
M2ORM2: A model for the transparent

management of relationally persistent objects

Luca Cabibbo and Roberto Porcelli

Dipartimento di Informatica e Automazione
Università degli studi Roma Tre

Via della Vasca Navale 79, 00146 Roma, Italy

Abstract. Object-oriented application development often involves stor-
ing application objects in a relational database. Sometimes it is desirable
to develop the persistent classes and the relational database in an inde-
pendent way, and to use an object persistent manager to connect them
in a suitable way. This paper introduces M2ORM2, a model for describ-
ing meet-in-the-middle mappings between object schemas and relational
schemas, to support the transparent management of object persistence
by means of relational databases.

1 Introduction

Developing information systems involves various technologies, to be used in a
combined and, possibly, synergic way. Relational database management systems
provide an effective and efficient management of persistent, shared and trans-
actional data [2]. Object-oriented tools and methods (programming languages
and analysis and design methodologies) support the effective development of the
application logic of complex information systems [16]. In practice, it is common
to develop object applications with a layered architecture, containing at least
an application logic layer and a persistence layer. Persistent classes are classes
whose objects hold persistent data; they belong to the application logic layer,
and are made persistent by means of code that connect them, in a suitable way,
to the persistence layer. Object persistence can be achieved in several ways. In
this paper, we will consider persistent objects managed by relational databases;
that is, each application object is represented by means of tuples of a relational
database.

Recently, various frameworks for the transparent management of object per-
sistence have been implemented [18, 22]. By using them, the programmer man-
ages persistent objects by means of standard API’s such the ODMG ones [7],
that is, the same way he would use objects in an object database. However, such
frameworks can persist objects also by means of a relational database or files.
Persistence is transparent to the programmer, since he does not know actual im-
plementation details. The correspondence between objects and the underlying
persistence support is managed by a software module, which can be implemented
as a pre-compiler, a post-compiler, or an interpreter. Transparent persistence of

objects can be achieved in various ways. In the R/O mapping approach (Rela-
tion to Object mapping, also called reverse engineering), persistent classes are
automatically generated from a relational database. This way, the programmer
populates the database by means of creations and modifications of objects from
persistent classes. Then, persistent classes propagate such creations and modifi-
cation to the underlying database. In the O/R mapping approach (Object to Re-
lation mapping, also called forward engineering), starting from the classes that
should be made persistent, the database is automatically generated, together
with the code needed to propagate object persistence to the database.

A persistence management that is completely transparent is not always useful
or possible. Often, an application should be developed that accesses an already
existing relational database that is shared by many applications; this restricts
the use of O/R mapping. Furthermore, the application logic designer needs to
use all the features of the object model, without being constrained by the re-
lational database schema; this restricts the use of R/O mapping. Luckily, there
is a further way to persist objects, which allows to manage the cases in which
the application logic and the database have been developed and evolve in an
independent way. The meet-in-the-middle approach assumes that the persis-
tent classes and the database are designed and implemented separately. In this
case, the correspondences between persistent classes and the relational database
should be given, possibly described in a declarative way. These correspondences
describes a “meet in the middle” between the two schemas and are used by the
persistence manager to let the objects persist by means of the database. The
meet-in-the-middle approach is very versatile, since modifications in persistent
classes and/or in the relational database can be managed by simply redefining
the correspondences.

Unfortunately, existing systems support the meet-in-the-middle approach
only in a limited way. Several object persistence managers are indeed based
on the O/R and R/O approaches and, essentially, they allow to manage only
correspondences between similar structures (e.g., the objects of a single class
with the tuples of a single relation); such systems may permit a meet between
the two schemas, but only as a local tuning activity, after the schema translation
from one model to the other. Limitations of existing systems are motivated by
the difficulties in reasoning about complex correspondences to avoid anomalies
and inconsistencies.

This paper introduces M2ORM2 (an acronym for Meet-in-the-Middle Ob-
ject/Relational Mapping Model), a model to describe mappings (that is, cor-
respondences) between object schemas and relational schemas, to support the
transparent management of object persistence based on the meet-in-the-middle
approach. With respect to currently available systems, M2ORM2 allows for more
possibilities to meet schemas. Rather than considering only correspondences be-
tween single classes and single relations, M2ORM2 allows to express complex
correspondences between clusters of related classes (intuitively, each represent-
ing a single concept) and clusters of related relations. Furthermore, it is possible
to express correspondences describing relationships between clusters. With re-

-id {KEY}
-name
-salary {null}

Employee

-name {KEY}
-state

City {RO}

-name
-division

Department

lives

1

*

Residence

emps

*

dept

1

Membership
-name
-budget

Project *

projs

* WorksOn

Fig. 1. An object schema

spect to other proposals, M2ORM2 considers specific details of the object and
relational data models, to identify as many ways to meet schemas as possible.

The main contribution of this paper is the introduction of M2ORM2. Fur-
thermore, a discussion is started on the correctness of mappings, by identifying
some correctness conditions.

Section 2 proposes terminology and notation used to describe object schemas
and relational schemas. Section 3 introduces M2ORM2, to describe mappings
between schemas, together with an example. Section 4 discusses the problem of
mapping correctness. Finally, Section 5 discusses the effectiveness of the model,
by comparing it with related proposals.

2 Object schemas and relational schemas

This section presents briefly the data models (an object model and the relational
model) and the terminology used in this paper.

The object model we consider is a non-nested semantic data model (with
structural features, but without behavioral ones). We have in mind a Java-like
object model, formalized as a simplified version of the ODMG model [7] and of
UML [5].

At the schema level, a class describes a set of objects having the same struc-
tural properties. Each class has a set of attributes associated with it, each having
a name and a type; in this paper we make the simplifying hypothesis that all
class attributes are of a same simple type, e.g., strings. An association describes
a binary relation between a pair of classes (in reality, between the objects of
such classes). A pair of classes can be in a generalization/specialization rela-
tionship; this implies attribute and association inheritance from the superclass
to the subclass. We consider single inheritance only. An object schema is a set
of classes, related by generalization/specialization hierarchies, and associations
among such classes. Figure 1 shows a sample object schema.

At the instance level, a class is a set of objects. More specifically, each object
is instance of exactly one class. However, because of generalization/specialization
relationships, an object may belong to more than one class: the one from which

it has been instantiated and all of its superclasses. Each object is associated with
an oid, an unique identifier that allows to reference the object. The state of an
object is given by the set of values that its attributes hold in a certain moment.
An association is a set of links; each link describes a relationship between a pair
of objects.

This paper takes into consideration the following integrity constraints. Class
attributes can have null value; an attribute whose value cannot be null is said to
be not null. Sometimes it is useful to search an object in a class on the basis of
the value of some attributes; in this case, the attributes identifying the objects
are called key attributes and the class is said to be with key ; otherwise, the
class is without key. Key attributes should be not null. A read-only class is a
class from which it is not allowed to instantiate new persistent objects and to
modify and to delete already existing objects. In an application, read-only classes
are useful to access information generated by other applications that cannot be
modified by this application. In Figure 1, key attributes are denoted by the
constraint {KEY}, and attributes that can be null by means of the constraint
{null}; constraint {RO} denotes read-only classes.

For associations we consider multiplicity and navigability constraints. A role
is an end of an association, that is, a class involved in the association. Roles have
name, navigability, and multiplicity. The multiplicity of a role in an association
denotes how many objects (at least and at most) of that class can be linked to
each object of the class on the other role of the association. The navigability of
a role denotes the possibility to reach the objects of that class by means of links
from objects of the other role of the association.

In the relational model [2], at the schema level a relation describes a set of
tuples. A relation schema is a set of attributes, each with a name and a type;
in this paper, we assume that all relation attributes are of a simple type, e.g.,
strings. A relational schema is a set of relations. At the instance level, a relation
is a set of tuples over the attributes of the relation.

This paper takes into consideration the following integrity constraints. At-
tributes can be or not be not null. Each relation has a key, that is, a non-empty
set of attributes that allows the identification of the tuples of the relation. A key
attribute is an attribute that belongs to a key; key attributes should be not null.
Sometimes relations are identified by means of artificial keys (or surrogates),
rather than by means of natural keys (that is, keys based on attributes having a
natural semantics). In a relation with artificial key, the insertion of a new tuple
involves the generation of a new artificial key; the DBMS is usually responsible of
this generation. For referential constraint (or foreign key) we mean a non-empty
set of attributes of a relation used to reference tuples of another relation.

Figure 2 shows a sample relational schema. Attribute forming natural keys
are denoted by the constraint {NK}, and those forming artificial keys by the
constraint {AK}. Referential constraints are denoted by arrows and implemented
by means of attributes with the constraint {FK}. The constraint {null} denotes
attributes that can be null.

employee

empId {NK}
empName
salary {null}
city
state
deptId {FK: department}

department

deptId {AK}
deptName
divId {FK:division}

project

projId {AK}
projName
budget
startDate {null}

works_on

empId {NK}{FK: employee}
projID {NK}{FK: project}

division

divId {AK}
divName
city {null}

Fig. 2. A relational schema

We assume that programmers manage object schemas only in a program-
matic way. In practice, objects and links are manipulated by means of CRUD
operations (Create, Read, Update, Delete), that allow the creation of persistent
objects, the reading of persistence objects (that is, the unique search of an object
based on its key), as well as the persistent modification and deletion of objects.
Moreover, navigation, formation, breaking, and modification of persistent links
between objects is allowed. Reading is meaningful only for classes with key. Cre-
ation, modification, and deletion is not meaningful for read-only classes. For
example, Figure 3 shows a possible fragment of code to increase the salary of an
employee, with respect to the scheme of Figure 1.

In correspondence to such programmatic manipulations of an object schema,
a meet-in-the-middle-based object persistence manager should translate CRUD
operations on objects and links into operation over an underlying relational
database. This translation should happen in an automatic way, on the basis of
a suitable mapping between the object schema and the relational schema, as
described in the next section.

/* increase the salary of Employee #123 */

PersistenceManager pm = new PersistenceManager(...);

Transaction tx = pm.newTransaction();

tx.begin();

Employee e = (Employee) pm.getObjectById(new EmployeeId("123"));

e.setSalary(e.getSalary()*1.1);

tx.commit();

Fig. 3. Persistent objects are managed in a programmatic way

3 A model for object/relational schema mappings

M2ORM2 (an acronym for Meet-in-the-Middle Object/Relational Mapping Mod-
el) is a model for describing mappings among object schemas and relational
schemas, to support the transparent management of relationally persistent ob-
jects based on the meet-in-the-middle approach. In this paper, we assume that
an object schema and a relational schema have been independently developed. In
particular, the relational schema could be (partially) denormalized for efficiency
reasons; the object schema could be denormalized as well, that is, it may contain
“coarse grain” objects.

In this paper, a M2ORM2 mapping is described by means of a multi-graph
(that is, by a set of nodes and a set of arcs, with the observation that several
arcs can connect a same pair of nodes). Each node describes a correspondence
between a set of classes and a set of relations. Each arc describes a relationship
between the correspondences described by means of a pair of nodes. Intuitively,
using the Entity-Relationship terminology [3], each node represents an entity
(which can be denormalized in one of the schemas) and each arc represents a
binary relationship or a generalization/specialization relationship between two
entities. In practice, we envision the possibility to describe M2ORM2 mappings
as structured (e.g., XML) text files, as it happens in current systems.

A class cluster (or c-cluster) comprises a non-empty set of classes and a set
of associations and/or generalization/specialization relationships among such
classes.1 In a c-cluster, one of the classes should be selected as primary class
of the c-cluster; the other classes are secondary ones. The associations of the
node should be, directly or indirectly, all of type one-to-one or one-to-many
from the primary class to secondary classes. Intuitively, such associations should
relate each object of the primary class with at most an object from each of the
secondary classes.

A relation cluster (or r-cluster) comprises a non-empty set of relations, to-
gether with referential constraints among them. In an r-cluster, one of the re-
lations should be selected as the primary relation of the r-cluster; the other
relations, called secondary, should be referenced, directly or indirectly, from the
primary relation of the r-cluster. Intuitively, each tuple of the primary relation
should be associated with at most a tuple in each of the secondary relations
through the referential constraints of the r-cluster.

Each node of a mapping describes the correspondence between a c-cluster
and an r-cluster, by means of information about correspondences among their
elements (classes, relations, attributes, associations, and generalization/speciali-
zation relationships). Specifically, in a node the correspondence among c-cluster
elements and r-cluster ones are described by means of attribute correspondences,
each of which involves an attribute of a class and an attribute of a relation. In

1 More precisely, each element of a c-cluster is associated with a class in the object
schema. Therefore, it is possible that a class takes part to more c-clusters, or that
it takes part more the once in a same c-cluster. A similar consideration applies to
r-clusters, that will be introduced shortly.

-id {KEY}
-name
-salary {null}

Employee

-name {KEY}
-state

City {RO}

-name
-division

Department

lives 1

*Residence

emps

*

dept1

Membership

-name
-budget

Project

*

projs*

 WorksOn

employee

empId {NK}
empName
salary {null}
city
state
deptId {FK: department}

department

deptId {AK}
deptName
divId {FK:division}

project

projId {AK}
projName
budget
startDate {null}

works_on

empId {NK}{FK: employee}
projId {NK}{FK: project}

division

divId {AK}
divName
city {null}

NP

ND

N
E

A
ED

AEP

Fig. 4. A M2ORM2 mapping between the schemas of Figures 1 and 2

M2ORM2, there are three kinds of nodes, to let a class correspond with a relation,
a class with multiple relations, and multiple classes with a relation. Currently, the
model does not permit that multiple classes correspond with multiple relations;
however, most complex correspondences of this kind can be represented by means
of arcs.

Figure 4 shows a M2ORM2 mapping between the schemas of Figures 1 and 2,
based on three nodes: a node NP, describing the correspondence between class
Project and relation project ; a node NE, describing the correspondence between
classes Employee and City and relation employee; and a node ND, describing
the correspondence between class Department and relations department and di-
vision.

Node NP describes the correspondence between a class (Project) and a rela-
tion (project); it is clear that both the class and the relation are primary in the
node. The correspondence between them is based on the attribute correspon-
dences (Project.name, project.projName) and (Project.budget, project.budget);
these are depicted as dotted lines in Figure 4. Node NP describes a total corre-
spondence between a class and a relation: each object of the class is represented
by means of a tuple of the relation. This correspondence involves a class without

key and a relation with artificial key. All the attributes of the class are involved
in the correspondence; however, not all the attributes of the relation are involved
in it. This correspondence allows to manage, for example, the creation of a new
persistent Project object by means of the insertion of a new tuple in project ;
in this tuple, the values for project.projName and project.budget come from the
object attributes Project.name and Project.budget, on the basis of attribute cor-
respondences; moreover, the value for project.projId is automatically generated
and the value for project.startDate remains null.

Node NE describes the correspondence between two classes (Employee and
City) linked by an association (Residence) and a relation (employee). In this
node, Employee is the primary class. Intuitively, each object of the primary class
Employee can be associated (by means of the association Residence) with an ob-
ject of the secondary class City. Each tuple of employee represents an Employee
object together with the City object related to it, and also the link of type Res-
idence between these two objects. In this node, in which the primary class Em-
ployee is with key, the correspondence is based on the correspondence between
the key attributes of the primary class and of the primary relation (Employee.id,
employee.empId) together with the attribute correspondences (Employee.name,
employee.empName), (Employee.salary, employee.salary), (City.name, employ-
ee.city), and (City.state, employee.state). For example, the creation of a new
Employee object, linked to an existing City object, is managed by the insertion
of a new tuple in employee. (The management of the membership of the employee
in a department is described later.)

Finally, node ND describes the correspondence between a class (Department)
and two relations (department and division); the primary relation is depart-
ment. Intuitively, each Department object is represented by a tuple of depart-
ment and a tuple of division, related by means of a referential constraint. The
correspondence is based on the attribute correspondences (Department.name,
department.deptName) and (Department.division, division.divName). The latter
correspondence is meaningful with respect to the referential constraint between
the primary relation department and the secondary relation division of the r-
cluster. Indeed, this node allows to represent in the mapping the two relations
together with the referential constraint between them. For example, the creation
of a new Department object is managed by the insertion of a new tuple in divi-
sion (with the generation of an artificial key) and of a new tuple in department
(with the generation of another artificial key).

In general, not every mapping is correct. For example, if the primary class
of a node is with key, then it is necessary that its key attributes correspond to
the key attributes of the primary relation of the node. However, if the primary
class is without key, then the primary relation should be with artificial key.
Correctness of mappings will be discussed briefly in Section 4.

A M2ORM2 mapping can contain arcs. Intuitively, arcs allow to represent
correspondences and elements which cannot be represented by means of nodes;
specifically, further associations, generalization/specialization relationships, ref-
erential constraints, and some further relations. Each arc describes a relationship

between a pair of nodes, and can be a binary relationship (of type one-to-one,
one-to-many, or many-to-many) or a generalization/specialization relationship.

An arc involves a class correspondence and a relation correspondence. A
class correspondence describes the correspondence between the primary classes
of the c-clusters of the nodes connected by the arc, and it is based either on
the navigable roles of an association between the classes or on a generaliza-
tion/specialization relationship. In practice, the roles are implemented by means
of reference attributes (for the to-one navigability) and/or collections of refer-
ence attributes (for the to-many navigability). If the association is unidirectional,
then a single attribute is involved; otherwise, if it is bidirectional, there are two
attributes involved. A relation correspondence describes the correspondence be-
tween the primary relations of the r-clusters of the nodes connected by the arc,
and it is based on the set of attributes that implement the relationship between
the two relations by means of referential constraints; further relations can be
involved. An arc groups a class correspondence and a relation correspondence,
representing a one-to-one, one-to-many, or many-to-many binary relationship or
a generalization/specialization relationship between the instances represented by
a pair of nodes.

For example, the mapping shown in Figure 4 contains two arcs: an arc AED

for the one-to-many association between Employee and Department and an arc
AEP for the many-to-many association between Employee and Project.

Arc AED between nodes NE and ND describes the one-to-many relation-
ship between employees and departments. This relationship is represented by
means of the correspondence [Employee.dept, Department.emps] between the
classes Employee and Department and by means of the correspondence [em-
ployee.deptId] between the relation employee and department. Intuitively, this
arc lets the association Membership between Employee and Department cor-
respond with the referential constraint between employee and department. For
example, if an Employee object e changes its membership (that is, its dept ref-
erence attribute) to a Department object d, then the deptId attribute of the
employee tuple representing e is updated to reference the department tuple rep-
resenting d.

Arc AEP between nodes NE and NP describes the many-to-many relationship
between employees and projects. This arc is based on the (unidirectional) cor-
respondence [Employee.projs] between classes Employee and Project and on the
correspondence [works on.empId, works on.projId] between relations employee
and projects. In practice, this arc lets the association WorksOn between Em-
ployee and Project correspond with the referential constraints between employee
and project stored in the tuple of the relation works on. For example, if a Work-
sOn link between an Employee object e and a Project object p is broken, then
the works on tuple representing this link is deleted.

To discuss arcs representing generalization/specialization relationships, con-
sider the schemas shown in Figure 5. A mapping between them can be defined by
means of two nodes (for persons and students) and a generalization/specializa-
tion arc connecting them. In the arc, the generalization/specialization between

-id {KEY}
-name

Person

-university

Student

person

personId {NK}
name

student

studentId {NK} {FK: person}
university

Fig. 5. A schema involving a generalization/specialization relationship

the two classes corresponds with the referential constraint from the primary key
of student to person.

In practice, there are various ways to represent a generalization/specialization
hierarchy by means of a relational database [3]. Until now, M2ORM2 can only
represent the one that essentially maps each class of the hierarchy with a different
relation.

4 Correctness of mappings

In the previous section, M2ORM2 has been used as a syntactical tool to represent
mappings. In reality, mappings have semantics as well, to describe how CRUD
operations on objects and links of the object schema can be realized by means of
operations on the relations of the relational schema. However, not every mapping
that can be described using M2ORM2 is correct. Intuitively, a mapping is correct
if it supports, in an effective way, the management of CRUD operations on
objects and links by means of the relational schema. Otherwise, a mapping is
incorrect if operations on objects and links can give rise to anomalies. In the
following of this section we identify classes of anomalies caused by incorrect
mappings, and some categories of conditions suitable for studying the correctness
of M2ORM2 mappings.

We consider a sequence of CRUD operations on objects and links that, glob-
ally, transforms a valid instance of the object schema into another valid instance,
that is, in which all the integrity constraints imposed by the schema are satis-
fied. An incorrect mapping can give rise to the following anomalies during the
execution of such sequence of operations:

– creation anomalies happen when the relational schema is not able to manage
the creation of a new object in some class (not a read-only class); for example,
a creation anomaly happens if the class is not represented in the mapping or
if some of its attributes are not in a suitable correspondence with attributes
of the relational schema (including erroneous correspondences involving not
null attributes and key attributes);

– reading anomalies are related to the inability to identify uniquely an object
from a class with key; for example, a reading anomaly happens if there are
erroneous correspondences involving key attributes of classes and relations;

– update anomalies happen if it is not possible to manage the modification of
attributes of an object (belonging to non read-only class);

– deletion anomalies happen if it is not possible to manage the deletion of an
object (belonging to non read-only class).

Similarly, there are anomalies related to the formation of links, and also to their
navigation, modification, and breaking.

There are two main causes for anomalies: incorrect correspondences between
elements and incorrect representation of integrity constraints.

An example of the former case happens if the correspondences among ele-
ments are incomplete, that is, if there are elements of the object schema (classes,
associations, attributes) that are not in correspondence with elements of the re-
lational schema. Indeed, each class must belong to at least one node, and the
attributes of classes should occur in at least one attribute correspondence. How-
ever, relational elements must obey to different conditions; for example, it is
possible that a relation or some of its attributes do not partecipate in the map-
ping.

Inconsistencies in the representation of integrity constraints can happen in
several different ways. For example, with respect to key constraints, it is nec-
essary that key attributes of primary classes with key are in correspondence
with key attributes of primary relations with natural key. Furthermore, primary
classes without key should correspond to relations with artificial key. As a further
example, concerning referential constraints, in a node that lets a class correspond
with more than a relation, non-key attributes of the class should correspond to
non-key attributes of relations, and referential constraints towards secondary
relations should be implemented by means of artificial keys.

The conditions we have just described are necessary conditions for the cor-
rectness of M2ORM2 mappings. However, in practice (i.e., for the implementa-
tion of a persistence manager based on M2ORM2) sufficient conditions should
be fixed, to manage mappings in an effective way. Current systems suffer from
several limitations, since conditions they are based on are very restrictive. One
of the main goal of this research is to identify conditions that are as permissive
as possible with respect to which mappings are semantically meaningful.

5 Discussion

The “professional” literature on databases and on pattern languages is rich of
works on how to manage persistent classes by means of relational databases [1,
6, 10, 15]. Most of these works describes the O/R mapping, a kind of logical
design [3] starting from an object schema rather than from an entity-relationship
schema. But, as we already said in the Introduction, O/R mapping assists the
definition of a database supporting a single application, and not shared among
several applications, being this one of the main motivations for using a DBMS
as the manager of persistent data.

This topic has been investigated by the scientific literature of the database
community as well. Persistence [14] is a system supporting the O/R mapping.

Table 1. Comparison with other models and tools

Feature JDO OJB JRELAY JDX M2ORM2

O/R mapping (forward engineering) yes yes yes yes no

R/O mapping (reverse engineering) n/a yes yes yes no

Meet in the middle n/a yes yes yes yes

One class/one relation n/a yes yes yes yes

One class/many relations with referential
constraints

n/a yesa yes no yes

One class/many relations with vertical parti-
tioning

n/a no no no yesb

Many classes/one relation n/a no no yes yes

Many classes/many relations n/a no no no no

Classes with key yes yes yes yes yes

Classes without key yes no yes no yes

Read-only classes no no no no yes

Attribute of a class mapped into several re-
lations

n/a no no no yes

One-to-one relationship n/a yes yes yes yes

One-to-many relationship n/a yes yes yes yes

Many-to-many relationship without attri-
butes

n/a yes yes no yes

Many-to-many relationship with attributes n/a no no no yesb

Many-to-many relationship with selective at-
tributes

n/a no no no yesb

Generalization/specialization hierarchies yes yes yes yes yesc

a Yes, but not implemented.
b Yes, but not discussed in this paper.
c Yes, but discussed only partially in this paper.

Gateway [19] is a system for managing persistent objects by means of a relational
database based on the meet-in-the-middle approach; however, the paper does
not give details on the mapping model used. EBO [20] is an R/O mapping
system, featuring some functionalities of meet-in-the-middle; also in this case,
the mapping model has not been described.

The problem of describing and analyzing schema mappings is also of interest
in the areas of data transformations [8] and data integration [9]. The notion of
mapping used in this paper is inspired from the one proposed in the context of
model management [4].

Table 1 compares M2ORM2 with some standards and commercial and/or
open source systems for the transparent management of persistent objects. Java
Data Objects (JDO) [11] is a standard for the transparent management of Java
objects. OJB [18] is an Apache open source project, implementing the ODMG
and the JDO API’s; in practice, it allows to manage persistent objects as they
were stored in an ODMG object database [7]. JDX [12] features O/R mapping
functionalities similar to OJB ones; however, persistent objects are manipulated

by means of proprietary API’s. JRELAY [13] is a JDO implementaion, imple-
menting the three mapping approaches, but with significative limitations. From
the table, it is possible to see that M2ORM2 provides the same features offered
by current systems, plus more.

The management of generalization/specialization hierarchies needs a special
comment. Until now, M2ORM2 supports them only in a limited way, but still
comparable to the support given by other systems. In future, we plan to manage
generalization/specialization relationships in a more complete way.

As future work, we plan the implementation of a framework for the manage-
ment of persistent Java objects based on M2ORM2. From a theoretical per-
spective, we plan to study several extensions to the model (specifically, the
management of generalization/specialization hierarchies, transient classes and
attributes, further integrity constraints, and schematic heterogeneities [17]) but
also to give more precise characterizations of correct M2ORM2 mappings.

References

1. S.W. Ambler. The fundamentals of mapping objects to relational databases. White
Paper, http://www.agiledata.org, 2003.

2. P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems. Concepts,
Languages and Architectures. McGraw-Hill, 1999.

3. C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design, an Entity-
Relationship Approach. Benjamin-Cummings, 1992.

4. P.A. Bernstein, A.Y. Halevy, and R.A. Pottinger. A vision for the management of
complex models. ACM Sigmod Record, 29(4):55–63, 2000.

5. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

6. K. Brown and B.G. Whitenack. Crossing Chasms: A pattern language for object-
RDBMS integration. In Pattern Languages of Program Design 2, 1996.

7. R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000.

8. Data Transformations. S.ı. of the IEEE Bull. on Data Engineering, 22(1), 1999.
9. Integration management. S.ı. of the IEEE Bull. on Data Engineering, 25(3), 2002.
10. M.L. Fussell. Foundations of object relational mapping. White Paper,

http://www.chimu.com, 1997.
11. Java Data Objects. http://www.jdocentral.com.
12. JDX. http://www.softwaretree.com/.
13. JRELAY. http://www.objectindustries.com/.
14. A.M. Keller, R. Jensen, and S. Agrawal. Persistence Software: Bridging object-

oriented programming and relational databases. In ACM SIGMOD International
Conf. on Management of Data, pages 523–528, 1993.

15. W. Keller. Mapping object to tables: A pattern language. In European Conf. on
Pattern Languages of Programming, 1997.

16. C. Larman. Applying UML and Patterns. An introduction to object-oriented anal-
ysis and design and the Unified Process. Prentice Hall PTR, 2002.

17. R.J. Miller. Using schematically heterogeneous structures. In ACM SIGMOD
International Conf. on Management of Data, pages 189–200, 1998.

18. ObJect relational Bridge. http://db.apache.org/ojb/.

19. J.A. Orenstein and D.N. Kamber. Accessing a relational database through an
object-oriented database interface. In 21st Int. Conf. on VLDB, 702–705, 1995.

20. J.A. Orenstein. Supporting retrievals and updates in an object/relational mapping
system. IEEE Bull. on Data Engineering, 20(1):50–54, 1999.

21. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10:334–350, 2001.

22. Torque. http://db.apache.org/torque/.

