted by constants.
Therefore, the semantic value of the formula must be independent of the in-
terpretation under which it is evaluated. If a formula A is satisfiable, then
vqbf(A, φ) = 1, for some interpretation φ, but by the above argument, this
implies that vqbf(A, φ) = 1, for any interpretation φ. �

From Theorems 1.3.1, 1.3.2 and 1.3.3, the construction of a polynomial-time
algorithm that reduces any instance of our four basic reasoning problems into
the problem of deciding the satisfiability of a closed formula, should be obvious.
So we define a single standard decision problem.

Definition 1.3.1 (QSAT)
By QSAT we mean the problem of deciding the language

Lcsat = {A | A ∈ F , free(A) = ∅, M(A) 6= ∅}.

QSAT is certainly decidable. To check a given closed formula A for satisfiability,
the evaluate A under one arbitrary “dummy” interpretation9 φ is sufficient. But
what complexity is associated with QSAT? Such results are usually stated w.r.t.
formulas in Prenex Normal Form (c.f. Section 1.4).

9It follows from Theorem 1.3.3 that the choice of φ is not important.
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Theorem 1.3.4 (Complexity of QSAT)
Consider the set of formulas

AQ1

n = {Γ1 . . .ΓnB | Γi = (Qi{qi1 , . . . , qim
}), Qi+1 = Qi, B ∈ B for 1 ≤ i < n},

for n ∈ N. Then

1. the problem of deciding Lcsat ∩ A∃
n is ΣP

n -complete;10

2. the problem of deciding Lcsat ∩ A∀
n is ΠP

n -complete;

3. the problem of deciding Lcsat is PSPACE-complete.

Proof. See, e.g., [44] and [54]. �

Morale 1.3.1 (Minimization of Quantifier Alternations)
When given the choice of a set A of equivalent formulas as candidates for a
satisfiability test, we shall ceteris paribus choose a formula with a minimum
number of quantifier alternations, i.e., which is member of A∃

n (resp. A∀
n), with

n minimal w.r.t. A.

1.4 Normal Forms

1.4.1 Common Normal Forms

When working with formulas, it is sometimes practical to consider only formulas
that are in a normal form, i.e., which are irreducible w.r.t. a certain set of
reduction rules or, more generally, w.r.t. a certain algorithm that performs some
reduction. Formally, we define the concept of a normal form w.r.t. to a reduction
relation that describes all allowed reductions.

Definition 1.4.1 (Normal Form)
1. Let A be a formula and � a binary relation over F . Then A is said to be

in normal form w.r.t. �, if there is no formula B such that A � B.

2. Let A be a formula such that A �∗ B, where B is in normal form.11 We
then call B a normal form of A.

We introduce normal forms in terms of their syntactic properties rather than
via their corresponding reduction relation.

The normal form transformations which we are interested in, either

1. preserve the semantics of formulas completely by producing formulas that
are logically equivalent to the original formula, or

2. preserve the semantics of formula partially by producing formulas that are
satisfiability equivalent to the original formula.

10Appendix A.2.2 contains a short introduction to the complexity classes ΣP
n and ΠP

n .
11See Appendix A.1.1 for an explanation of the notation A �

∗ B.
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Definition 1.4.2 (Constant Normal Form)
A formula A is said to be in constant normal form (CoNF), if neither > nor ⊥
are proper sub-formulas of A.

Constant normal form restricts the usage of the propositional constants to just
the two formulas > and ⊥. In all other cases, these symbols can be eliminated
with little effort at the prospect of substantially shorter formulas.

The simplest normal form that is commonly introduced in literature is the nega-
tion normal form. Its main advantage is that it simplifies reasoning about the
polarities of sub-formulas.

Definition 1.4.3 (Negation Normal Form)
A formula A is said to be in negation normal form (NNF), if every sub-formula
B of A with root(B) = ¬ is a literal.

Another useful normal form is prenex normal form, which is characterized by
its isolation of a quantifier prenex from a purely propositional formula part.

Definition 1.4.4 (Prenex, Matrix, Prenex Normal Form)
A formula A is said to be in prenex normal form (PNF), if it has the structure

(Q1q1) . . . (Qnqn)M,

where M ∈ B. In that case, we call (Q1q1) . . . (Qnqn) the prenex and M the
matrix of A and denote these components by pren(A) and matr(A), respectively.

The next normal form is taken from propositional logic.

Definition 1.4.5 (Conjunctive Normal Form)
A (quantified boolean) formula is said to be in conjunctive normal form (CNF),
if it is a c-conjunction.

Obviously, formulas in conjunctive normal form are purely propositional. The
normal form we are most interested in is the special case of those formulas in
prenex normal form, where the matrix is in conjunctive normal form:

Definition 1.4.6 (Prenex Conjunctive Normal Form)
A PNF formula A is in prenex conjunctive normal form (PCNF), if matr(A) is
in CNF.

1.4.2 Simple Transformations

Having introduced the most important normal forms for formulas in terms of
structural properties, we are, of course, interested in effective methods to trans-
form arbitrary formulas12 into logically or satisfiability equivalent formulas in
normal form.

12Recall that we hereby mean—by way of Convention 1.2.2—arbitrary cleansed formulas.
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Algorithm 1.4.1 (Standard CoNF Transformation)
Signature: Ḟ→Ḟ
An algorithm for transforming a given cleansed formula into a logically equiv-
alent CoNF formula is given by the following system of rewrite rules: least el-
ement, greatest element, constant negation, constant quantification, 1-element
and 0-element.

Algorithm 1.4.2 (Standard NNF Transformation)
Signature: Ḟ→Ḟ
An algorithm for transforming a given cleansed formula into a logically equiv-
alent NNF formula is given by the union of the rewrite rules from Algorithm
1.4.1 and the following set of rules: De Morgan’s law, double negation and
unary quantifier shifting.

Algorithm 1.4.3 (Standard PNF Transformation)
Signature: Ḟ→Ḟ
An algorithm for transforming a given cleansed formula into a logically equiva-
lent PNF formula is given by the following system of rewrite rules: binary and
unary quantifier shifting.

Algorithm 1.4.4 (Standard CNF Transformation)
Signature: Ḟ→Ḟ
An algorithm for transforming a given boolean formula into a logically equivalent
CNF formula is given by the following system of rewrite rules: associativity,
distributivity of ∨, De Morgan’s law, 1-element, 0-element, least element,
greatest element, constant negation and double negation.

Algorithm 1.4.5 (Standard PCNF Transformation)
Signature: Ḟ→Ḟ
An algorithm for transforming a given cleansed formula into a logically equiva-
lent PCNF formula is given by the union of the rewrite systems from Algorithms
1.4.3 and 1.4.4.

Unfortunately, the application of the Standard (P)CNF Transformation is lim-
ited by the possibility of an exponential formula growth, as follows easily from
Example 1.4.1.

Example 1.4.1 (Exponential Growth during Distribution)
Consider the formula

An =

n
∨

i=1

(qi,0 ∧ qi,1),

for n ∈ N. Then iterated application of the distributivity rule eventually pro-
duces, modulo commutativity and associativity, the formula

2n

∧

i=0

(q1,ai,1
∨ . . . ∨ qn,ai,n

),

where the concatenation ai,1 . . . ai,n is the binary representation of the natural
number i, for 0 ≤ i ≤ 2n. Put in another way, the resulting formula contains
all 2n clauses that can, modulo commutativity and associativity, be generated
by selecting one literal from each of the n formulas qi,0 ∧ qi,1 in An.
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The method of Structure Preserving PCNF Transformation avoids the expo-
nential formula growth illustrated by the above example by replacing complex
proper sub-formulas by new variables (called labels) and adding appropriate
short definitions.

A propositional version of this method is given in [46], whereas [40] presents a
version for first order logic. Eder investigates an alternative structure preserving
normal form transformation in [17]. In [4], the authors discuss the normal form
transformations for first oder logic, laying special emphasis on the their influence
on proof lengths.

Algorithm 1.4.6 (Structure Preserving PCNF Transformation)
Signature: Ḟ→Ḟ
An algorithm for transforming a given cleansed formula A into a satisfiability
equivalent PCNF formula is given by performing the following steps:

1. Apply the Standard CoNF and Standard PNF Transformations.

2. Rewrite the formula using the associativity rule. The formula is now in
PNF and has the form

(Q1q1) . . . (Qnqn)M,

with M =
∧m

i=1Ai, where root(Ai) 6= ∧ for all 1 ≤ i ≤ m.

3. If M is in CNF, then terminate and return the transformed formula.

4. If some Ai is a simple formula or short definition, transformAi by applying
the Standard CNF transformation.

5. If some Ai is neither a clause, nor a simple formula, nor a short definition,
choose a simple sub-formula A of Ai, i.e., let A = Ai|π such that A is
simple. If pol(A) = +1 (resp. pol(A) = −1) then replace all positive (resp.
negative) occurrences of A in M by a fresh variable q (called a label in this
context). Replace M by (∃q)((q → A) ∧M) (resp. (∃q)((A → q) ∧M)).

6. Continue with Step 2.

The algorithm can be optimized, e.g., by integration of the literal quantifica-
tion rules from Theorem 1.2.4. However, for our purpose, the above version is
sufficient.

Theorem 1.4.1 (Complexity of PCNF Transformation)
The time complexity of computing, for a given formula, a satisfiability equivalent
formula in PCNF is polynomial in the cardinality of A.

This result justifies the use of decision procedures that are restricted to formulas
in PCNF for deciding QSAT, using a PCNF transformation algorithm with
polynomial time complexity as preprocessor.

Notation 1.4.1 (Special Sets of Formulas)
1. We use the symbol F̌ to designate the set of closed, cleansed formulas in

PCNF.13

13We choose the accent “ˇ” because of its resemblance to the symbol“
W

”, which should
remind the reader of the clauses in a PCNF matrix.
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2. We use the symbol F̃ to designate the set of closed, cleansed formulas in
NNF.14

14We choose the accent “˜” because of its resemblance to the overstriking operator “ ”,
which should remind the reader of the literals in a NNF formula.
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Chapter 2

The QDLL Procedure

In Section 1.3 we have identified QSAT as a fundamental reasoning problem of
quantified propositional logic. Now we turn our attention to algorithms that
are capable of deciding QSAT practically.

Many decision procedures for the satisfiability problem of propositional logic
(SAT)—like semantic tableaux or propositional resolution [24]—have extensions
for quantified propositional logic [7, 35]. The most famous algorithm, however,
has its roots in the work of M. Davis and H. Putnam [14, 15], who were looking
for a procedure for efficient propositional satisfiability testing as part of their
effort to devise an efficient proof procedure for first order logic.

The original procedure was modified as soon as the first actual implementation
was found to require too much memory. It is this modified procedure, proposed
by M. Davis, G. Logemann and D. Loveland in [13], which has been adopted as
a standard decision procedure by the SAT community and which is, amongst its
members, known as Davis-Putnam, DLL and DPLL Procedure. This procedure
has recently been extended for QSAT. In this work, we will refer to this extended
procedure as QDLL procedure.

We first present an abstract version of the procedure in Section 2.1. Then we
describe the behavior of practical implementations of QDLL in Section 2.2. In
the same section, we also present some advanced techniques that are used in
modern QDLL procedures. We conclude the section with a presentation of the
techniques that are integrated into the contemporary decision procedures used
in the experimental evaluation of our prenexing strategies (c.f. Chapter 4).

2.1 The Basic Procedure

The QDLL procedure is a QSAT decision procedure for closed, cleansed quan-
tified boolean formulas in prenex conjunctive normal form (recall that we write
the set of all such formulas as F̌). We have already seen in Section 1.3 that the
restriction to cleansed, closed formulas does not amount to any real limitation.

In Section 1.4.2, we have described an efficient algorithm that achieves a transla-
tion of such formulas into PCNF. It is thus easy to conceive a simple preprocessor
that puts an arbitrary formula into a form that QDLL can deal with.

31
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Being aware of this simple way to obtain a general QSAT decision procedure,
many scientists completely abstract from the necessary preprocessing step and
commit themselves to the exclusivity of formulas in PCNF. In this work, how-
ever, we are, on the contrary, more concerned with the preprocessing step, in
particular with the implementational options for prenexing. For this, however,
it is nonetheless necessary to obtain a rudimentary understanding of the QDLL
procedure first.

The QDLL procedure is fundamentally based on the quantifier elimination rules
from Theorem 1.2.4, but does, of course, also implicitly rely on many other rules
and theorems, most notably perhaps on the Monotonic Replacement Theorem.
One central idea of the procedure is given by the observation that the substi-
tutions A[p/⊥] and A[p/>] that are introduced by the quantifier elimination
rules, can be performed very efficiently on CNF matrices by the following three
primitive operations.

Definition 2.1.1 (Functions for Removing Parts of a Formula)
Let A be a formula in PCNF, L a literal in A and q a variable. Also, recall that
may view clauses and c-conjunctions as sets (c.f. Convention 1.2.1).

1. The function lrem( ·, · ) (remove literal) is defined by

lrem(A,L) = pren(A)[C \ 〈L〉 | C ∈ matr(A)].

2. For sets A = {L1, . . . , Ln} of literals, we define

lrem(A,A) = lrem(. . . lrem(A,L1) . . . , Ln).

3. The function crem( ·, · ) (remove clause) is defined by

crem(A,L) = pren(A)[C | C ∈ matr(A), L /∈ C].

4. For sets A = {L1, . . . , Ln} of literals, we define

crem(A,A) = crem(. . . crem(A,L1) . . . , Ln).

5. The function qrem( ·, · ) (remove quantifier) is defined by

qrem(A, q) = (Q1(A1 \ {q})) . . . (Qn(An \ {q}))matr(A),

where pren(A) = (Q1A1) . . . (QnAn).

6. For sets A = {q1, . . . , qn} of variables, we define

qrem(A,A) = qrem(. . . qrem(A, q1) . . . , qn).

Theorem 2.1.1 (Semantics of Removing Literals and Clauses)
Let A be a formula in PCNF. Then

1. lrem(A,L) ≡ pren(A)(matr(A)[L/⊥]);

2. crem(A,L) ≡ pren(A)(matr(A)[L/>]).



2.1. THE BASIC PROCEDURE 33

Proof. Let A be a formula in PCNF, and let L be some literal. If L /∈ lit(A),
then the theorem holds trivially. So let us consider the interesting case where
L ∈ lit(A).

1. Consider the formula

B = pren(A)(matr(A)[L/⊥]).

By application of the 0-element rule from Theorem 1.2.4, we can remove
all occurrences of the formula ⊥ from B. Call the new formula B ′. Since
A is in PCNF, it cannot contain any occurrences of the formula ⊥, so all
occurrences of ⊥ in B correspond to occurrences of the literal L in A. So
B′ is the formula A, with all occurrences of the literal L removed, i.e.,
B′ = lrem(A,L).

2. Consider the formula

B = pren(A)(matr(A)[L/>]).

By iterated application of the greatest element rule from Theorem 1.2.4,
we can replace any clause that contains an occurrence of the formula > in
B with the formula >. Call the new formula B′.

Next, by iterated application of the 1-element rule, we can remove any
occurrence of the formula > from the formula (unless matr(B ′) = >).
Call the new formula B′′.

Since A is in PCNF, it cannot contain any occurrence of the formula
> inside clauses, so all occurrences of > in clauses of B correspond to
occurrences of the literal L in A. For the same reason, A cannot contain
any occurrence of the formula > (unless matr(A) = >). Therefore, all
occurrences of the formula > in B′ correspond to clauses in A that contain
the literal L (unless matr(A) = >). So B′′ is the formula A, with all
occurrences of the literal L removed, i.e., B′′ = crem(A,L).

�

Note that all of the rules from Definition 2.1.1 achieve a shortening of formulas,
which qualifies them as useful reduction rules.

From Theorem 2.1.1, it is easy to see that, given a formula A in PCNF with

pren(A) = (Q1q1) . . . (Qi−1qi−1)(Qiqi)(Qi+1qi+1) . . . (Qnqn)

and Qi = ∃ (resp. Qi = ∀), the formula B0 ∨ B1 (resp. B0 ∧ B1) with the two
immediate sub-formulas

B0 = qrem(lrem(crem(A, qi), qi), qi), and
B1 = qrem(lrem(crem(A, qi), qi), qi).

is exactly the formula obtained applying the quantifier elimination rule (for the
variable qi) on A.

The above observation is cast into the form of the two elimination rules (c.f.
Definition 2.1.4), which provide the constant driving force behind the procedure.
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Whenever no better mechanism is applicable, these rules unwaveringly chop the
problem down into two simpler subproblems.

However, whereas the elimination rules are in fact indispensable, the heart of the
procedure can be found in the mechanism of unit propagation, i.e., the successive
reduction of a formula by the unit rule. Lastly, the two pure rules, which allow
QDLL to handle another special case efficiently, are usually also considered as
part of the core procedure.

We will present all of these rules shortly, after some preparatory work.

Definition 2.1.2 (Tautological, Contradictory and Unit Clause)
A clause C of a closed formula A is called

1. tautological, if it contains a literal L and also its complement L;

2. contradictory in A, if it is neither tautological, nor contains an existentially
bound literal;

3. unit in A, if it contains exactly one existentially bound literal L, and for
every literal L′ 6= L of C (which is, consequently, universally bound), it
holds that qpos(A,L′) ≺ qpos(A,L).

We define the basic operations of the QDLL procedure as rules that operate
on a semantic tree. A semantic tree is essentially a vehicle which captures the
structure of a search space that combines existential and universal branching.
To understand the operations, it is useful to abstract from the concrete search
strategy. However, in Section 2.2, we will discuss how actual implementations
of QDLL perform a traversal of such a search space.

Definition 2.1.3 (Semantic Tree)
A semantic tree is a tree (O, E , µ, ν), consisting of the following constituents.

1. a set of nodes O ⊆ {1, 2}?;

2. a set of edges E ⊆ (O ×O);

3. a node marking function µ : O → ({∃, ∀} ∪ F̌);

4. an edge marking function ν : E → {v,¬v | v ∈ V}.

For the node marking function ν, we require that µ(π) ∈ F̌ , for any leaf π ∈ O,
and µ(π) ∈ {∃, ∀}, for any inner node π ∈ O. We denote the set of all semantic
trees by Y .

Example 2.1.1 (Semantic Tree)
Let

1. O = {ε, 1, 11, 12, 2},

2. E = {(ε, 1), (ε, 2), (1, 11), (1, 12)},

3. µ = {(ε, ∀), (1, ∃), (11, [〈 〉]), (12, [ ]), (2, (∃r)[〈r〉])}, and
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∀

∃

[〈 〉]

¬r
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r

¬q

(∃r)[〈r〉]

q

Figure 2.1: Graphical representation of the semantic tree from Example 2.1.1.

4. ν = {((ε, 1),¬q), ((ε, 2), q), ((1, 11),¬r), ((1, 12), r)}.

Then (O, E , µ, ν) is a semantic tree. A graphical representation of this tree is
given in Figure 2.1.

Definition 2.1.4 (Fundamental QDLL Rules)
Let ω = (O, E , µ, ν) be a semantic tree and π ∈ O a node with µ(π) ∈ F̌ . The
each of the following rules can be used obtain, from ω, a new semantic tree
ω′ = (O′, E ′, µ′, ν′).

1. Tautology Rule: If µ(π) contains a tautological clause C, then let

µ′(π) = pren(µ(π))(matr(µ(π)) \ {C});
µ′(%) = µ(%), for any node % 6= π.

All other parts of the tree remain unchanged, i.e., O′ = O, E ′ = E and
ν′ = ν.

2. Contradiction Rule: If µ(π) contains a contradictory clause C, then let

µ′(π) = [〈 〉];
µ′(%) = µ(%), for any node % 6= π.

All other parts of the tree remain unchanged, i.e., O′ = O, E ′ = E and
ν′ = ν.

3. Unit Rule: If µ(π) contains a unit clause C with the existentially bound
literal L, then let

µ′(π) = qrem(lrem(crem(µ(π), L), L), bLc);
µ′(%) = µ(%), for any node % 6= π.

All other parts of the tree remain unchanged, i.e., O′ = O, E ′ = E and
ν′ = ν.

4. Existential Pure Rule: If µ(π) contains an existentially bound pure literal
L, then let

µ′(π) = qrem(crem(µ(π), L), bLc);
µ′(%) = µ(%), for any node % 6= π.

All other parts of the tree remain unchanged, i.e., O′ = O, E ′ = E and
ν′ = ν.
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5. Universal Pure Rule: If µ(π) contains a universally bound pure literal L,
then let

µ′(π) = qrem(lrem(µ(π), L), bLc);
µ′(%) = µ(%), for any node % 6= π.

All other parts of the tree remain unchanged, i.e., O′ = O, E ′ = E and
ν′ = ν.

6. Existential Elimination Rule: If µ(π) = (∃{q1, . . . , qn})B, then choose
some i with 1 ≤ i ≤ n, and let

O′ = O ∪ {π1, π2};
E ′ = E ∪ {(π, π1), (π, π2)};
µ′(π) = ∃;
µ′(π1) = qrem(lrem(crem(µ(π), qi), qi), qi);
µ′(π2) = qrem(lrem(crem(µ(π), qi), qi), qi);
µ′(%) = µ(%) for % /∈ {π, π1, π2};
ν′(π, π1) = ¬qi;
ν′(π, π2) = qi;
ν′(%, σ) = ν(%, σ) for (%, σ) /∈ {(π, π1), (π, π2)}.

.

In this context, qi is called the splitting variable.

7. Universal Elimination Rule: If µ(π) = (∀{q1, . . . , qn})B, then choose some
i with 1 ≤ i ≤ n, and let

O′ = O ∪ {π1, π2};
E ′ = E ∪ {(π, π1), (π, π2)};
µ′(π) = ∀;
µ′(π1) = qrem(lrem(crem(µ(π), qi), qi), qi);
µ′(π2) = qrem(lrem(crem(µ(π), qi), qi), qi);
µ′(%) = µ(%) for % /∈ {π, π1, π2};
ν′(π, π1) = ¬qi;
ν′(π, π2) = qi;
ν′(%, σ) = ν(%, σ) for (%, σ) /∈ {(π, π1), (π, π2)}.

.

Again, qi is called the splitting variable. Note that the universal elim-
ination rule differs from the existential elimination rule in the value of
µ′(π).

Example 2.1.2 (Fundamental QDLL Rules)
Consider a semantic tree ω = (O, E , µ, ν), which contains some node π, with

µ(π) = (∀{q1})(∃{q2})∀{q3, q4})(∃{q5})
[〈¬q1, q2, q3, q5〉, 〈¬q1, q2, q3, q4,¬q5〉, 〈¬q1,¬q2,¬q3, q5〉].

We can then reduce ω by applying the universal elimination rule at π. The
new tree1 contains two additional nodes, π0 and π1, with ν′((π, π0)) = ¬q1 and
ν′((π, π1)) = q1. Now

µ′(π0) = (∃{q2})∀{q3, q4})(∃{q5})[ ],

1As usual, we designate derived structures by adding a prime symbol to the original names.
In particular, we use this convention for trees and all their components.
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and

µ′(π1) = (∃{q2})∀{q3, q4})(∃{q5})[〈q2, q3, q5〉, 〈q2, q3, q4,¬q5〉, 〈¬q2,¬q3, q5〉].

Next, we reduce ω′ by applying the existential elimination rule at π1. The
new tree contains two additional nodes, π2 and π3, with ν′((π, π2)) = ¬q2 and
ν′((π, π2)) = q1. Now

µ′′(π2) = (∀{q3, q4})(∃{q5})[〈q3, q5〉, 〈q3, q4,¬q5〉],

and

µ′′(π3) = ∀{q3, q4})(∃{q5})[〈¬q3, q5〉].

We reduce ω′′ by applying the universal pure rule at π2 to eliminate the variable
q3, resulting in

µ′′′(π2) = (∀{q4})(∃{q5})[〈q5〉, 〈q4,¬q5〉].

We reduce ω′′′ by applying the unit rule at π2, resulting in

µ4′(π2) = (∀{q4})[〈 〉, 〈q4〉].

Finally, we reduce ω4′ by applying the contradiction rule at π2, resulting in

µ5′(π2) = [〈 〉].

Definition 2.1.5 (Evaluation Function for Semantic Trees)
The evaluation function vao : (Y × {0, 1}?) → {0, 1} is recursively defined by:

vao((O, E , µ, ν), π) =























min(π,π′)∈E vao((O, E , µ, ν), π
′) if µ(π) = ∀;

max(π,π′)∈E vao((O, E , µ, ν), π
′) if µ(π) = ∃;

1 if µ(π) = [ ];
0 if µ(π) = [〈 〉];
undefined otherwise.

Example 2.1.3 (Evaluation Function for Semantic Trees)
Consider the semantic tree from Example 2.1.1. Then vao((O, E , σ, µ), 1) = 1,
but vao((O, E , σ, µ), ε) is undefined.

It is not hard to see that semantic trees bear a strong resemblance to the com-
putational trees of alternating Turing machines, which are explained in Sec-
tion A.2.1, and the evaluation function vao( ·, · ) for semantic trees mirrors the
semantic concept of acceptance. In fact, the complexity results for QSAT can be
used to establish a lower bound for the APTIME, the polynomial time complexity
class for alternating Turing machines [49].

As we can see, there is no semantic value for leaves that are marked with formu-
las other that [ ] or [〈 〉], i.e., vao( ·, · ) is only partially defined. The definedness
for the inner nodes depends on that of the leaves, e.g., the semantic value of
a node that is marked by ∨ is defined, if either both of its successors have a
semantic value of 0, or if least one of them has a semantic value of 1, because
min(1, x) = min(x, 1) = 1, if x is restricted to {0, 1}.
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Algorithm 2.1.1 (QDLL Procedure)
Signature: F̌→{0, 1}
From the input formula A, construct an initial semantic tree

ω = ({ε}, ∅, {(ε, A)}, ∅).

Then keep on expanding ω by applying the QDLL rules from Definition 2.1.4,
until the value of vao(ω, ε) is defined. At that point, return that value.

The correctness proof for the QDLL procedure is complex and goes beyond the
scope of this work, so we give the corresponding theorem without proof.

Theorem 2.1.2 (QDLL Procedure)
Algorithm 2.1.1 terminates and returns the value 1, if its input formula is sat-
isfiable, and 0 otherwise.

2.2 Advanced Techniques and Implementation

Semantic trees are a conceptual tool to explain the behavior of the QDLL pro-
cedure, but they are not suitable for a direct implementation of the above al-
gorithm. Such trees can become huge, and it is no use keeping them stored in
memory anyway.

Rather, implementations of QDLL usually perform the expansion of nodes in
a depth first fashion. After some branch has been completely expanded, such
implementations can backtrack and then follow another branch, if necessary.
The corresponding semantic trees can then be seen as a map of the search space
that has been explored at any given time.

Observe that the exploration of the search space in a depth-first fashion enables
the computational complexity of the proof procedures to located in PSPACE.
Retaining complete semantic trees, or even performing a depth first search,
would cause an exponential space complexity.

2.2.1 Dependency Directed Backtracking

If, upon backtracking, the semantic value of a node has already become defined
after exploring the first branch, then it is not necessary to explore the second
branch, and the procedure can backtrack further.

The simplest way to prune the search space in this way follows from the seman-
tics of existential (resp. universal) nodes. If the semantics of the first branch can
be determined to be 1 (resp. 0), then the whole subtree necessarily evaluates to
1 (resp. 0).

However, there are also more intricate methods that are capable of eliminating
the need to check the second branch, even where the simple semantic method
cannot help, and the technique of Dependency Directed Backtracking is one such
method.

This technique, which is also known as Backjumping, is explained in [37] (but
see also [33]). We can distinguish two different forms of this technique, one
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that is applicable to the existential nodes of a semantic tree, and one that is
applicable to the universal nodes. In both cases, the successful application of
the technique eliminates the need to further expand the second successor of a
given node, if the first successor has already been analyzed.

In the case of an existential node, the technique works by extracting, from appli-
cations of the contradiction rule, sets of variables that have certainly contributed
to the contradiction. These are the existentially bound variables of one of the
initial clauses, from which a contradictory clause was derived.

In [37], two different methods to pass this information upwards upon backtrack-
ing are proposed. When backtracking from a node with a semantic value of 0
to an existential node, the examination of the second branch can be dropped, if
the splitting variable of that node turns out to be irrelevant to the generation
of the contradiction.

For the case of a universal node, the technique works by extracting the model
corresponding to leaves π with µ(π) = [ ], whenever such a node is reached. The
model corresponding to such a node π is the interpretation φ, with

φ(q) =

{

1 if ν(ρ1, ρ2) = q for some edge (ρ1, ρ2) in the path from ε to π;
0 otherwise.

On backtracking along some edge x = (π1, π2) with bν(x)c = r, a modified
model φ′ is created, with φ′(r) = 1 − φ(r), and φ′(s) = φ(s), for s 6= r. That
new model can then be tried on similar subtrees.

2.2.2 Quantifier Inversion

Another technique that is also targeted at the elimination of unnecessary back-
tracking is Quantifier Inversion. Rintanen observes the following theorem in
[42].

Theorem 2.2.1 (Quantifier Inversion)
Let A be a formula with free(A) = {q1, . . . , qn, r1, . . . , rm}. If, for all models φ
of A, it also holds that φ(ri) = 0 (resp. φ(ri) = 1), for some 1 ≤ i ≤ m, then
ψ(ri) = 0 (resp. ψ(ri) = 1) for any model ψ of (∀{q1, . . . , qn})A.

Proof. Let A be some formula with free(A) = {q1, . . . , qn, r1, . . . , rm}. It
is easy to show by the semantics of QBFs, that any model φ of the formula
(∀{q1, . . . , qn})A is also a model of A. However, by assumption, φ(ri) = 0 (resp.
φ(ri) = 1), for any model φ of A. Since φ was chosen as an arbitrary model of
(∀{q1, . . . , qn})A, it follows that φ(ri) = 0 (resp. φ(ri) = 1) for any model of
that formula. �

The application of this theorem in decision procedures works as follows. When-
ever a formula of the form

A = (∃{r1, . . . , rm})(∀{q1, . . . , qn})B
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is encountered, the procedure may try to identify a variable r = ri, with 1 ≤
i ≤ m, which must be 0 (resp. 1) under any model of (∀{q1, . . . , qn})B. In that
case, it would suffice to check the satisfiability of

(∃{r1, . . . , ri−1, ri+1, . . . , rm})(∀{q1, . . . , qn})A
′,

with A′ = A[qi/⊥] (resp. A′ = A[qi/>]) to determine the satisfiability of A. In
practice, the following application of the above lemma can yield such a variable.
Reduce the formula (∀{q1, . . . , qn})B with the universal elimination rule along
some (possibly randomly chosen) path, until some r ∈ {r1, . . . , rm} becomes
unit. In that case, r is a variable with the mentioned property. There is, of
course, no guarantee that this will happen, and it might be a good idea to try
several different paths, but an exhaustive search will probably be too expensive.

2.2.3 Lemma Caching

Kleine-Büning et al. introduce Q-resolution, a generalization of propositional
resolution for quantified propositional logic in [7]. In [37], Letz describes a tech-
nique that uses Q-resolution for the generation of lemmas, i.e., additional clauses
that can be added to the formula matrices of other leaves without changing the
semantics of that leaf (and thus maintaining the semantics of the entire tree).
The hope is that such additional clauses limit the size of the subtrees that can
be produced during the expansion of such nodes, by yielding a contradictionary
clause early.

Such lemmas are generated as follows. For applications of the contradiction rule,
one of the initial clauses from which a contradiction was derived, is identified.
Upon backtracking from a node with a semantic value of 0 to a universal node,
this information is simply passed upwards, but if, upon backtracking from the
second successor of an existential node π, the semantic value of π turns out to
be 0, Q-resolution is used to resolve the clauses from the subtrees.

2.2.4 Model Caching

The technique of model caching, another technique that is introduced in [37],
is the dual form of lemma caching. Here, models are extracted from leaves π
with µ(π) = [ ] just as it is done in dependency directed backtracking. Model
resolution, the dual form of q-resolution, is then used to combine models in
universal nodes. These models may be used in other nodes π′, where the path
from ε to π′ contains all the literals of a model. In that case, π′ is said to
subsume that model, and the semantics of π′ can be safely assumed to be 1.

2.2.5 Trivial Truth and Trivial Falsity

The technique of Trivial Truth [8, 9] employs a sufficient criterion for the satis-
fiability of a formula to reduce the computations costs in cases where a formula
is indeed satisfiable.
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Theorem 2.2.2 (Trivial Truth)
Let A be a formula in PCNF. Then

qrem(lrem(A, lit∀(A)), blit∀(A)c) ` A

holds.

Proof. We show the theorem for single literals. The general result is obtained
by induction on the number n = |lit∀(A)| of literals involved. So let A be some
formula in PCNF, and let L ∈ lit∀(A) be some universally bound literal in A.
Recall that lrem(A,L) semantically corresponds to pren(A)(matr(A)[L/⊥]), and
note that ⊥ ` C, for any formula C. Therefore, by the monotonic replacement
theorem, it is easy to see that

pren(A)(matr(A)[L/⊥]) ` A.

Since pren(A)(matr(A)[L/⊥]) does not contain an occurrence of L any more,
the quantifier (QbLc) is superfluous in pren(A)(matr(A)[L/⊥]), and therefrom
it follows that

qrem(pren(A)(matr(A)[L/⊥]), bLc) ` A,

which is equivalent to

qrem(lrem(A, lit∀(A)), blit∀(A)c) ` A.

�

When trying to determine the satisfiability of some formula A, an advanced
QDLL procedure might resolve to checking the satisfiability of the simpler for-
mula

A′ = qrem(lrem(A, lit∀(A)), blit∀(A)c),

and if that formula is indeed satisfiability, it can conclude that A is also satisfi-
able.

However, the implication works only in one direction, and it is very well possible
that A is satisfiable, whereas A′ is not. In that case, the procedure might waste
a lot of resources on checking A′, without gaining any new information about
the satisfiability of A. To accommodate this problem, some procedures employ
a stateful heuristic that activates Trivial Truth in an adaptive way.

Analogously to the technique of Trivial Truth, the authors of [8] also present two
techniques of Trivial Falsity, which employ a necessary satisfiability criterion to
detect the unsatisfiability of a formula. The first of these techniques is already
implicitly built into our variant of the basic QDLL procedure through our notion
of a tautological clause (c.f. Definition 2.1.2). The second technique, which
works by removing all clauses that contain any universally bound literal, has,
to our knowledge, not found any widespread adoption.

Feldman et al. present a completely different necessary satisfiability criterion
[23], which they also call Trivial Falsity. This naming is rather unfortunate, not
only because it conflicts with the above techniques from [8], but also because
this newer technique is—in our view—far from trivial.
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technique QuBE-BJ semprop ssolve

backjumping yes yes no
lemma caching no yes no
model caching no yes no
quantifier inversion no no yes
Trivial Truth yes special case yes
Trivial Falsity [8] noa no no
Trivial Falsity [23] noa no yes

a[32] mentions that QuBE employs Trivial Falsity, but we did not find any reference to the
technique in later works, like [30] and [31].

Table 2.1: Comparison chart of techniques applied in different decision proce-
dures.

The application of this technique in a QSAT decision procedure is complemen-
tary to Trivial Truth. The procedure might resolve to check A′, which, being a
pure boolean formula is potentially easier than checking A, and if that formula
turns out to be unsatisfiable, it can conclude that A is also unsatisfiable.

All of the mentioned “Trivial” techniques—except for the first technique of
Trivial Falsity from [8], which is even more trivial—yield a boolean formula that
is simpler than the original QBF. That boolean formula needs to be checked for
satisfiability, in order to enable possible conclusions w.r.t. the satisfiability of
the original formula. The checking can be done by a separate SAT decision
procedure, or recursively, by interpreting the problem as a QSAT problem.

Beedless to say all of the “Trivial” techniques do merely increase the total com-
putational overhead in the case where the respective criterion does not allow any
conclusion to the satisfiability of the original formula. However, experimental
results show the practical value of these techniques (see, e.g., [30, 23]).

2.2.6 Availability of Techniques

For this work, we have chosen three advanced QDLL implementations for an
empirical study of the behavior of different prenexing strategies on the observ-
able performance of these decision procedures: QuBE-BJ [31, 32], semprop

[37] and ssolve [23, 43]. Since all three of these procedures are based on the
same basic procedure, we have reason to assume that their difference in behavior
is essentially founded in the different subsets of advanced techniques that each
implementation employs.

Table 2.1 gives an overview of which techniques have been integrated into these
procedures. Note that we chose the classical QuBEinstead of the more advanced
of QuBE-Rel, because the latter happened to occasionally terminate with an
internal error message, in our setup.



Chapter 3

Prenexing Strategies

In the previous chapter, we have discussed QDLL as a procedure for deciding
the satisfiability of QBFs. The necessary PCNF transformation can be per-
formed by the structure preserving PCNF transformation that was presented
in Section 1.4.2. However, until now we have omitted some important details
that determine the exact behavior of the transformation. In particular, the pro-
cedure presented makes use of the standard PNF Transformation, which was
defined in terms of a non-confluent rewrite system [3].

In this chapter, we investigate different prenexing strategies, i.e., prescriptions
that specify the behavior of a prenexing algorithm. We first present a theo-
retical framework for the description of prenexing strategies in Section 3.1. In
Section 3.2, we consider quantifiers paths as a representation of quantifier prece-
dence. We continue with the presentation of 14 different prenexing strategies
in Section 3.3. The different behavior of these strategies is demonstrated in an
example in Section 3.3.4.

3.1 A Theoretical Framework

Since we are interested in deciding satisfiability, it suffices to consider transfor-
mations which preserve satisfiability. The problem of computing, for a given
formula A, a satisfiability equivalent PCNF can be naturally separated into two
steps. Given a formula A,

1. transform A into a PNF formula A′, and then

2. transform the matrix of A′ into PCNF, using a structure preserving normal
form translation.

We have already seen this approach in Algorithm 1.4.6.

The latter step will typically employ a structure preserving normal form trans-
formation, like the one seen in Algorithm 1.4.6, which produces a PCNF formula
with a prenex consisting of existential quantifiers binding the introduced labels.
The combined effect of both phases does, however, still produce a proper PCNF

43
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formula, by the implicit appending of the prenex from the second step to that
of the first step.

Considering Morale 1.3.1, this procedure might not always be optimal, since
it may introduce one unnecessary quantifier alternation, whenever the prefix
produced by the first step ends in an universal quantifier. Fortunately, this
case can easily be identified by analyzing critical paths, which are presented in
Section 3.2, and we suggest the use of the following procedure for dealing with
such situations. Given a formula A,

1. transform ¬A into a PCNF formula A′ as above,

2. decide the satisfiability of A′, and

3. invert the result obtained from the satisfiability test.1

We want to investigate into the first step, and along the way present a theoretical
framework for the description of such transformations. For this framework, it
is practical to assume formulas in NNF to avoid certain technical difficulties
concerning the polarity of sub-formulas, which would obscure the general ideas
by awkward sidesteps. The resulting limitation is marginal, since the usual NNF
transformations, like, e.g., Algorithm 1.4.2, do preserve most of the structural
properties of a formula. We therefore introduce a new convention.

Convention 3.1.1 (Assumption of NNF Formulas)
In this section, when talking about formulas, we always assume that these for-
mulas are in NNF (unless stated otherwise).

The prenexing step can essentially be captured by a function that maps each
formula A to a suitable permutation of the quantifiers that occur in A. We
first define the set of quantifiers in a formula. For formulas in NNF, this is
straightforward:

Definition 3.1.1 (Quantifiers in a Formula)
For any formula A in NNF, the set quant(A) of quantifiers in A is defined by

quant(A) = {Qq | A|π = (Qq)B, for some position π}.

On the other hand, the propositional skeleton of a formula is what remains of
the formula after removing all quantifiers:

Definition 3.1.2 (Propositional Skeleton)
Let A be a formula. The propositional skeleton sk(A) of A is recursively defined
as follows:

sk(A) =















A if A = V ∪ {>,⊥};
¬sk(B) if A = ¬B;
sk(B) if A = (Qq)B;
sk(B) ◦ sk(C) if A = B ◦ C.

1Remember that QSAT is defined on closed formulas. So this last step is justified by
Theorem 1.3.1.
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Example 3.1.1 (Quantifiers in a Formula, Proposititional Skeleton)
Consider the formula

A = ¬(∃q)(q ∧ ((∀r)(∃s)((¬r) ∨ s))).

From A, we can extract the set of quantifiers {(∃q), (∀r), (∃s)} and the propo-
sitional skeleton ¬(q ∧ ((¬r) ∨ s)).

Next, we introduce the notion of prenexing functions, which are functions that
map formulas to quantifier prenexes (recall that F̃ denotes the set of closed,
cleansed formulas in NNF).

Definition 3.1.3 (Prenexing Function)
A function f : F̃ → Q? is called a prenexing function, if, for every A ∈ F̃ , it
holds that f(A) = (Q1q1) . . . (Qnqn) where quant(A) = {(Qiqi) | 1 ≤ i ≤ n}
and (Qiqi) 6= (Qjqj), for all 1 ≤ i < j ≤ n.

Every prenexing function has an associated transformation function, which maps
formulas to formulas.

Definition 3.1.4 (Transformation Function)
Let f be a prenexing function. Then the transformation function f̂ for f is

defined by f̂(A) = f(A)sk(A).

Transformation functions are thus suitable for the description of the important
class of PNF transformations that

1. preserve the set of quantifiers, and

2. do not change the propositional skeleton of a formula.

Such transformations can be seen as an abstraction of a series of applications of
the binary quantifier shifting rules. Our definition does, however, not encom-
pass transformations that rely on the quantifier fusion rule, which is somewhat
similar to binary quantifier shifting, but has the beneficial effect of eliminat-
ing some quantifiers. The transformations that we describe by transformation
functions never drop any quantifiers.

A prenexing function is correct, iff its corresponding transformation function
preserves the semantics of formulas.

Definition 3.1.5 (Correct Prenexing Function)
A prenexing function f is called correct w.r.t. logical equivalence, or simply

correct, if f̂(A) ≡ A for all A ∈ F̃ . Likewise, we say that f is correct w.r.t.

satisfiability equivalence, if f̂(A) ≡
sat

A for all A ∈ F̃ .

As we mentioned before, the weaker notion of satisfiability equivalence will
suffice for our purpose, since we are merely concerned about satisfiability. When
we simply speak of equivalence in this context, we mean satisfiability equivalence.

It is not hard to see that every correct transformation function represents a PNF
transformation that is correct in the sense that the original formula and the re-
sulting formula are equivalent. However, the definition per se does not have



46 CHAPTER 3. PRENEXING STRATEGIES

much practical value, since it makes direct use of the semantic notion of equiv-
alence. What we would like to get are syntactic transformations. Accordingly,
we would like a simple syntactic criterion that describes correct transformation
functions (or their underlying prenexing functions).

If we can provide an easily decidable order relation R, then we can also easily
check the following positional criterion.

Definition 3.1.6 (Prenexing Function Obeying Relation)
Let A be a formula, f a prenexing function and R ⊆ (Q × Q) a relation on
quantifiers. We then say that f obeys R for A, if f(A) = (Q1q1) . . . (Qnqn) with
(Qiqi)R(Qjqj) implies i < j, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n.

That is, wherever two quantifiers can be ordered w.r.t. R, then the prenexing
function must honor that relation for the image of A by arranging these quan-
tifiers in a corresponding left-to-right sequence. This way, we can view R as a
constituent of a partial specification of a prenexing function. The order deter-
mines the positional dependencies that should be respected by the prenexing
function, if such a function exists.

We said that a relation on quantifiers is a constituent of a partial specification.
An entire partial specification must provide a relation on quantifiers for each
formula. Technically, we define a specification as a function, but intuitively it
can be thought of as a collection of relations on quantifiers, one for each formula.

Definition 3.1.7 (Specification)
A (partial) specification is a total function θ : F̃ → (Q × Q) that maps every
formula to a relation on quantifiers.

Definition 3.1.8 (Prenexing Function Obeying Specification)
Let f be a prenexing function and θ a specification. Then f is said to obey θ,
if f obeys θ(A), for any formula A.

We are, of course, mostly interested in specifications that induce correct prenex-
ing functions. We call these correct specifications.

Definition 3.1.9 (Correct Specification)
Let θ be a specification. If every prenexing function f that obeys θ is correct,
then θ is said to be correct.

If we already have some specification θ, we can easily construct a more special
specification by extending relations.

Definition 3.1.10 (Specialization)
Let θ be a specification. A specification θ′ with θ(A) ⊆ θ′(A) for every A ∈ F̃
is called a specialization of θ.

Theorem 3.1.1 (Inheritance of Obedience)
Let θ be some specification, let θ′ be a specialization of θ, and let f be a
prenexing function that obeys θ′. Then f obeys θ.
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Proof. We assume that the prenexing function f obeys θ′, i.e., for any formula
A, it holds that f(A) = (Q1q1) . . . (Qnqn), such that (Qiqi)θ

′(A)(Qjqj) implies
i < j, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n. But θ′ is a specialization of θ,
therefore (Qiqi)θ(A)(Qjqj) implies (Qiqi)θ

′(A)(Qjqj). It is then easy to see
that (Qiqi)θ(A)(Qjqj) implies i < j, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n, i.e., f
obeys θ. �

Our interest in the notion of specialization is founded in the following central
theorem.

Theorem 3.1.2 (Specialization of Correct Specifications)
Any specialization of a correct specification is correct.

Proof. Let θ be a correct specification and θ′ a specialization of θ. We show
the theorem by contradiction, and thus assume that θ′ is incorrect, i.e., there is
some prenexing function f such that f obeys θ′, but f is incorrect. However, by
Theorem 3.1.1, f must also obey θ. But θ is a correct specification, so f must
be correct, which contradicts the above argument that f is incorrect. �

Our idea should now be fairly evident: If we can find some minimal correct
specification, then we can very easily construct correct prenexing functions,
and consequently new correct PNF transformations through specialization. A
prescription on how to perform this specialization is called prenexing strategy.

The only problem in this idea lies in finding such a minimal specification. Let us
approach this problem by contemplating possibly harmful behavior in a trans-
formation.

The quantifier commutability rule of Theorem 1.2.4 shows that adjacent quanti-
fiers containing the same quantifier symbol may be swapped, without affecting
the semantics. For quantifiers containing complementary quantifier symbols,
this is not generally true.

Example 3.1.2 (Swapping of Adjacent Quantifiers)
1. The equivalence (∀q)(∃r)(q ∨ r) ≡ (∃r)(∀q)(q ∨ r) does hold, but

2. the equivalence (∀q)(∃r)(q ↔ r) ≡ (∃r)(∀q)(q ↔ r) does not hold.

We may thus consider a specification that disallows swapping that would affect
the semantics of a formula.

Of course, in a sequence of “illegal” swapping operations, the adverse effects are
not unlikely to cancel each other and such a transformation might, as a whole,
eventually produce formulas that are equivalent to the original ones. However,
such interactions are presumably hard to capture in a syntactic way.

If we leave aside such intricate interactions, there still remains the question of
how to distinguish illegal swapping operations from harmless ones in a syntactic
way. This is still an intrinsically hard problem, for which we cannot offer a
completely satisfactory solution. Instead, we suggest the usage of a weaker
condition that sorts out all potentially dangerous swapping operations. In our
terminology, the condition is given through the following relation on quantifiers.
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Definition 3.1.11 (Quantifier Precedence Relation)
1. Let A be a formula. The Quantifier Precedence Relation (QPR) JA of A

is defined as the transitive closure of the following relation RA, defined by

Qq RA Rr ⇐⇒ qpos(A, q) ≺ qpos(A, r) and Q 6= R,

for all {Qq,Rr} ⊆ quant(A).

2. The quantifier precedence specification J is defined by

J (A) =JA, for any A ∈ F̃ .

Example 3.1.3 (Quantifier Precedence)
Consider the formula

(∃q)(∀r)((∃s)(q ∨ (r ∨ s)) ∧ (∀t)(q ∨ (r ∨ t))).

The quantifier precedence relation of this formula is

{(∃q, ∀r), (∃q, ∃s), (∃q, ∀t), (∀r, ∃s)}.

Theorem 3.1.3 (Correctness of Quantifier Precedence Specification)
The quantifier precedence specification is correct.

Proof. We want to show that the quantifier precedence specification is correct,
i.e., that every prenexing function f that obeys JA for any formula A is correct.
So let A be some formula, and let f be a prenexing function that obeys JA. To
prove the correctness of f , we have to show that f(A)sk(A) ≡ A.

We do this by showing how the formula

f(A)sk(A) = (Q1q1 . . . Qnqn)sk(A)

can be constructed from A, through a series of applications of quantifier shifting
rules from Theorem 1.2.4. In order to construct the prefix (Q1q1 . . .Qnqn), we
move each quantifier into its place, one after the other, starting with (Q1q1),
then (Q2q2), and so on.

If two quantifiers (Qiqi) and (Qjqj) with i 6= j occur A at parallel positions,
then they can be moved independently of each other. The only situation that
would require special attention is the case, where some quantifier (Qiqi) must
be moved into its proper place, but is blocked by some other quantifier (Qjqj).
However, f obeys JA, therefore qpos(A, qj) ≺ qpos(A, qi) implies j < i, i.e., the
situation can never occur, because blocking quantifiers are always moved before
the quantifiers they block are moved.

It is clear that the construction of the prefix f(A) just described leaves behind
the skeleton of A, so we have actually constructed f(A)sk(A) from A in an
equivalence preserving way. �
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3.2 Quantifier Paths and Alternations

As we have seen in Theorem 1.3.4, the theoretical complexity of the problem
of deciding the satisfiability of a formula A in PNF depends on the number of
alternations of quantifier symbols in the prenex of A. It therefore makes sense
to require that, for a prenex function f , the image f(A) of A should contain a
minimal number of alternations of quantifier symbols, for any formula A.

Definition 3.2.1 (Paths, Alternations, Critical Paths)
1. Let A be a formula. The set pth(A) ⊆ Q? of quantifier paths of A is

defined by

pth(A) =







pth(B1) ∪ pth(B2) if A = B1 ◦B2;
{Qqγ | γ ∈ pth(B)} if A = (Qq)B;
{ε} otherwise.

Recall that we consider formulas in NNF only.

2. Let γ be a quantifier path. The number alt(γ) of quantifier alternations
in γ is recursively defined by

alt(γ) =







0 if γ ∈ Q ∪ ε;
alt(Qrδ) if γ = (Qq)(Qr)δ;
alt(Qrδ) + 1 if γ = (Qq)(Qr)δ.

3. Let G be a set of quantifier paths. The maximal number of quantifier
alternations malt(G) in G is defined by

malt(G) = max
γ∈G

alt(γ).

4. Let A be a formula. The maximal number of quantifier alternations
malt(A) in A is defined by

malt(A) = malt(pth(A)).

5. Let G be a set of quantifier paths. The set of critical paths crit(G) in G
are defined by

crit(G) = {γ | alt(γ) = malt(G), γ ∈ G}.

6. Let A be a formula. The set of critical paths crit(A) of A is defined by

crit(A) = crit(pth(A)).

It is easy to see that, for formulas in PNF, there is exactly one quantifier path,
and that the value of malt( · ) of such formulas is identical to the number of
quantifier symbol alternations.

Notation 3.2.1 (Shorthand for Quantifier Paths)
As a shorthand for a quantifier path Qq1 . . .Qqn, we simply write Q(q1 . . . qn).
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Example 3.2.1 (Shorthand for Quantifier Paths)
The quantifier path ∀q1∀q2∃q3∃q4∃q5∀q6 may be written in a more concise form
as ∀(q1q2)∃(q3q4q5)∀(q6).

Theorem 3.2.1 (Bound for Quantifier Alternations)
Let A be some formula with malt(A) = n.

1. If all paths γ ∈ crit(A) start with the same quantifier symbol Q, then we
can obtain from A a formula A′ in PNF such that malt(A′) = n and the
prenex of A′ starts with the quantifier symbol Q.

2. Otherwise, i.e, if crit(A) contains two or more paths, some of which start
with the quantifier symbol Q and some of which start with the quantifier
symbol Q, then we can obtain from A a formula A′ in PNF such that
malt(A′) = n + 1 and the prenex of A′ starts with the quantifier symbol
Q.2

Proof. We give a proof sketch. Let A be some formula with malt(A) = n. We
show the theorem by induction on the structure of A.

Case A ∈ V ∪ {>,⊥}∪ {v,¬v | v ∈ V}: Then A is in PNF, i.e., A′ = A, and
the theorem trivially holds.

Case A = (Qq)A1: We distinguish two sub-cases:

1. crit(A1) contains only paths that start with the same quantifier sym-
bol R.

By the induction hypothesis, we may replace A1 with a formula A′
1

in PNF such that malt(A′
1) = malt(A1) and the prenex of A′

1 starts
with the quantifier symbol R. Clearly, the prenex of A′ starts with
the quantifier symbol Q.

Concerning the length of the prenex, we make the following observa-
tion. If Q = R, then

malt(A′) = malt(A′
1) = malt(A1) = malt(A) = n.

On the other hand, if Q 6= R, then

malt(A′) = malt(A′
1) + 1 = malt(A1) + 1 = malt(A) = n.

2. crit(A1) contains either paths that start with Q and also paths that
start with the quantifier symbol Q.

By the induction hypothesis, we can replace A1 with a formula A′
1 in

PNF such that malt(A′
1) = malt(A1)+1 and the prenex of A′

1 starts
with the quantifier symbol Q. Clearly, the prenex of A′ starts with
the quantifier symbol Q.

Concerning the length of the prenex, we make the following observa-
tion.

malt(A′) = malt(A′
1) = malt(A1) + 1 = malt(A) + 1 = n+ 1.

2Note that, for this part of the definition, we can likewise obtain a prenex that starts with
Q, because of the symmetry of Q and Q.
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Case A = A1 ◦A2: We distinguish three sub-cases:

1. crit(A1)∪crit(A2) contains only paths that start with the same quan-
tifier symbol Q.

By the induction hypothesis, we may replace A1 with a formula A′
1

in PNF, such that malt(A′
1) = malt(A1) and the prenex of A′

1 starts
with the quantifier symbol Q. Likewise, we may replace A2 with a
formula A′

2, with malt(A′
2) = malt(A2) and with a prenex that starts

with the quantifier symbol Q.

In the prenexing steps, we first try to move out as many quantifiers
containing the quantifier symbol Q as possible by applying the binary
quantifier shifting rules. Next, we try to move out as many quantifiers
containing the quantifier symbol Q as possible, then we start over
again with the quantifiers that contain the quantifier symbol Q, etc.

It is not hard to see that this procedure eventually yields a formula
A′ that is in PNF, with

malt(A′) = max(malt(A′
1),malt(A′

2))(= n)

and with a prenex that starts with the quantifier symbol Q.

2. crit(A1) and crit(A2) each contain either paths that start with the
quantifier symbol Q and also paths that start with Q.

This sub-case is similar to the first one. We first replace the two im-
mediate sub-formulas A1 and A2 with A′

1 and A′
2, respectively, with

the difference that now malt(A′
1) = malt(A1) + 1 and malt(A′

2) =
malt(A2)+1. The prenex of either sub-formula starts with the quan-
tifier symbol Q, and we can merge these in exactly the same way as
in the first case, only now

malt(A′) = max(malt(A′
1),malt(A′

2))(= n+ 1).

3. crit(A1) contains either paths that start with Q and also paths that
start with the quantifier symbol Q, but crit(A2) contains only paths
that start with the quantifier symbol R.

By the induction hypothesis, we can replace A1 with a formula A′
1 in

PNF such that malt(A′
1) = malt(A1)+1 and the prenex of A′

1 starts
with the quantifier symbol Q. Likewise, we can replace A2 with a
formula A′

2 in PNF such that malt(A′
2) = malt(A2) and the prenex

of A′
2 starts with the quantifier symbol R.

We proceed to merging the prenexes just like in the first case, start-
ing with quantifiers that contain the quantifier symbol Q and finally
obtain a formula A′ that is in PNF, with

malt(A′) = max(malt(A′
1),malt(A′

2))(= n+ 1)

and a prenex that starts with the quantifier symbol Q.

�

Any set of quantifier paths implicitly describes a relation on quantifiers.
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Definition 3.2.2 (Associated Relation of a Set of Paths)
Let G be a set of quantifier paths. Then the associated relation on quantifiers
aqr(G) of G is defined as the transitive closure of the following relation RA,
defined by

Qq aqr(G) Rr ⇐⇒ γ1Qqγ2Rrγ3 ∈ G and Q 6= R,

for some quantifiers paths γ1, γ2, and γ3.

Note the similarity of this definition to Defintion 3.1.11.

The connection between quantifier paths and quantifier relations is established
by the following theorem.

Theorem 3.2.2 (Associated Relation of Paths of a Formula)
For any formula A in NNF, it holds that aqr(pth(A)) =JA.

Theorem 3.2.3 (Path Augmentation)
Let G, G1, and G2 be sets of paths, with

G1 = G ∪ {γ} with γ = γ1γ2 . . . γn, and
G2 = G ∪ {γ′} with γ′ = γ1Q1q1γ2Q2q2 . . . γn−1Qn−1qn−1γn.

Then it holds that aqr(G1) ⊆ aqr(G2).

Notation 3.2.2 (Extension of Relations on Paths)
Let R ⊆ (Q×Q) be some relation on quantifiers. Furthermore, let

γ = Q1(q1,1 . . . q1,k1
) . . . Qn(qn,1 . . . qn,kn

), and
δ = R1(r1,1 . . . r1,l1) . . . Rm(rm,1 . . . rm,lm)

be quantifier paths, with Qi+1 = Qi, for 1 ≤ i < n, and Ri+1 = Ri, for
1 ≤ i < m. Then γR δ is a shorthand for the following proposition:

Qiqi,j RRiri,k , for any 1 ≤ i ≤ min(n,m), 1 ≤ j ≤ ni and 1 ≤ k ≤ mi.

3.3 Prenexing Strategies

3.3.1 Simple Symbol Based Strategies

This class of strategies is best described operationally, as an algorithm on quan-
tifier paths.

Algorithm 3.3.1 (Simple Symbol Based Path Merging)
Signature: {adeu, aued, d, edau, euad, u} × F̃→Q?

The algorithm takes an input formula A and computes a quantifier path, by
performing the following steps:

1. If pth(A) = ∅, then return the empty path ε as result.
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2. Choose any path γ0 ∈ crit(A). If possible, choose one that ends in an
existential quantifier symbol3. Furthermore, let G0 = pth(A) \ {γ0}.

3. Iterate the following steps, successively producing paths γ0, γ1, . . . and sets
G0,G1, . . ., until Gi is empty. For the i-th iteration, perform the following
steps.

(a) Choose any path δi ∈ crit(Gi), and let Gi+1 = Gi \ {δi}.

(b) Generate a new path γi+1 by merging the paths

γi = ζiQ1α1 . . . Qnαn and
δi = ζiR1β1 . . . Rmβm,

where

i. ζi is the longest common prefix of γi and δi,

ii. αj is a sequence

αj = (qj,1, qj,2, . . . , qj,kj
)

of variables, for 1 ≤ j ≤ n,

iii. βj is a sequence

βj = (rj,1, rj,2, . . . , rj,lj )

of variables, for 1 ≤ j ≤ m,

iv. Qj+1 = Qj , for 1 ≤ j < n, and

v. Rj+1 = Rj , for 1 ≤ j < m.

(c) If n = m and Q1 6= R1, then generate the new path

γi+1 = R1β1Q1α1 . . . RnβnQnαn.

Otherwise, generate the new path in the following way. First deter-
mine an index d, depending on the prenexing strategy.

Strategy adeu: If R1 = ∃, then let d = 1, else let d = 0.

Strategy aued: If Rm = ∃, then let d = m− 1, else let d = m.

Strategy edau: If R1 = ∀, then let d = 1, else let d = 0.

Strategy euad: If Rm = ∀, then let d = m− 1, else let d = m.

Strategy d: Let d = 0.

Strategy u: Let d = m.

Let c = m− n+ 1. Given the index d, create a new path

γi+1 = ζi
Q1α1R1β1 . . . QdαdRdβd

Qd+1αd+1 . . . Qd+c−1αd+c−1

Rd+cβd+cQd+cαd+c . . . RmβmQnαn.

3If γ0 ends in an existential quantifier symbol, then the prenex (without labels) will end
in an existential quantifier symbol too. The existential quantifier bindings obtained from
the labeling process can then be appended to this path, without introducing any additional
quantifier alternation (c.f. the beginning of Chapter 3.1).



54 CHAPTER 3. PRENEXING STRATEGIES

4. Return the path γw as result, where w is the number of iterations that
were performed.

It is clear that the algorithm terminates, as G0 is finite and each iteration re-
moves one element from Gi to produce Gi+1, until the empty set is reached.

Example 3.3.1 (Simple Symbol Based Path Merging)
Assume that formula A yields the following set of paths.

pth(A) = {∃q1∀q2∀r1∃r2∀r3,
∃q1∀q2∃s1∀s2∃s3∀s4∃s5∀s6}.

The set crit(A) contains a single path, so the algorithm chooses

γ0 = ∃q1∀q2∃s1∀s2∃s3∀s4∃s5∀s6, and
δ0 = ∃q1∀q2∀r1∃r2∀r3.

The algorithm then merges these two paths into a new path γ1, depending on
the selected strategy.

Strategy adeu: γ1 = ∃q1∀q2∃s1∀s2∃s3∀r1∀s4∃r2∃s5∀r3∀s6;

Strategy aued: γ1 = ∃q1∀q2∃s1∀r1∀s2∃r2∃s3∀r3∀s4∃s5∀s6;

Strategy edau: γ1 = ∃q1∀q2∃s1∀r1∀s2∃s3∀s4∃r2∃s5∀r3∀s6;

Strategy euad: γ1 = ∃q1∀q2∃s1∀r1∀s2∃r2∃s3∀s4∃s5∀r3∀s6;

Strategy d: γ1 = ∃q1∀q2∃s1∀s2∃s3∀r1∀s4∃r2∃s5∀r3∀s6;

Strategy u: γ1 = ∃q1∀q2∃s1∀r1∀s2∃r2∃s3∀r3∀s4∃s5∀s6.

Since G1 is empty, the algorithm terminates and returns γ1.

Definition 3.3.1 (Simple Symbol Based Strategies)
The simple symbol based strategies θx, for x ∈ {adeu, aued, edau, euad, d, u}, are
given by the following definition.

θx(A) = aqr({γx,A}), where γx,A is the output of Algorithm 3.3.1 for the input
(x,A).

Theorem 3.3.1 (Correctness of Simple Symbol Based Strategies)
The simple symbol based strategies θx, for x ∈ {adeu, aued, edau, euad, d, u}, are
correct.

Proof. We give a proof sketch. For formula A with pth(A) = ∅, the algorithm
returns the empty path ε, and it is trivial that

JA= ∅ ⊆ aqr(ε) = θx(A).

We note this result, and turn to the more interesting case where pth(A) 6= ∅.
So we assume any formula A with k ≥ 0, where k = |pth(A)| − 1. We can see
that the algorithm works by merging all paths into a single path. During the
i-th iteration of the loop, the paths γi and δi are merged into a new path γi+1
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in such a way that γi+1 augments both, γi and δi. Therefore, it follows from
Theorem 3.2.3 that

aqr(H ∪ {γi}) ⊆ aqr(H ∪ {γi+1}), and
aqr(H′ ∪ {δi}) ⊆ aqr(H′ ∪ {γi+1}),

for any sets of paths H and H′. If we now let H = Gi∪{δi}, and H′ = Gi∪{γi+1},
we obtain

aqr((Gi ∪ {δi}) ∪ {γi}) ⊆ aqr((Gi ∪ {δi}) ∪ {γi+1}) =
= aqr((Gi ∪ {γi+1}) ∪ {δi}) ⊆ aqr((Gi ∪ {γi+1}) ∪ {γi+1}) =
= aqr(Gi ∪ {γi+1}).

By the definition of the algorithm pth(A) = G0 ∪ {γ0}, and Gi = Gi+1 ∪ {δi+1},
for i < k. It is also clear that Gk = ∅. By a simple inductive argument, we can
thus obtain

aqr(pth(A)) = aqr((G0 ∪ {δ0}) ∪ γ0) ⊆ . . . ⊆ aqr(Gi−1 ∪ {γi}) =
= aqr((Gi ∪ {δi}) ∪ {γi}) ⊆ . . . ⊆ aqr(Gk ∪ {γk+1}) =
= aqr({γk+1}).

aqr(pth(A)) = aqr((G0 ∪ {δ0}) ∪ γ0) ⊆ . . . ⊆ aqr(Gi−1 ∪ {γi}) =
= aqr((Gi ∪ {δi}) ∪ {γi}) ⊆ . . . ⊆ aqr(Gk ∪ {γk+1}) =
= aqr({γk+1}).

Therefore, we have shown, for any formula A, that

JA= aqr(pth(A)) ⊆ aqr({γk+1}) = θx(A),

where x ∈ {adeu, aued, edau, euad, d, u}, i.e., all these strategies are specializa-
tions of the quantifier precedence specification J. Therefore, they are correct,
by Theorems 3.1.2 and 3.1.3. �

3.3.2 Heuristic Based Strategies

We first introduce the notion of a heuristic function in our context.

Definition 3.3.2 (Heuristic Function)
Let A be a set on which a total order @ has been defined. Then any function
h : (F × V) → A is called a heuristic function.

In our heuristic based strategies, we employ three heuristic functions that were
originally designed for use in QDLL for the selection of splitting variables. The
intended use of these heuristics is the choice of appropriate splitting variables
in applications of the elimination rules from Definition 2.1.4.

Such heuristics are typically based on the CNF matrix of the formula, and the
heuristics we choose are no exception in this aspect. Since the QDLL procedure
applies the eliminations rules on different formulas within the semantic tree, the
heuristic values for the same literal may be different for different nodes. During
prenexing, however, we are confronted with a single static matrix, so we have
to expect a globally different behavior.
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We can, however, expect a similar behavior w.r.t. the topmost quantifiers. For
the topmost quantifiers, the heuristics will return essentially the same result,
since the matrices are the same. However, the deeper QDLL climbs down the
semantic tree, the more deviations will occurs.

Our intuition is that our application of the heuristics might produce a prenex
formula that has to offer attractive sets of variables for the topmost quantifiers.
This is especially desirable, considering the fact that the topmost choices in
reduction are potentially most critical for the runtime behavior of QDLL, as
the early availability of the semantic value of the first branch can sometimes
eliminate the need to consider large subtrees.

Definition 3.3.3 (Common Heuristic Functions)
Recall the literal counts that were introduced in Definition 1.1.19. We define
the following heuristic functions.

Largest Combined Sum simply counts the number of occurrences of a vari-
able. It is defined by

hlcs(A, q) =

mcl(A)
∑

i=1

(lcnt(A, q, i) + lcnt(A,¬q, i)).

As the total order relation @ from Definition 3.3.2, we choose the greater-
than relation < on N.

Jeroslow–Wang is similar, but gives more weight to small clauses. It is defined
by

hjw(A, q) =

mcl(A)
∑

i=1

(lcnt(A, q, i) + lcnt(A,¬q, i)) · 2−i.

Here we choose < on Q as the total order relation.

Boehm is the most intricate of our three heuristic functions. Just like the
Jeroslow–Wang measure, it prefers small clauses, but instead of using
different weights for clauses of different length, a vector is created, where
each component corresponds to a specific clause length. A lexicographic
order is then used to compare these vectors.

The heuristic function offers two tuning parameters, α and β, which de-
termine the relative influence of positive literal occurrences (expectation:
removal of a large number of clauses) versus negative ones (expectation:
size reduction of a large number of clauses). We use the values α = 1
and β = 2, which are suggested in literature [55, 43]. Given the auxiliary
definition of

hbo(A, q, i) = α · max(lcnt(A, q, i), lcnt(A,¬q, i)) +
+ β · min(lcnt(A, q, i), lcnt(A,¬q, i)),

the heuristic function is defined by

hbhm(A, q) =







hbo(A, q, 1)
...

hbo(A, q,mcl(A))






.



3.3. PRENEXING STRATEGIES 57

As the total order relation @ from Definition 3.3.2, we choose the lexico-
graphic order <lex, which is defined by







a1

...
an






<lex







b1
...
bn







if there exists some k ≤ n,
such that ai = bi, for all i < k,
and ak < bk.

Algorithm 3.3.2 (Heuristic Based Path Merging)
Signature: {bhmmax, bhmmin, lcsmax, lcsmin, jwmax, jwmin} × F̃→Q?

The algorithm takes an input formula A and computes a quantifier path, by
performing the following steps:

1. If pth(A) = ∅, then return the empty path ε as result.

2. Let γ0 = ε. Choose any path δ0 ∈ crit(A), if possible one that ends in an
existential quantifier4. and let G0 = pth(A).

3. Iterate the following steps, successively producing paths γ1, γ2, . . . and sets
G0,G1, . . ., until some set Gi is empty. For the i-th iteration, perform the
following steps.

(a) Considering the path δi = Rrδ, create a new path

γi+1 = γiRr.

(b) Generate a new set of paths Gi+1, by stripping the leading quantifier
Rr from all paths in Gi, i.e., let

Gi+1 = (Gi \ {Rrδ | Rrδ ∈ Gi}) ∪ {δ | δ 6= ε,Rrδ ∈ Gi}.

(c) If Gi+1 is empty, then return the path γi+1 as a result.

(d) Let H the set of all paths from Gi+1 with a maximal number of
quantifier alternations, i.e.,

H = {δ | alt(δ) = max{alt(δ′) | δ′ ∈ Gi+1}, δ ∈ Gi+1}.

If H contains a path that starts with the quantifier symbol R, then
let H′ be the set of all paths from Gi+1 that start with the quantifier
symbol R, i.e.,

H′ = {δ | δ = Rsδ′, s ∈ V , δ ∈ Gi+1}.

Otherwise, let H′ = Gi+1.

Now choose a new path δi+1 = Rrδ from the set H′, depending on
the prenexing strategy, as follows.

Strategy bhmmax: Choose δ, such that hbhm(A, r) is maximal.

Strategy bhmmin: Choose δ, such that hbhm(A, r) is minimal.

Strategy lcsmax: Choose δ, such that hlcs(A, r) is maximal.

Strategy lcsmin: Choose δ, such that hlcs(A, r) is minimal.

4For the same reason as in Algorithm 3.3.1.



58 CHAPTER 3. PRENEXING STRATEGIES

Strategy jwmax: Choose δ, such that hjw(A, r) is maximal.

Strategy jwmin: Choose δ, such that hjw(A, r) is minimal.

Definition 3.3.4 (Heuristic Based Strategies)
The simple symbol based strategies θx, for

x ∈ {bhmmax, bhmmin, lcsmax, lcsmin, jwmax, jwmin},

are given by the following definition.

θx(A) = aqr({γx,A}), where γx,A is the output of Algorithm 3.3.2 for the input
(x,A).

3.3.3 Dumb Strategies

Although Morale 1.3.1 tells us that we should prefer prenexing strategies that
minimize the number of quantifier alterations in the prenex, such strategies
need not necessarily be optimal in all cases. We can conceive certain classes of
formulas for which rather simple strategies yield formulas for which the satisfi-
ability problem is empirically easier to decide. Also, simple strategies introduce
a smaller computational overhead into the translation process.

Considering that the set of quantifier paths of a formula forms a forest structure,
we can easily derive a linearization of each tree along a depth or breadth first
search. It is obvious that such a procedure preserves any previous precedences.

Definition 3.3.5 (Dumb Right Depth First Strategy)
The strategy dumb right depth first θdrdf is given by the following definition.

1. Q1q1 θdrdf(A) Q2q2, if Q1q1 JA Q2q2;

2. Q1q1 θdrdf(A) Q2q2

{

if A|%1π1
= (Q1q1)B1;

if A|%2π2
= (Q2q2)B2.

Definition 3.3.6 (Dumb Right Breadth First Strategy)
The strategy dumb right breadth first θdrbf is given by the following definition.

1. Q1q1 θdrbf(A) Q2q2, if Q1q1 JA Q2q2;

2. If A1 ◦ A2 is a sub-formula of A, γ1 ∈ pth(A1) and γ2 ∈ pth(A2), then
γ1 θdrbf(A) γ2.

Theorem 3.3.2 (Correctness of Dumb Strategies)
The strategies θdrdf and θdrbf are correct.

Proof. For any formula A, θdrdf(A) and θdrbf(A) are, by definition, supersets of
JA, i.e., both strategies are specializations of the quantifier precedence specifi-
cation J. Therefore, they are correct, by Theorems 3.1.2 and 3.1.3. �
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3.3.4 An Example of Strategy Applications

Example 3.3.2 (Strategy Application)
We illustrate the effects of the various strategies on the formula

A = (∀q1)(((∀r1)(∃r2)B)∧
((∃s1)(∀s2)(∃s3)(∀s4)(∃s5)C)∧
((∃t1)(∀t2)D))),

with the sub-formulas

B = [〈r1〉, 〈r2〉],
C = [〈q〉, 〈s1〉, 〈s2〉, 〈q, s3, s4, s5〉, 〈q, s3, s4,¬s5〉,

〈q, s3,¬s4, s5〉, 〈q, s3,¬s4,¬s5〉, 〈q,¬s3, s4, s5〉,
〈q,¬s3, s4,¬s5〉];

D = [〈q, t1, t2〉, 〈q, t1,¬t2〉, 〈q,¬t1, t2〉, 〈q,¬t1,¬t2〉,
〈¬q, t1, t2〉].

Since sk(A) is already in CNF, the heuristic values for the variables can be easily
obtained directly from A. Table 3.1 summarizes these values.

Figure 3.1 represents the relation JA as a graph. The graph can be essentially
interpreted like a Hasse diagram, with two specialties. Firstly, we have collected
quantifiers (Qq1) . . . (Qqn) that

1. are pairwise not related,

2. share the same predecessor, and

3. share the same set of successors

into single nodes. Secondly, the nodes in the diagram are marked by the respec-
tive quantifier symbol and (in parentheses) the number quantifiers that each
node represents.

Figures 3.2 through 3.9 augment Figure 3.1 with additional edges, drawn in a
dashed style. Any of these edges indicates that the representation of the special-
ized relation θx(A) is obtained from Figure 3.1 by merging the corresponding
nodes.
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x hlcs(A, x) hjw(A, x) hbhm(A, x)
q 12 24 (1,0,6,5)
r1 1 8 (1,0,0,0)
r2 1 8 (1,0,0,0)
s1 1 8 (1,0,0,0)
s2 1 8 (1,0,0,0)
s3 6 6 (0,0,0,8)
s4 6 6 (0,0,0,8)
s5 6 6 (0,0,0,9)
t1 5 10 (0,0,7,0)
t2 5 10 (0,0,7,0)

Table 3.1: Heuristic values for formula A from Example 3.3.2.

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.1: Structure of the quantifier precedence relation for formula A from
Example 3.3.2.
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∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.2: Application of strategy u (Example 3.3.2).

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.3: Application of strategy d (Example 3.3.2).
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∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.4: Application of strategy aued (Example 3.3.2).

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.5: Application of strategy edau (Example 3.3.2).
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∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.6: Application of strategy euad (Example 3.3.2).

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.7: Application of strategy adeu (Example 3.3.2).
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∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.8: Application of strategy drdf (Example 3.3.2).

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.9: Application of strategy drbf (Example 3.3.2).
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∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.10: Application of strategy lcsmax (Example 3.3.2).

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.11: Application of strategy lcsmin (Example 3.3.2).
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∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.12: Application of strategy jwmax (Example 3.3.2).

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.13: Application of strategy jwmin (Example 3.3.2).
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∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.14: Application of strategy bhmmax (Example 3.3.2).

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

∃  (1)

∀  (1)

Figure 3.15: Application of strategy bhmmin (Example 3.3.2).
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Chapter 4

Case Study: Nested

Counterfactuals

In this chapter, we present a statistical experiment that was carried out with
the objectives of

1. establishing statistical evidence that the choice of a prenexing strategy has
an effect on the observable behavior of QSAT decision procedures and of
quantifying such effects w.r.t. the strategies presented in Section 3.3, and

2. of obtaining preliminary insight into the connection between strategy
choices and their effects.

For this, we consider the class of expressions known as nested counterfactuals
[21, 29].

A counterfactual A > B can be interpreted as a conditional query with an in-
formal reading like “If A held, would then B necessarily hold too?” A nested
counterfactual (NCF) is an expression obtained by placing (possibly negated and
possibly nested) counterfactuals in the premise and/or conclusion of a counter-
factual. Evidently, nested counterfactuals represent an interesting class of in-
ferential reasoning problems, and their application, e.g., in diagnosis problems,
should be quite obvious.1

Concerning the complexity of deciding the semantic value of nested counter-
factuals, Eiter and Gottlob [21] have presented a wealth of interesting results.
Notably, they have shown that the problem of deciding right nested counterfac-
tuals is ΠP

k+2-complete for a nesting depths < k, and PSPACE-complete, if the
nesting depth is unbounded.

In [20], we have presented a translation of right nested counterfactuals to QBFs.
The QBFs obtained from this translation show enough structure to form a rea-
sonable population for evaluating the behavior of the various prenexing strate-
gies we have considered in Section 3.3.

1We will soon present a tiny example from this domain for illustrative purposes.
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We are thus able to present quantitative empirical results about the effect of
our prenexing strategies on the observable behavior of several QSAT decision
procedures, w.r.t. an interesting population of formulas.

The outline of this chapter is as follows. In Section 4.1 we first introduce nested
counterfactuals. In Section 4.2 we present a simple generator for random syn-
thetic nested counterfactuals, which was used in our experiment. In Section 4.3
we present the QBF translation for right nested counterfactuals, which was
first published in [20]. Section 4.4 explains how preliminary observations were
used to work out sane ranges for the parameters for the nested counterfactual
generator. These parameter ranges are discussed in detail in Section 4.5. An
unpleasant complication is introduced into our experiment through the neces-
sity to limit the maximal running time of the decision procedures used, through
a timeout mechanism. We discuss the problems that may arise from this neces-
sity in Section 4.6. In Section 4.7 we present the distribution of the empirical
running times of the decision procedures that were used in our experiment, in
order to obtain a first impression of our experimental data. Section 4.8 argues
that we need a special measure in order to obtain a useful interpretation of
our raw data. In Section 4.9, we propose such a measure, which is based on
the notion of quantiles. In Section 4.10 we consider the running time overhead
introduced by prenexing. Finally, we give an interpretation of our experiment
in Section 4.11.

4.1 Nested Counterfactuals

In this work, we restrict ourselves to right nested counterfactuals, which are
defined as follows.

Definition 4.1.1 (Right Nested Counterfactuals)
The set C of right nested counterfactuals is defined inductively by

1. A,B ∈ B ⇒ (A > B) ∈ C;

2. A ∈ B, N ∈ C ⇒ (A > N) ∈ C;

3. N ∈ C ⇒ (¬N) ∈ C.

Notation 4.1.1
1. We usually abbreviate nested counterfactuals of the form (¬(A > N)) as

(A ≯ N).

2. As usual, we are allowed to omit outermost parentheses. Furthermore,
we assume the operators > and ≯ to be right associative and may, as a
consequence, drop some more parentheses.

Informally, a counterfactual A > B can be read as “If A held, would then
B necessarily hold too?” What distinguishes the counterfactual A > B from
the material implication A → B is the fact that, given a theory T implying
¬A, A → B is necessarily true, whereas A > B need not be, because only
A-consistent subtheories of T are considered in the latter case. The following
example of a nested counterfactual, which considers a scenario taken from the
realm of diagnosis, is due to [21].
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Example 4.1.1
Assume that the structure and the functionality of the electric system of a car
are encoded in a theory T . We consider the following question: If the headlight
switch was turned on (q0) and the light did not shine (¬q1), then would it shine
(q1) if the fuse protecting the light would had been replaced (q2) by a new one?
We can formulate this question as the nested counterfactual

(q0 ∧ ¬q1) > (q2 > q1).

Definition 4.1.2 (Nesting Depth)
The nesting depth nd(N) of a nested counterfactual N is recursively defined by:

nd(N) =







nd(A > N ′) if N = (A ≯ N ′);
1 + nd(N ′) if N = (A > N ′) and N ′ /∈ B;
0 otherwise.

Definition 4.1.3 (Evaluation Function for Nested Counterfactuals)
The evaluation function vncf : P(B)× C → {0, 1} is recursively defined by

1. vncf (T , A ≯ N) = 1 − vncf (T , A > N);

2. vncf (T , A > N) =























1 if nd(N) > 0 and for every A ∈ mct(A, T )
it holds that vncf (A ∪ {A}, N) = 1;

1 if nd(N) = 0 and for every A ∈ mct(A, T )
it holds that A ∪ {A} ` N ;

0 otherwise.

Definition 4.1.4 (Validity of Nested Counterfactuals)
A nested counterfactual N is valid w.r.t. a theory T , if vncf (T , N) = 1. Other-
wise, it is said to be unsatisfiable w.r.t. theory T .

Theorem 4.1.1 (Complexity of Nested Counterfactual Evaluation)
1. The computational problem of evaluating right nested counterfactuals is

ΠP
k+2-complete, if the nesting depth is bound by k.

2. The computational problem of evaluating right nested counterfactuals is
PSPACE-complete, if the nesting depth is unbounded.

Proof. See [21]. �

4.2 The NCF Generator

At the early stage of our experiment, we developed a simple generator for nested
counterfactuals (c.f. Section B.4), which is parameterized by the following vari-
ables: the number n of clauses, the number m of literals per clause, the number
o of variables and the nesting depth k. Upon invocation, the formula generator
produces a single nested counterfactual with the following structure:

1. q0 ≯ (q1 ≯ (. . . ≯ (qk ≯ qk+1) . . .)) for odd k, yielding QBFs with a
decision problem in ΣP

k+2 and
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2. q0 > (q1 ≯ (. . . ≯ (qk ≯ qk+1) . . .)) for even k, yielding QBFs with a
decision problem in ΠP

k+2.

In both cases, the sequence q0, . . . , qn of propositional variables is a random
combination (with repetitions) from a set of o distinct variables.

Moreover, an associated theory

{l1,1 ∨ . . . ∨ l1,m, . . . , ln,m ∨ . . . ∨ ln,m}

is generated, where the sequence

bl1,1c, . . . , bl1,mc, . . . , bln,mc, . . . , bln,mc

is, again, a random combination (with repetitions) from the above set of vari-
ables. Each of these literals is negative with a probability of 0.5.

4.3 Translation of NCFs

What follows is a translation of right nested counterfactuals to QBFs, as pre-
sented in [20], with some minor modifications to improve the readability and,
of course, the necessary adoptions to the notations used in the present work.

Definition 4.3.1 (NCF Translation)
Let N be a nested counterfactual with the structure

N = A0 �0 (A1 �1 (. . . �k−1 (Ak �k Ak+1) . . .)),

with �i∈ {>,≯}. Let k = nd(N), and let

T = {B0, . . . , Bn}

be a propositional theory. Furthermore, we assume the following sets of vari-
ables. Let

Si = {si,1, . . . , si,n+i} and Ui = {ui,1, . . . , ui,n+i},

for 0 ≤ i ≤ k be sets of fresh propositional variables, and let

Wi = free(T ∪ {A0, . . . , Ai}),

for 0 ≤ i ≤ k + 1. Now define formulas Ei, Mi, Gi, for 0 ≤ i ≤ k, by

Ei =
(

n+i
∧

j=0

(si,j → ui,j)
)

∧
(

n+i
∨

j=0

(¬si,j ∧ ui,j)
)

;

Mi =
(

n
∧

j=0

(

i
∧

l=0

sl,j

)

→ Bl

)

∧
(

i
∧

j=1

(

i
∧

l=j

si,n+l

)

→ Al−1

)

;

Gi = (∃Wi)
(

Mi ∧Ai

)

∧

∧ (∀Ui)
(

Ei → (∀Wi)(¬Mi[si,1/ui,1, . . . , si,n+i/ui,n+i] ∨ ¬Ai)
)

.
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Lastly, we define formulas HT ,N
i , for 0 ≤ i ≤ k, by

HT ,N
i =

{

(∀Si)(Gi → HT ,N
i+1 ) if �i=>;

(∃Si)(Gi ∧ ¬HT ,N
i+1 ) if �i=≯, and

HT ,N
k+1 = (∀Wk+1)((Mk ∧Ak) → Ak+1).

Then the desired encoding is given by the QBF HT ,N
0 .

Theorem 4.3.1 (Correctness of NCF Translation)
Let T be a propositional theory and N a right nested counterfactual. It then

holds that vncf (T , N) = vqbf(H
T ,N
0 ).

See [20] for the original presentation of this translation.

Example 4.3.1 (NCF Translation)
Consider the translation of a nested counterfactual

q0 > (q1 ≯ (q2 ≯ (q3 ≯ (q4 ≯ (q5 ≯ (q6 ≯ q7)))))).

The corresponding QBF has the structure

(∀S0)(¬G0∨
(∃S1)(G1 ∧ ¬

(∃S2)(G2 ∧ ¬
(∃S3)(G3 ∧ ¬

(∃S4)(G4 ∧ ¬
(∃S5)(G5 ∧ ¬

(∃S6)(G6 ∧ ¬((∀W7)(M6 ∧ q6) → q7)))))))),

where

Gi = (∃Wi)
(

Mi ∧Ai

)

∧

∧ (∀Ui)
(

Ei → (∀Wi)(¬Mi[si,1/ui,1, . . . , si,n+i/ui,n+i] ∨ ¬Ai)
)

,

for 0 ≤ i ≤ 6. At this point we should cleanse the formulas Gi, for 0 ≤ i ≤ 5,
replacing, the universally bound variables in Wi by fresh ones. We thus obtain

G′
i = (∃Wi)

(

Mi ∧ Ai

)

∧

∧ (∀Ui)
(

Ei → (∀W ′
i)(¬M

′
i [si,1/ui,1, . . . , si,n+i/ui,n+i] ∨ ¬A′

i)
)

,

for 0 ≤ i ≤ 6. Next we apply unary quantifier shifting, double negation and De

Morgan’s law, in order to render the polarity of all quantified sub-formulas
positive. This unveils the structure of the associated quantifier precedence re-
lation (c.f. Definition 3.1.11), which is visualized in Figure 4.1:

(∀S0)(G
′′
0∧

(∃S1)(G
′
1∨

(∀S2)(G
′′
2∧

(∃S3)(G
′
3∧

(∀S4)(G
′′
4∧

(∃S5)(G
′
5∧

(∀S6)(G
′′
6 ∨ ((∀W7)(M6 ∧ q6) → q7)))))))),
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where

G′′
i = (∀Wi)

(

¬Mi ∨ ¬Ai

)

∨

∨ (∃Ui)
(

Ei ∧ (∃W ′
i)(M

′
i [si,1/ui,1, . . . , si,n+i/ui,n+i] ∧ A′

i)
)

,

for even i with 0 ≤ i ≤ 6.

Next, we elaborate our example by assuming

N = v3 > (v6 ≯ (v8 ≯ (v0 ≯ (v4 ≯ (v10 ≯ (v12 ≯ v1)))))),

and a theory

T = {v1 ∨ ¬v7 ∨ ¬v12 ∨ v8 ∨ v11, v9 ∨ ¬v6 ∨ ¬v7 ∨ ¬v13 ∨ v8,
v10 ∨ v2 ∨ ¬v7 ∨ v13 ∨ v5, v13 ∨ v2 ∨ v3 ∨ v12 ∨ ¬v5,
v8 ∨ v7 ∨ ¬v0 ∨ ¬v4 ∨ v12, v10 ∨ ¬v9 ∨ ¬v5 ∨ ¬v12 ∨ ¬v1,
v7 ∨ v1 ∨ ¬v0 ∨ ¬v3 ∨ ¬v8,¬v8 ∨ v0 ∨ v10 ∨ ¬v12 ∨ v12,
¬v1 ∨ ¬v4 ∨ ¬v12 ∨ ¬v1 ∨ ¬v5, v12 ∨ v0 ∨ v11 ∨ ¬v13 ∨ v6,
v3 ∨ ¬v5 ∨ ¬v3 ∨ ¬v8 ∨ ¬v7,¬v5 ∨ v6 ∨ ¬v5 ∨ ¬v5 ∨ v8,
v13 ∨ v6 ∨ v4 ∨ v7 ∨ ¬v3, v6 ∨ ¬v12 ∨ v5 ∨ ¬v13 ∨ ¬v6,
¬v10 ∨ ¬v1 ∨ ¬v0 ∨ ¬v12 ∨ ¬v11, v3 ∨ v13 ∨ v9 ∨ v11 ∨ v4,
¬v13 ∨ ¬v12 ∨ v9 ∨ ¬v8 ∨ ¬v2, v1 ∨ ¬v11 ∨ ¬v8 ∨ v5 ∨ ¬v2}.

We have already seen the quantifier precedence relation of the corresponding
QBF in Figure 4.1. Now we will take a look at the sizes of each quantifier
block. In Figure 4.2, these numbers are given in parentheses after each quantifier
symbol (c.f. Example 3.3.2 for the semantics of this and subsequent figures).
Figures 4.3 through 4.7 indicate the sizes of each quantifier block in the formulas
after the application our prenexing strategies2. Note that, for the translations
of nested counterfactuals, the strategies aued and edau yield the same result, as
is easily demonstrated by the example of Figure 4.1. The same is, of course,
true of the strategy pair adeu and euad, therefore we do not consider edau and
euad through the remainder of this chapter.

Also note that all strategies, except for the dumb strategies, maintain the num-
ber malt( · ) of quantifier alternations from the original formula. For the dumb
strategies, this number increases, yielding a potentially harder formula (c.f. The-
orem 1.3.4).

4.4 Initial Observations

The formula generator allowed us to perform preliminary exploratory tests to
get a first real live impression of our NCF translation’s and various decision
procedures’ behavior on translated NCFs. These tests eventually led to the
preliminary demarcation of “reasonable” parameter ranges that were used to
obtain the experimental results in [20]. In the latter work, the parameter ranges
were then deliberately chosen rather wide—within the constraints imposed by

2Note that these figures were generated by the actual software, which might show some
minor implementation specific differences from the explanations in this text.
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∀S0

∀W0 ∃S1

∃W1 ∀S2

∀W2 ∃S3

∃W3 ∀S4

∀W4 ∃S5

∃W5 ∀S6

∀W6 ∀W7 ∃U6W ′
6

∀U5W ′
5

∃U4W ′
4

∀U3W
′
3

∃U2W ′
2

∀U1W ′
1

∃U0W ′
0

Figure 4.1: Quantifier order for the QBF from Example 4.3.1.

∀  (14) ∃  (38) ∀  (14)

∀  (24) ∀  (37) ∃  (14)

∃  (23) ∃  (36) ∀  (14)

∀  (22) ∀  (35) ∃  (14)

∃  (21) ∃  (34) ∀  (14)

∀  (20) ∀  (33) ∃  (14)

∃  (19) ∃  (32) ∀  (14)

∀  (18)

Figure 4.2: Structure of the quantifier precedence relation (Example 4.3.1).
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∃  (182)

∀  (89)

∃  (23)

∀  (71)

∃  (21)

∀  (67)

∃  (19)

∀  (32)

∃  (182)

∀  (89)

∃  (23)

∀  (71)

∃  (21)

∀  (67)

∃  (19)

∀  (32)

∃  (182)

∀  (199)

∃  (23)

∀  (22)

∃  (21)

∀  (20)

∃  (19)

∀  (18)

Figure 4.3: Prenex for strategies aued, edau and d (Example 4.3.1).

∃  (38)

∀  (199)

∃  (73)

∀  (22)

∃  (69)

∀  (20)

∃  (65)

∀  (18)

∃  (38)

∀  (199)

∃  (73)

∀  (22)

∃  (69)

∀  (20)

∃  (65)

∀  (18)

∃  (38)

∀  (89)

∃  (73)

∀  (71)

∃  (69)

∀  (67)

∃  (65)

∀  (32)

Figure 4.4: Prenex for strategies adeu, euad and u (Example 4.3.1).
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∃  (182)

∀  (129)

∃  (23)

∀  (56)

∃  (21)

∀  (48)

∃  (19)

∀  (26)

∃  (98)

∀  (157)

∃  (91)

∀  (60)

∃  (37)

∀  (24)

∃  (19)

∀  (18)

∃  (182)

∀  (149)

∃  (23)

∀  (54)

∃  (21)

∀  (36)

∃  (19)

∀  (20)

Figure 4.5: Prenex for strategies bhmmax, lcsmax and jwmax (Example 4.3.1).

∃  (38)

∀  (137)

∃  (73)

∀  (49)

∃  (69)

∀  (49)

∃  (65)

∀  (24)

∃  (60)

∀  (99)

∃  (54)

∀  (62)

∃  (66)

∀  (66)

∃  (65)

∀  (32)

∃  (38)

∀  (127)

∃  (73)

∀  (49)

∃  (69)

∀  (55)

∃  (65)

∀  (28)

Figure 4.6: Prenex for strategies bhmmin, lcsmin and jwmin (Example 4.3.1).
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∀  (14)

∃  (46)

∀  (47)

∃  (48)

∀  (49)

∃  (50)

∀  (51)

∃  (38)

∀  (38)

∃  (23)

∀  (22)

∃  (21)

∀  (20)

∃  (19)

∀  (18)

∀  (14)

∃  (38)

∀  (14)

∃  (14)

∀  (75)

∃  (73)

∀  (71)

∃  (69)

∀  (67)

∃  (51)

∀  (18)

Figure 4.7: Prenex for strategies drdf and drbf (Example 4.3.1).
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the availability of computing power—in order to obtain a general picture. For
the present work, however, we revised our choice of ranges to obtain what we
believe to be a very interesting and balanced population of formulas. We will
explain the rationale behind our parameter choice shortly, after setting out
some basic connections between the parameters in our NCF model and the
corresponding QBFs obtained via our translation.

4.5 Parameter Ranges

In our experiment, the theories of the original NCFs have a range of 3 to 22
variables and a range of 6 to 30 clauses.3 These numbers may seem tiny on the
scale of quantified propositional logic, but when we look at the corresponding
QBFs,4 we find an average number of 1106 variables and 2293 clauses, which
puts the potential hardness of the NCFs into a proper perspective.

The sharp increase in these numbers can be explained by the recursive intro-
duction of a large number of variables during NCF translation, followed by a
massive introduction of labels and short definitions during structure preserving
normal form transformation.

More about the relation between the NCF variables and clauses versus their
QBF counterparts can be learned from the conditioning plot in Figure 4.8. As
not all readers will be acquainted with conditioning plots, we provide a short idea
of these graphical representations of stochastic dependencies. For a complete
introduction, see [10, 11].

Given two variables, α and β, we can form (possibly overlapping) subsets

Aα
1 , . . .A

α
n and Aβ

1 , . . .A
β
m of their corresponding ranges. A two-dimensional

conditioning plot consists of a matrix of n×m panels containing individual sub-
plots. Each subplot that is located in some row i and column j of the matrix can
be conceived in its normal interpretation, with the additional constraint that
α ∈ Aα

i and β ∈ Aβ
j . E.g., Figure 4.8 contains a 3× 3 matrix of scatter plots of

the number of QBF variables versus the number of QBF clauses. Each scatter
plot is constrained to a certain interval Aα

i , for the number of NCF variables

and a certain interval Aβ
j , for the number of NCF clauses. These intervals are

indicated by they grey bars near the left hand side and near top of the figure,
respectively.

Returning to our topic, we can see that the plot in Figure 4.8 indicates, besides
a substantial correlation between QBF variables and clauses that an increase in
NCF clauses is accompanied by an increase in both QBF clauses and variables.
An increase in the number of NCF variable is associated with an increase in
QBF variables either, albeit the influence is considerably smaller. On the other
hand, the plot does not indicate any strong influence of the number of NCF
variables on the number of QBF clauses.

Eventually, for completeness’ sake, we should also consider the influence of the
number of literals per clause. The plot in Figure 4.9 indicates that an increase of

3We will explain the choice of these ranges shortly.
4We hereby mean the final QBFs that are in PCNF and can be used as input for the

decision procedures.
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Figure 4.8: Relationship between NCF and QBF parameters.
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Figure 4.9: Relationship between NCF and QBF parameters.

this parameter is answered by a moderate expansion of the sample cloud in the
dimension of QBF clauses (with a fixed point below the cloud’s lower boundary
in that dimension).

In a nutshell, it seems that the number of NCF clauses is the most influential
parameter w.r.t. the basic QBF parameters of clause and variable number. How-
ever, these basic QBF parameters are not immediately suitable as a criterion
for choosing parameter ranges.

Let us explain our choice of parameter ranges in detail. First, we decided to
use, unlike in [20], a fixed nesting depth of 6. The rationale behind this choice
was that the preliminary results in [20] indicate an exponential relationship
between nesting depth of NCFs and the average empirical hardness5, a fact
that is consistent with the theoretical results of [21]. As this relationship is
likely to considerably widen the gap between extremely easy and extremely
hard formulas—a gap that can be huge even for a single nesting depth—it was
decided that it was wiser to stick with a fixed value.

Next came the choice of the numbers of clause, variables and literals per clause.
Our approach towards an interesting subsets of formulas6 was to select the

5By empirical hardness we mean the hardness suggested by the observed running time of
the various employed decision procedures.

6As the authors of [28] point out, it is especially important to avoid trivially insoluble
problems.
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range of these parameters, such as to obtain a population of formulas with a
satisfiability ratio of roughly 50%, with an average hardness that would neither
completely overwhelm, nor sub-challenge the chosen decision procedures. The
rationale behind this choice is that a satisfiability ratio of 50% corresponds
to minimal knowledge about the satisfiability of any particular formula of this
class, making the class as a whole particularly interesting w.r.t. the amount of
information obtainable by deciding the satisfiability of a given formula of that
class.

Preliminary tests, starting with the lowest possible parameters, suggested that a
higher number of clauses increases the average empirical hardness of translated
NCF, up to a point where current decision procedures are brought to their knees.
We thus cut off the number of clauses at a maximum of 30 clauses.

Next, it was observed that, for growing numbers of variables and literals per
clause, starting with the lowest sensible number for those parameters, the em-
pirical hardness of formulas would appear rather high up to a certain “critical”
parameter value, at which it would drop rather sharply. Consequently, it was de-
cided to set the maximum numbers of these parameter accordingly. Concretely,
we chose 22 as maximum number of variables, and 7 as maximum number of
literals per clause. We also cut off the less interesting and metrologically prob-
lematic easy formulas, setting either of the minimums to 3.

Eventually, we also cut of the easy formulas arising from a low number of clauses
below 6.

Interestingly, this procedure already provided us with a class of formulas that
met our criterion of having a empirical satisfiability ratio of roughly 50%,7.

During the experiment, instances were selected by simple random sampling
(SRS), allowing repetitions. Considering the huge population of formulas, this
is practically identical to the possibly more common simple random sampling
without repetitions.

We generated a total of 20000 nested counterparts. With 12 different strategies,
this yielded a total of 240000 formulas.

4.6 Timeouts

Having fixed the formula parameters, we faced the problem of choosing an ade-
quate timeout value for limiting the maximum time a given decision procedure
would be allowed to spend on a given instance. We already knew that run-
ning time distributions of QBF decision procedures on typical formula classes
are marked by an extremely long right tail, whereas a large part of the total
mass of the distribution is concentrated near a running time of zero. In other
words, most formulas are (empirically) fairly easy, but those few that are hard
contribute mostly to the average running time. This is an extremely unpleasant

7The actual empirical satisfiability ratio is 48.07% which was obtained as follows. During
our experiment, any given structured QBF was checked several times, using combinations of
different prenexing strategies and decision procedures. To obtain the empirical satisfiability
ratio, we did compute the ratio of satisfiable structured QBFs versus the total number of
those structured QBFs, for which at least one prenexing strategy/procedure combination had
produced a result.
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situation, since it means that we may not neglect hard formulas. To obtain the
associated data, we would have to use a very high timeout value (at least in the
order of thousands of seconds, possibly even higher). However, resource con-
straints would then force us to limit ourselves to a rather modestly sized sample,
which would in turn taint the quality of our results. One way out would be to
use easier formulas, but this would force the large part of the formulas even
tighter near a running time of zero, where running time measurement is prob-
lematic due to a high relative measuring error rooted, amongst others, in a lack
of granularity of the timers available on our testing environment.

We eventually decided in favor of a big sample, settling the timeout value at
100 seconds. In more precise terms, this means that any formula that could
be solved within the time interval [0, 100) was recorded as normal data point,
whereas all other formulas were timeouts.

The existence of a timeout condition raises the question of how to deal with
situations in which a timeout actually arises. One solution would be to consider
the corresponding samples as undefined. However, we know that these data
points should actually correspond to some definite, albeit unknown, running
time that is at least as big as the the timeout value. Therefore, recording
these samples with a running time equal to the timeout value is sometimes
advantageous. Besides, many standard definitions of statistics usually assume
totally defined data. We will therefore assume a data set that was made total
as was just sketched, up to Section 4.9, which, by its very nature, calls for a
distinction of data points that are affected by timeouts.

As a very rough measure of the quality of a timeout parameter, we might con-
sider the solved ratio of a sample:

Definition 4.6.1 (Solved Ratio)
Let x1, . . . , xn be a sample of the stochastic variable X of solving time. The
solved ratio of that sample is the quotient between the numberm(≤ n) of defined
sample points xi (i.e., those that were not subject to timeouts) and the size n
of the sample.

The solved ratio for our entire data set is 82.26%. However, we again emphasize
that this measure can only be seen, at most, as a very rough indication of quality.
As a rough consideration, we might, for example, regard a timeout value that
leads to a solved ratio smaller than 0.5 as too low. However, it would make little
sense to favor a solved ratio of, say 0.95 over 0.94, since there are many other
influential parameters that should be considered, like, e.g., the concentration of
the running time distribution or the total sample size. The latter is, of course,
indirectly proportional to the chosen timeout value, given a fixed amount of
total available CPU time.

4.7 Distribution of Running Times

Figure 4.10 shows the empirical cumulative distribution function of the solving
time, factored by decision procedure. It immediately becomes clear that there
is a very high concentration of mass near the left hand side, i.e., most of the
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Figure 4.10: Empirical cumulative distribution function of the solving time,
factored by decision procedure.

formulas were decided within a very short time. On the other hand, the mani-
festation of timeouts in the form of a jump of considerable height on the right
hand side urges us to consider that the long right hand tail of the distribution
still contains a fair share of the total mass.

We can see that the situation is essential the same for all three procedures.
Most of the formulas are decided within milliseconds, but beyond a certain
quantile—say, roughly at the 75%-quantile for semprop, or the 90%-quantile
for QuBE-BJ–the distribution function becomes almost completely flat, until
it jumps to 1 at 100 seconds. This jump is, of course, due to timeouts (which
were recorded with a running time of 100 seconds, the highest value that is a
lower bound with a probability of 1).

It is quite clear that, in an ideal world without timeout, all three curves should
slowly converge to 1, while extending towards the right a very, very far way,
eventually hitting 1 at the running time needed to solve the very hardest formula
in our huge, but yet finite population. The ridiculously flat slope beyond 90
seconds, for all three decision procedures, confirms us in our decision for a
rather small timeout of 100 seconds, since even very generous timeouts–say one
hour–could only catch a modest fraction of all timeouts. At this view, it seems
more reasonable to use a smaller timeout and collect more data below that
threshold, in order to obtain an accurate picture below that threshold. All the
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more is this true, as the smoothness of various empirical distribution functions
like the ones in Figure 4.10 offer no indication of any extraordinary behavior
below the cutoff point.

When it comes to interpreting the data obtained by this process, it is clear that
the timeout cutoff seriously distorts many of the positional parameters that are
used in classical descriptive statistics, like the arithmetic mean and variance. On
the other hand, the value of the α-quantiles remains completely unaffected by
the cutoff, for suitably small values of α. Whereas the 0.5-quantile, the median,
is valued, even in classical descriptive statistics, for its low susceptibility to
outlier values, the use of quantiles to describe distributions is prevalent in the
EDA8 approach. In that approach, it is common practice to use the summary
point (which correspond to the classical median) as measure for the center of
a distribution. We use a variant of this measure, which is adapted to suit the
specific peculiarities of our problem (like the missing data points that are due
to timeout and performance differences between the decision procedures that
were used).

4.8 Finding a Measure

Our goal is to quantitatively compare the behavior of each procedure/strategy
combination. In a first approach, we might consider comparing the individual
running time medians. However, the data of the corresponding contingency ta-
ble (c.f. Table 4.1) is not too useful. Firstly, the data columns corresponding to
different procedures are differently scaled, e.g., the medians for ssolve can be
seen to be roughly 5 to 6 times higher than those of QuBE-BJ. Whereas this
would not be such a big problem in itself, since we rather want to compare the
effects of different strategies for each procedure individually that directly com-
pare data for different procedures, what is worse is that all medians are located
quite near to 0 seconds. The measurement of such small temporal intervals on
traditional PC hardware9 is notoriously prone to measurement errors, therefore
we believe that it would be rather unwise to attempt a comparison based on
positional measures in this range. Also, the different medians for each indi-
vidual decision procedure are very close to each other, making them especially
unattractive for a comparative analysis.

4.9 Working with Quantiles

If we give up the idea of obtaining a measure of center, there is no real rea-
son to restrain ourselves to the 0.5-quantile. Instead, we might use any other
quantile that seems reasonable. If we take a look at Table 4.2, we can see that
higher quantile parameters tend to lead to more distinguished measures. From a
practical point of view, a higher parameter seems interesting too, since the real

8Exploratory Data Analysis, see, e.g., [47].
9We hereby refer to the legacy 8254 hardware timers. Only very recently, widespread

alternatives have been deployed (see, e.g., [12]).
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QuBE-BJ semprop ssolve

adeu 0.04 0.08 0.2
aued 0.04 0.08 0.2
bhmmax 0.04 0.08 0.2
bhmmin 0.04 0.08 0.2
d 0.04 0.08 0.2
drbf 0.05 0.08 0.2
drdf 0.04 0.08 0.2
jwmax 0.04 0.08 0.2
jwmin 0.04 0.08 0.2
lcsmax 0.04 0.08 0.2
lcsmin 0.04 0.08 0.2
u 0.04 0.08 0.2

Table 4.1: Median running time of each procedure/strategy combination.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
adeu 0.03 0.05 0.07 0.10 0.18 0.84 30.07
aued 0.03 0.05 0.07 0.10 0.17 0.75 12.54
bhmmax 0.03 0.05 0.07 0.10 0.17 0.85 18.55
bhmmin 0.03 0.05 0.07 0.10 0.18 1.12 68.37
d 0.03 0.05 0.07 0.11 0.19 0.98 29.05
drbf 0.04 0.05 0.07 0.10 0.17 0.93 100.00
drdf 0.03 0.05 0.07 0.10 0.17 0.70 29.19
jwmax 0.03 0.05 0.07 0.10 0.18 0.94 21.01
jwmin 0.03 0.05 0.07 0.10 0.18 1.16 60.36
lcsmax 0.03 0.05 0.07 0.10 0.18 0.95 22.60
lcsmin 0.03 0.05 0.07 0.10 0.18 1.32 83.12
u 0.03 0.05 0.07 0.10 0.17 0.84 23.36

Table 4.2: Divergence of α-quantiles for increasing α.

benefit of a suitable prenexing strategy should manifest itself in the optimization
not of the trivial cases, but of those with upscale hardness.10

Clearly, if we intend to compare the behavior of strategies, the quantile param-
eter must not itself depend on strategies, but, as was pointed out before, it may
depend on the procedure used. Our idea is to normalize each data column such
that the “worst” strategy determines the amount of scaling performed. Moti-
vated by Table 4.2, we are eager to maximize the quantile parameters. However,
we must take care not to push these parameters to high. For a suitably high
parameter α, the α-quantile will have the timeout value of 100 seconds, which
is outside of the range [0, 100) of meaningful time parameters. In order to find

10The attentive reader might have observed that, in the above discussion about quantiles,
we have highlighted their restricted susceptibility to outlier values. It is true that, considering
the extreme concentration of running times near zero, we might consider almost everything
else as an “unusual case”. However, the real outliers in this case can be found very far from
zero, much further than we we will push the quantiles. Perhaps the most expensive two or
even less percent of all formulas could be considered as outliers.
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αx

QuBE-BJ 0.92
semprop 0.67
ssolve 0.76

Table 4.3: Quantile parameters used in Table 4.4.

the maximal meaningful parameter, reconsider the definition of the solved ratio
(Definition 4.6.1). The following theorem can seen to be true.

Theorem 4.9.1 (Cutoff)
Let x1, . . . , xn be a sample of the stochastic variable X of solving time that was
obtained with a timeout value of t, and let a be the solved ratio of that sample.
Then exactly a ·n samples are smaller than t, and, conversely, (1−a) ·n samples
correspond to timeouts.

Proof. Assuming a solved ratio of a and a sample size of n, the number of
defined sample point is a · n, by Definition 4.6.1. We know that the undefined
sample points are exactly those data point, where timeouts occurred. So there
must be a·n samples that are smaller than the timeout value t, because otherwise
they could not be defined. Likewise, any of the n− (a ·n) = (1−a) ·n undefined
data points correspond to timeouts. �

The essence of this theorem is that the a-quantile of a sample x1, . . . , xn that was
obtained without any timeout constraint is equal to the a-quantile of the sample
x′1, . . . , x

′
n that is obtained after “cutting off” sample points that are greater or

equal to a given timeout value t, where a is the solved ratio of x′1, . . . , x
′
n. This

process corresponds exactly to the cutoff experienced through the use of a time-
out during the experiment. Therefore, we can see that the a-quantile remains
completely unaffected by timeouts, a very desirable property. It is known that
quantiles, viewed as functions on their parameter α, are monotonically rising.
It is therefore not hard to see that the above unaffectedness property holds for
any α with 0 ≤ α ≤ a. Also note that the same needs not be true for an α with
α > a.

Let a1,1, a1,m, . . . , an,m be the solved ratio for each of the n · m combina-
tions of one of n procedures and one of m strategies. We will then use αi =
min1≤j≤m an,j , for 1 ≤ i ≤ n as quantile parameter for the i-th procedure, i.e.,
we choose, for each procedure, the greatest possible quantile parameter αi such
that the corresponding quantile is unaffected by timeouts (for any strategy).

These optimal quantile parameters are presented in Table 4.3. Considering
Figure 4.10, it should be no surprise that the quantile values are very sensitive
w.r.t. these parameters, so that small numerical errors in the parameters might
show up in the quantile values. However, this does not affect the quality of
our result, as the figures for each decision procedure are still equally scaled,
and therefore comparable, as they share the same parameter. Finally, note that
the data in Tables 4.3 and 4.4 were rounded for the presentation in the work
(however, we used full precision for the calculations, of course).
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QuBE-BJ semprop ssolve

adeu 6.50 5.11 48.50
aued 19.62 1.84 10.89
bhmmax 24.73 3.38 12.01
bhmmin 33.69 9.92 52.19
d 72.32 4.55 16.11
drbf 37.06 99.53 32.67
drdf 2.31 20.89 6.30
jwmax 40.23 3.64 12.92
jwmin 41.67 6.48 51.59
lcsmax 16.98 4.60 15.58
lcsmin 98.57 5.66 99.95
u 17.48 2.40 31.06

Table 4.4: αx-quantiles of the running times of each procedure/strategy combi-
nation. The corresponding parameters are shown in Table 4.3.

QuBE-BJ semprop ssolve

adeu 2 7 9
aued 5 1 2
bhmmax 6 3 3
bhmmin 7 10 11
d 11 5 6
drbf 8 12 8
drdf 1 11 1
jwmax 9 4 4
jwmin 10 9 10
lcsmax 3 6 5
lcsmin 12 8 12
u 4 2 7

Table 4.5: Ranks of the αx-quantiles of the running times of each proce-
dure/strategy combination. The corresponding parameters are shown in Table
4.3.

Table 4.4 presents our summarizing table of quantile values. Each column con-
tains the quantile values for one decision procedure, w.r.t. the corresponding
optimal quantile value from Table 4.3, factored by strategy. We can now clearly
identify which strategies did yield the best results w.r.t. the running time spent
by the corresponding decision procedure. However, we note that a comparison
between different decision procedures does not make any sense at all, based on
this table. Also, the actual quantile values are not too interesting, what counts
are the ranks of these values. So address both issues by turning to ranks. We
thus obtain Table 4.5, which is still a bit complex. We can simplify the presen-
tation by giving, for each decision procedure, a vector of all strategies, sorted
by quantile rank (Table 4.6).
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QuBE-BJ semprop ssolve

1 drdf aued drdf

2 adeu u aued

3 lcsmax bhmmax bhmmax

4 u jwmax jwmax

5 aued d lcsmax

6 bhmmax lcsmax d

7 bhmmin adeu u

8 drbf lcsmin drbf

9 jwmax jwmin adeu

10 jwmin bhmmin jwmin

11 d drdf bhmmin

12 lcsmin drbf lcsmin

Table 4.6: Strategies, sorted by their αx-quantile rank, for each procedure.

4.10 Translation Overhead

Up to this point, we were only concerned about the running times of decision
procedures, but we have not considered the overhead produced by the normal
form translation. However, that extra expense in running time might be an
important factor to the actual usefulness of a strategy. After all, a seemingly
excellent prenexing strategy, or more precisely a specific implementation of it,
would be of little use w.r.t. a certain decision procedure, in case its running
time overhead turned out to compensate the speedup observed in that decision
procedure.

We have to mention that the main focus of our implementation was the de-
velopment of an easily-extensible research vehicle for testing various (possibly
fundamentally different) prenexing strategies. On the other hand, speed was
not a main objective, a fact that needs to be considered when interpreting these
results. We suspect that an optimized implementation will perform considerably
better, although it is very hard to give any precise estimation.11

Even though we did not consider speed as a main goal, we did nonetheless try
to avoid any unnecessary waste of CPU time. To this end, we did also per-
form several profiling analyses. Besides providing us with many useful insights
that were used to improve our implementation, the parser component, which
is implemented using the Parsec [36] parser combinator library was identified
as a major devourer of CPU time. Considering the fact that real life applica-
tions of our strategies would probably tightly integrate prenexing into decision
procedures, we do not consider the time spent on parsing as a relevant factor.
Consequently, Table 4.7, which gives the median measured translation times
for each strategy, contains three columns: the time spent on reading the input
formula (parsing), the time spent for the actual calculation and printing and
the total running time—which is of course the sum of the previous two columns.
The only column we consider relevant is thus the middle one, whereas the other

11To give an idea of the speedup potential, consider the fact that our implementation is
given in Haskell 98 [34], and was compiled using a current version of GHC [45].
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parsing rest total
adeu 0.49 0.53 1.02
aued 0.49 0.53 1.02
bhmmax 0.49 1.77 2.26
bhmmin 0.49 1.36 1.85
d 0.49 0.53 1.02
drbf 0.49 0.53 1.02
drdf 0.49 0.53 1.02
jwmax 0.49 2.22 2.71
jwmin 0.49 1.82 2.31
lcsmax 0.49 1.69 2.18
lcsmin 0.49 1.28 1.77
u 0.49 0.53 1.02

Table 4.7: Median translation times for each strategy.

two were given for completeness’ sake. Unfortunately, the lazy evaluation-based
functional design of the software did not allow us to easily factor out the time
spent on printing, which we likewise regard as non-relevant factor. The per-
formance loss through printing is much lower than the loss through parsing,
although not altogether negligible.

We can see that running time expense of the heuristic based strategies is con-
siderably higher than that of the rest of the strategies. During our profiling
analysis, it turned out that a big extra penalty is introduced by the calculation
of the various heuristic values. However, the current implementation of these
calculations is rather wasteful and leaves ample room for optimization.

4.11 Interpretation

When we take a look at Table 4.6, the first thing that we can see is that the
aptness of any given strategy is highly dependent on the decision procedure used.
This is not an unexpected result, considering the unlike results for different
decision procedures that were given in [20]. It is reasonable to presume that
this diverse sensitivity is essentially founded in the different subsets of advanced
techniques that each decision procedure employs (c.f. Section 2.2).

Whereas the data in [20] already clearly indicated that the quality of a strategy
depends on the decision procedure used, we now get a clearer look at the com-
plexity of this dependency. It seems hard to identify any regular pattern in the
connection between the two factors: strategy and decision procedure.

One thing that catches the eye is the fact that the simple drdf strategy wins
the performance race for two out of the three decision procedures. For the
third one (semprop), however, the two Dumb strategies turn out the most
unsuitable strategies. So, although drdf is a very desirable strategy for two
decision procedures, it is not very robust.

When it comes to terms of robustness w.r.t. to the decision procedures, jwmin
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excels12, but unfortunately it is located at the lower end of our performance
ranking.

If we were to choose a strategy that yield good performance, but also be reason-
ably robust, we would probably choose aued, which yields excellent performance
for semprop and ssolve. For QuBE-BJ, the performance ranking of aued at
least falls among the better half of all strategies.

If we take a look at the heuristic based strategies, we see that, any -max strategy
always yields a better performance than its -min counterpart. More generally,
with a single exception, the -max strategies always yield a better performance
that any of the -min strategies.

12Of course, we must be careful not to generalize this property over other decision proce-
dures.
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Chapter 5

Conclusion and Future

Work

In this work we confirm the results from [20] by performing a broad analysis
of the interaction between various normal form transformation strategies on a
number of contemporary decision procedures [23, 31, 32, 33, 37, 43].

Chapter 1, gives a concise introduction into quantified propositional logic. We
introduce the syntax and semantics of quantified boolean formulas and discuss
the most important reasoning tasks associated with these formulas, most im-
portantly QSAT, the satisfiability problem of quantified propositional logic. We
introduce a number of useful notions and notations that are used throughout this
work. We consider some important normal forms for quantified boolean formulas
and some corresponding transformations, most importantly prenex conjunctive
normal form (PCNF).

Whereas virtually all beginners’ textbooks on mathematical logic introduce
propositional and first order logic, there is hardly any introductory level trea-
tise on quantified propositional logic (one exception is [35], which contains a
chapter on the topic). We believe that the first chapter of this work can serve
as a short, self-contained introduction into quantified propositional logic that
includes many proofs of simpler theorems that are typically omitted in similar
treatises.

Chapter 2 introduces QDLL, which is one of the most important QSAT decision
procedures for quantified boolean formulas in PCNF. Our approach is distin-
guished by our attempt to obtain a “pure” QDLL procedure by abstracting from
implementational details, especially those concerning the concrete traversal of
the search space. Such details, which obscure the look on the core procedure,
are typically found in treatises of contemporary decision procedures, e.g., [32].

Our treatise of the QDLL procedure concludes with an overview of advanced
techniques that are used to improve the runtime behavior of contemporary
QSAT decision procedures. Although we only include those techniques that
are relevant to the case study in Chapter 4, our presentation does, to the best
of our knowledge, form the most comprehensive overview of such techniques.
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In Chapter 3, we introduce a novel theoretical framework for the description of
prenexing strategies, i.e., prescriptions that specify the behavior of a prenexing
algorithm. Furthermore, we present three distinct classes of prenexing strate-
gies, yielding a total of fourteen different strategies.

The framework presented is suitable for the description of PNF transformations
that preserve the set of quantifiers, and do not change the propositional skeleton
of a formula.

With such restrictions, the framework is able to capture many important trans-
formations, but if we want to capture more advanced strategies, like those that
merge quantifiers by application of the quantifier fusion rule from Chapter 1,
we need to loosen the constraints. The corresponding generalization of the
framework represents promising future work.

In Chapter 4, we present a case study that we conduct with the goal of testing
the real life behavior of the prenexing strategies from Chapter 3. We first
introduce nested counterfactuals, along with a translation of such formulas to
quantified boolean formulas as are not in normal form. We then describe in
detail the settings and results of an experiment, in which the runtime behavior
of various contemporary QSAT decision procedures was tested for QBFs in
PCNF that arise from the application of the different prenexing strategies on
the translations of randomly generated nested counterfactuals.

As the main result of our experiment, we present a quality ranking of prenexing
strategies. Interestingly, the assessment of most strategies turns out to be com-
pletely different for different decision procedures. As a likely explanation for
the phenomenon of diverse sensitivity, we point out that the different decision
procedures that were used in our experiment, although essentially based on the
same basic procedure, employ different subsets of advanced techniques.

The big challenge in future work will be the development of an understanding
of the structure of the interaction between prenexing strategies and decision
procedures. Ideally, each of the advanced techniques described in Section 2.2 and
each prenexing strategy would be associated with some characteristic interaction
pattern. However, while a detailed analysis of each such interaction is already
far from trivial, it is extremely unlikely that the overall behavior of the system
could be described as the simple sum of these interactions. It is quite certain
that the interaction of different techniques will lead to completely novel behavior
when such features are combined. For a combination of n advanced techniques,
we have to expect (n2 − n)/2 interactions, where n is constantly rising, as
contemporary decision procedures keep on integrating new techniques.

Given such prospects, a more controlled environment for experimentation would
be highly desirable. For this, the implementation of a plain testbed procedure
might turn out be practical.

In this work, we consider QBF translations of nested counterfactuals as an
interesting class of structured formulas, but there are, of course, many other
classes that deserve close inspection w.r.t. prenexing. In particular, we see
that the translations of nested counterfactuals feature a rather simple quantifier
precedence relation, whereas other classes of formulas might offer a wealth of
more intricate structures.



Appendix A

Adopted Concepts

A.1 Mathematical Concepts and Notations

A.1.1 Operators on Sets

For any set A,

1. P(A) denotes the power set of A, and

2. A? denotes the Kleene closure of A (see below).

The Kleene closure of a set A is defined as the set
⋃∞

i=0 A
i, where An for n ≥ 1

denotes the n-ary cartesian product A × . . . × A and A0 = {ε}. A? can be
interpreted as the set of strings over A, where ε denotes the empty word. We
usually assume an implicit concatenation operator, i.e., if x, y ∈ A?, then xy
denotes the concatenation of x and y, and therefore, of course, xy ∈ A?.

A.1.2 Operators on Binary Relations

For any binary relation R ⊆ A×A,

1. R+ denotes the transitive closure of R, and

2. R∗ denotes the reflexive and transitive closure of R.

A.2 Machines and Complexity

A.2.1 Alternating Turing Machines

The alternating Turing machine (ATM) is an extension of the standard Turing
machine model that is perfectly suited for explaining the complexity of QSAT.
We give a short informal treatment of the ATM model, adopted from [49] and
[52]. For a thorough treatment, the reader is referred to [49].
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As with nondeterministic Turing machines, a computation of an ATM is rep-
resented as a computation tree, where every node corresponds to a particular
configuration and different branches rooted in one node represent different pos-
sible transitions. Every state is tagged with exactly one of the labels existential,
universal, accepting and rejecting, where accepting and rejecting are terminal
states in which the machine halts. The tag of a configuration is defined as the
tag of its state.

Each node of the computation tree has a quality accept, reject or undef, which
is recursively determined by the following set of rules:

1. the quality of a leaf node corresponding to an accepting (resp. rejecting)
configuration is accept (resp. reject);

2. the quality of an internal node corresponding to an existential configura-
tion is accept, if at least one of its successors has the quality accept ;

3. the quality of an internal node corresponding to an existential configura-
tion is reject, if all of its successors have the quality reject ;

4. the quality of an internal node corresponding to a universal configuration
is reject, if at least one of its successors has the quality reject ;

5. the quality of an internal node corresponding to a universal configuration
is accept, if all of its successors have the quality accept ;

6. the quality of all other nodes is undef.

By definition, an ATM accepts its input, if the root node of the corresponding
computation tree has the quality accept.

Associated with ATMs is the following hierarchy of complexity classes:

ALOGSPACE ⊆ APTIME ⊆ APSPACE ⊆ AEXPTIME

A.2.2 The Polynomial Hierarchy

The polynomial hierarchy, introduced in [38, 44], is a hierarchy of complexity
classes spanning from P to PSPACE.

The structure of the hierarchy w.r.t. set inclusion is indicated in Figure A.1.
Unfortunately, it is unknown whether these inclusions are proper ones (see, e.g.,
[39] and [52]).

In algorithmic complexity theory, these classes are defined through the notion
of oracle Turing machines (see, e.g., [52]). Roughly speaking, an oracle Turing
machine “with an oracle of complexity C” (where C is some complexity class)
is allowed to consult its oracle to solve any problem in C in constant time.
E.g., an oracle Turing machine with an oracle of complexity NP might solve any
NP-hard problem in constant time (usually as part of solving a more complex
problem). ΣP

n+1 is then defined, for any n, as the class of problems that can be
solved in polynomial time on a non-deterministic Turing machine with an oracle
of complexity ΣP

n and ΣP
0 is defined to equal P. ∆P

n is defined analogously to
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Figure A.1: The ⊆ inclusions of the complexity classes that form the polynomial
hierarchy.

ΣP
n , but for deterministic Turing machines, i.e., ∆P

n+1 is the class of problems
that can be solved in polynomial time on a deterministic Turing machine with
an oracle of complexity ΣP

n and ∆P
0 is again defined to equal P. Finally, ΠP

n is
defined as coΣP

n (see, e.g., [52]).

A more pleasing, but equivalent, characterization of the classes of the polynomial
hierarchy is perhaps given by the following Definition (see Appendix A.2.1 for
a definition of alternating Turing machines).

Definition A.2.1 (Polynomial Hierarchy)
1. ΣP

n (resp. ΠP
n ) is the class of all languages that are accepted in polynomial

time by an alternating Turing machine, where the number of alternations
in the computation trees is bounded by n and the root node is existential
(resp. universal);

2. PH =
⋃∞

k=0 ΣP

k .
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Appendix B

The Traquasto Software

Package

This Appendix provides a user oriented documentation for the major compo-
nents of the Traquasto1 software package. The package was developed by
Martina Seidl and Michael Zolda, and was first applied in the production of the
benchmarks for [20]. Since then, the software has been maintained and extended
by Michael Zolda. This documentation refers to version 0.5 of Traquasto.

B.1 Development Status

The development of all our tools and especially our translation tool Qst has
been continued since the publication of [20]. Besides the implementation of new
prenexing strategies, Qst has most notably been improved in terms of speed,
strengthening the implicit assumption that many of our prenexing strategies
can be of practical value when implemented with serious speed considerations
in mind. Despite our success in making our current implementation faster, we
currently see Qst more as an experimental vehicle that sometimes sacrifices
speed for code simplicity.

B.2 Traqla: Translation Tool

Traqla2 is an implementation of the nested counterfactual translation pre-
sented in [20] and Chapter 4 of this work. It was implemented in SWI Prolog
[53] and is available as a command line tool. It reads nested counterfactuals
in ebf format, and outputs the corresponding QBFs in Boole format. See
Section B.5 for a description of these formats.

1Traquasto is an acronym for Translation and Quantifier Shifting Toolkit.
2Traqla (pronounced “Dracula”) is an acronym for Translate to QBF Language.
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B.2.1 Command Line Interface

Synopsis

traqla [OPTION...]

Options

-b

Generate a complete Boole program for evaluating that formula.

--help

Display a brief command line help and terminate.

-i FILE

Read input from the designated file instead of standard input. The input must
be in ebf format (c.f. Section B.5.1).

-o FILE

Write output to the designated file instead of standard output.

-q

Generate Qubos [2] format instead of Boole format output.

B.3 Qst: Prenexing Tool

Qst3 is an implementation of the prenexing strategies presented in Chapter 3 of
this work. It was implemented in Haskell 98 [34] and is available as a command
line tool.

B.3.1 Command Line Interface

Synopsis

qst [OPTION...]

Options

-c

--comments

Enrich output with useful meta information about the translation process, em-
bedded as comments. The format of this output has not been formally specified,
but should be pretty self-explanatory.

-d STRUCTURE

--dump=STRUCTURE

Dump the designated intermediate compiler structure and terminate. See Sec-
tion B.3.2 for a description of available structures.

3Qst is an acronym for Quantifier Shifting Tool.
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-f FORMAT

--format=FORMAT

Write output using the designated format, which must be either Boole or
QDimacs. See Section B.5 for an explanation of these formats.

-h

--help

Display a brief command line help and terminate.

-i FILE

--input=FILE

Read input from the designated file instead of standard input. The input must
be in Boole format (c.f. Section B.5).

-l

--fewlabels

Usually, Qst introduces at most one label for each simple formula. With this
switch, Qst tries to reduce the total number of labels by taking commutativity
into account. This is quite costly in terms of compilation speed.

-n

--invert

Reserved.

-o FILE

--output=FILE

Write output to the designated file instead of standard output.

-r

--norename

Usually, Qst performs a complete renaming of all variables in its input for-
mula to obtain a cleansed formula. This switch turns renaming off, which will
probably cause problems with uncleansed formulas. It is occasionally useful for
inspecting the behavior of the translation and for debugging.

-s STRATEGY

--strategy=STRATEGY

Apply the designated merging strategy. Available merging strategies are: adeu,
aued, edau, euad, u, d, bhmmax, lcsmax, jwmax, bhmmin, lcsmin, jwmin, drbf and
drdf, as described in Section 3.3.

-u

--fusion

Use quantifier fusion to simplify formula.

-v

--version

Display version information and terminate.

B.3.2 Compiler Structures

btree The intermediate quantifier forest in dot [25] format.

prefix The intermediate quantifier prefix in dot [25] format.
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mstat Statistical information that is used in the calculation of heuristic values.
Intended for debugging.

final The compiled formula.

B.4 Mkncf: Nested Counterfactual Generator

mkncf4 is a simple generator for random synthetic nested counterfactual. For-
mulas are generated in the EBF format, which is described in Section B.5.1.
The model of these formulas is explained is Section 4.2. The software was im-
plemented in Python [51] and is available as a command line tool.

Synopsis

mkncf VAR CLS LPC DEP

Four arguments are required, which have the following meaning: VAR is the
maximum number of distinct variables used; CLS is the number of clauses in
the theory; LPC is the number of literals per theory clause; DEP is the nesting
depth. For details, please refer to Section 4.2.

B.5 Formats

Boole This is the formula format used by the Boole QBF calculator, which
is included in the bddlib software package [5]. Unlike the standard QDi-

macs format, it supports structured QBFs. As an output format for Qst,
it is especially useful for inspecting the behavior of the translation in com-
bination with the -r switch. For details about the format, see bddlib. As
an undocumented feature, Boole offers support for line comments that
are introduced by the ASCII sequence --. The -c option of Qst takes
advantage of this feature to embed useful meta information into formulas.
On the other hand, our tools disallow the use of the symbol > within
identifiers, for the sake of simplicity. It is reserved for use in new ebf
operators.

EBF This is a modification of the Boole format that provides support for right
nested counterfactuals and explicitly allows for embedded comments. It
is mostly compatible with the traditional Boole format. A specification
is given in Section B.5.1.

QDimacs The QDimacs [1] format, an extension of the Dimacs format for
propositional formulas, has recently gained significance as a standard
format for QBFs in PCNF. Filtering QDimacs output through various
lightweight conversion tools5 effectively augments the range of available
output formats.

4mkncf is an acronym for Make Nested Counterfactual.
5Such filters were available on the WWW for some time. Unfortunately, it seems that they

have recently been removed. These filters, which had been distributed without any copyright
information, are included in the Traquasto package.
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Operator Priority Semantics

x > y 6 counterfactual implication
x !> y 6 negated counterfactual implication

exists [ . . . ] ( x ) 5 exist. quantification
forall [ . . . ] ( x ) 5 univ. quantification
subst [ . . . ] ( x ) 5 substitution of variables6

! x, ~ x 5 negation
x = y 4 equivalence

x & y, x * y 3 conjunction
x | y, x + y 2 disjunction
x ? y : z 1 conditional

Table B.1: Priority and semantics of operators.

B.5.1 Extended Boole Format

The lexical structure of EBF is given by the following EBNF grammar, where
the top level structure is an ebfstring.

ebfstring = { lexeme | whitespace }
lexeme = grouping | id | keyword | opsym

grouping = ( | ) | [ | ]
id = idchar {idchar | digit}

idchar = A | . . . | Z | a | . . . | z | | $ | % | # | @ | / | \ | <
digit = 0 | . . . | 9

keyword = exists | forall | ncfact | subst
opsym = > | !> | | | + | & | * | ! | ~ | = | := | ? | : | 0 | 1

whitespace = whitestuff {whitestuff }
whitestuff = comment | space | newline | tab
comment = -- linechar newline

A linechar is any character other than newline.

The following EBNF grammar specifies the syntax of EBF expressions. The
usual top level structure is a ncf expression.

ncf = ncfact [ { qbf }] ( qbf opncf { qbf opncf } qbf )

qbf = 0 | 1 | id | qsym [ { id } ] ( qbf )| op1 qbf | qbf op2 qbf
| qbf ? qbf : qbf | subst [ { id := qbf } ] ( qbf )

qsym = exists | forall
op1 = ! | ~
op2 = | | + | & | * | =

opncf = > | !>

For a description of operator priorities and semantics, please refer to Table B.1.
All operators are right associative, as far as a notion of associativity is applicable.
In particular, a term like a?b:c?d:e is semantically equivalent to a?b:(c?d:e),
and not (a?b:c)?d:e.

6Currently not supported by Qst.



104 APPENDIX B. THE TRAQUASTO SOFTWARE PACKAGE



Bibliography

[1] Anonymous. Quantified Boolean Formulas Satisfiability—Suggested For-
mat. Available in electronic form at http://www.qbflib.org/Draft/-

qDimacs.ps.gz, July 2001.

[2] A. Ayari and D. A. Basin. QUBOS: Deciding Quantified Boolean Logic Us-
ing Propositional Satisfiability Solvers. In M. Aagaard and J. W. O’Leary,
editors, Proceedings of the 4th International Conference on Formal Meth-
ods in Computer-Aided Design, volume 2517 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2002.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[4] M. Baaz, U. Egly, and A. Leitsch. Normal Form Transformations. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume 1, chapter 5, pages 273–333. The MIT Press, 2001.

[5] BDDLib: A BDD Library with Extensions for Sequential Verification. Soft-
ware available at http://www.cs.cmu.edu/∼modelcheck/bdd.html.

[6] R. Bosch. Theorembeweisen für QBF und die Anwendung zum Planen.
Master’s thesis, Universität Ulm, 1998.
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