
A Performative Type Hierarchy and Other Interesting 
Considerations in the Design of the CASA Agent 

Architecture 
Rob Kremer 

Department of Computer Science 
University of Calgary 

2500 University Dr. N.W. 
Calgary, Canada, T2N-1N4 

(403) 220-5112 

kremer@cpsc.ucalgary.ca 

Roberto Flores 
Institute of Cognitive Sciences and 

Technologies 
National Research Council 

Viale Marx 15, 00137, Rome, Italy 
39 (06) 86090518 

robertof@ip.rm.cnr.it 

Chad La Fournie 
Department of Computer Science 

University of Calgary 
2500 University Dr. N.W. 

Calgary, Canada, T2N-1N4 
(403) 210-9546 

laf@cpsc.ucalgary.ca 
 
 

ABSTRACT 
In this paper, we describe several interesting design decisions we 
have taken (with respect to inter-agent messaging) in the re-
engineered CASA architecture for agent communication and 
services.  CASA is a new architecture designed from the ground 
up; it is influenced by the major agent architectures such as 
FIPA, CORBA, and KQML but is intended to be independent 
(which doesn't imply incompatible).  The primary goals are 
flexibility, extendibility, simplicity, and ease of use.  The lessons 
learned in the earlier implementation have fed the current design 
of the system.  Among the most interesting of the design issues 
are the use of performatives that form a type lattice, which 
allows for observers, who do not necessarily understand all the 
performatives, to nonetheless understand a conversation at an 
appropriate semantic level.  Furthermore, we found it difficult to 
arrange a portion of the FIPA performatives in a lattice without 
duplication and complexity.  We solved this problem by 
diverging from FIPA performatives by separating a lot of the 
performatives into a separate lattice of acts, which work with the 
performatives, but greatly simplify and enhance the semantic 
interpretation of the messages.  Yet another innovation is the 
addition of several new fields within a KQML-style message 
header that allow for further semantic interpretation of the 
message by an observer who does not necessarily understand the 
content language.  The traditional FIPA fields to, from, sender, 
and receiver have been extended to include agent (the requester 
of a service), and actor (the party designated responsible for 
performing the action specified in the performative/act).  These 
new design considerations add a great deal of flexibility and 
integrity to an agent communications architecture. 

Keywords 
Conversation Protocols, Social Commitments, CASA, Agent-
based Systems, Agent Communication Languages. 

1. INTRODUCTION 
We have been working on an infrastructure for agent-based 
system that would easily support experimentation and 
development of agent-based systems.  We implemented the first-
cut system, and began work on the analysis of what we could 
learn from our experience. 

We had gained enough knowledge to formalize our theory of 
agent conversations based on social commitments [5], but the 
CASA infrastructure itself, although seemingly quite adequate, 
seemed rather ad-hoc, and lacking in solid theoretical foundation. 

The various types of service agents in the CASA system each 
sent and received what seemed to be a set of ad-hoc messages, 
which did the job, but still seemed unsatisfying in that there 
seemed to be no apparent pattern to them.  We had more-or-less 
followed the FIPA [8] performative model (the CASA message 
structure closely follows the FIPA structure, which, in turn 
borrows heavily from KQML [1]).   

We decided to take a hard look at the system with an eye to 
looking for patterns to modify our design to a more satisfying 
structure.  This paper describes some of our analysis that lead to 
the current design. 

In the remainder of this section we give a brief introduction to 
the CASA infrastructure.  In Section 2, we describe various 
problems and solutions (a.k.a. design decisions) we have 
encountered in our building and using the CASA system.  These 
include the arranging of performatives in a type lattice, 
specification of some relational constraints, and the resulting 
compositional properties of some messages, the addition of 
several new fields in messages, and the removal of some 
performatives into a separate type lattice called acts.  In Section 
3 focus on conversations, rather than messages, and describe how 
CASA can support either conversation protocols, or social 
commitments as a basis for inter-agent communication, and 
weigh some of the merits of the two different approaches.  In 
sections 4 and 5 we discuss our future work and conclusions. 

 

 



1.1 BACKGROUND: CASA 
The fundamental objective of CASA is to support communication 
among agents and related services.  Therefore, CASA offers a 
generic communication and cooperation infrastructure for 
message passing, archiving (data, knowledge bases, and 
transaction histories), agent lookup, and remote agent access. It 
is an open system infrastructure that may be easily extended as 
the future need for services becomes apparent.  CASA makes no 
demands on intra-agent architecture (internal agent architecture), 
however, agent templates are provided in the form of classes that 
one can inherit from and specialize (in Java and C++).  
Currently, generic class-templates are provided and conversation-
protocol and social-commitment specialized class-templates are 
under development. 

As shown in Figure 1, Cooperation Domains (CDs) acts as a 
central “hub” for multi-agent conversations such that all 
participants may send messages directly to the Cooperation 
Domain for point-to-point, multi-cast, type-cast1, and broadcast 
communication within the Cooperation Domain (a group of 
agents working together on some task). Agents within a 
cooperation domain may also use the cooperation domain to store 
persistent data that will permanently be associated with the 
conversation, giving the conversation a lifetime beyond the 
transient participation of the agents, as is often required.  
Cooperation Domains may also store transaction histories for 
future playback of the chronological development of the 
conversation artifacts. Cooperation Domains may perform all 
these tasks because all messages use a standard "envelope" 
format (currently either KQML [1] or XML [15])2, which flexibly 
provides a basic semantic “wrapper” on messages that may be 
otherwise domain specific: both the utility of generic services and 

                                                             
1 Type-cast is similar to multi-cast, but the destination 

specification describes agent types (rather than individuals), 
and the cooperation domain forwards the message to agents 
known to conform to the type(s). 

2 Actually, the envelope formats can be either KQML or XML 
(mixed) as we can dynamically switch between the two owing 
to our employing the Chain of Command pattern [10] to 
interpret messages. 

the efficiency of domain specific languages are therefore 
provided.  

Yellow page servers (also called Yellow Page Agents, Yellow 
Pages, or YPs) allow agents to look up other agents by the 
services they offer.  An area is defined nominally as a single 
computer (but could be a cluster of several computers, or a 
partition on a single computer).  There is exactly one local area 
coordinator (LAC) per area, which is responsible for local 
coordination and tasks such as “waking up” a local agent on 
behalf of a remote agent. All application agents reside in one or 
more areas.  See Figure 2 for a screen dump of a LAC interface 
showing several agents running. 

Messages are needed to support interactions among agents. 
Messages are generically defined either as Request, Reply or 
Inform messages; where Requests are used to ask for the 
provision of a service, Replies to answer requests, and Informs to 
notify agents without requiring the receiving agent to perform 
any action. Since these messages are too ambiguous for the 
definition of interaction protocols, other, more meaningful, 
message subtypes are derived from these general definitions of 
messages. For example, Refuse is derived from Reply; an agent 
can Refuse a earlier Request of another agent as a special type of 
Reply (as Agree would be another special type of reply). 

2. MESSAGES 
In our analysis of the system we first looked at the performatives 
in the messages, and existing FIPA performatives. These include: 

Accept Proposal Agree Cancel 

Call for Proposal Confirm Disconfirm 

Failure Inform Inform If 

Inform Ref Not Understood Propagate 

Propose Proxy Query If 

Query Ref Refuse Reject Proposal 

Request Request When Request Whenever 

Subscribe   

 

Agent 

Agent 
Area Local Area 

Coordinator 

  Other 
Agents 

  Yellow 
Pages   Cooperation 

Domain 

acts as the 
representative of an 

area: coordinates 
between agents and 
yellow pages, may 
activate a dormant 
agent on request 

a place where 
agents execute 
(often a single 

computer) 

allows lookup of 
other agents by 

service 

usually registers 
itself with the LAC; 
can participate in 
cooperation 
domains to offer or 
receive services 

a "place" through which 
agents communicate; 
similar to a meeting 

room.  Also a repository 
of data associated with 
the cooperation domain. 

 
Figure 1: Basic Communication and Cooperation Services in CASA 



2.1 The Problem 
The FIPA performatives seem rather awkward when one tries to 
use them in a real application such as this.  The meaning of each 
and its relationship to the others is not always clear. In some 
cases, it seems they have overlapping meaning. For example, 
Refuse and Reject Proposal can occur under the same 
circumstances, and the former would seem to be a subtype of the 
latter.  Thus, it they should be arranged in a type lattice.  
Furthermore, our use of them (in developing the CASA 
infrastructure) seemed to indicate that Inform, Request, and 
Reply were somehow much more fundamental than the others. 

A common technique used in communication protocols 
(especially in the face of unreliable communication channels) is 
to always have the receiver return a confirmation (an 
acknowledge message) to the sender so that the sender can verify 
that the message was received (and resend if necessary).  Such 
an Ack message is conspicuously missing from the FIPA 
performatives, so we chose to extend FIPA's protocol3, and go 
with an Ack (acknowledgement) to an Inform to allow us to 
check on transmission of a message in the event we are using an 
                                                             
3 In fact, we're not sure if we really are extending FIPA's 

protocol, since we could find no protocol for a simple Inform.  
So we aren't sure if a FIPA agent would expect an Ack after an 
Inform or not. 

unreliable communication channel.  (Note that we do not require 
agents to use the Ack protocol, but agents may agree to use it if 
so desired.4) 

When we tried to draw a type hierarchy of all the messages 
required in CASA, we found it looked something like this5:  

 
Figure 3 

                                                             
4 Actually, an agent who isn’t using the Ack protocol will Ack if it 

receives a message marked with a request-ack field – see 
Figure 13 and Section 2.7 

5 This type hierarchy is a simplification of the hierarchy we built 
containing all the performatives in the FIPA Communicative 
Act Repository Specification (FIPA00037) [7], which ended up 
being fairly complex. Although simplified, the above diagram 
captures the essence of the original.  

 
Figure 2: A screen dump of a CASA LAC interface with a Cooperation Domain and two simple ‘chat’ agents communicating 
with one another.  All three agents are running in the same process here, but they may all run in independent processes or on 
different machines. 

inform reply request 

T 

ack 

Lattice “A” Lattice “A” Lattice “B” Lattice “B” 



For example, when an agent wishs to join a cooperation domain, 
it sends a joinCD (lattice B) request to the cooperation domain, 
and the cooperation domain responds with a joinCD (lattice B) 
reply. 

2.2 Rearranging Performatives 
It seems interesting that for each specific Request, we have a 
mirrored Reply and, similarly, for each specific Inform we have a 
mirrored Ack. It seems to us that Request/Reply and Inform/Ack 
are more fundamental than their subtypes.  It appears we should 
keep Request/Reply and Inform/Ack as "fundamental message 
types", and then put all the other things in a separate type lattice 
of "ACTs".  We extend our message headers to include a new 
field act.  This more-or-less turns performatives into speech acts, 
and acts into physical acts. 

Thus, our message header looks like this: 
performative: request 
act:          inviteToJoinCD 
to:           Bob 
from:         Alice 
receiver:     CDagent1 
sender:       Alice 
... 

Getting back to acknowledging protocols, we can write down a 
very simple conversation protocol: that of an Inform/Ack pair 
(here we use diamond-shaped arrowheads to indicate sequence): 

 ack inform  
Figure 4 

This adds a certain sense of reliability to the message 
transmission: Alice will always know (by the Ack) that Bob 
received her Inform6.  In the case of a Request/Reply, if Bob 
received a Request from Alice, and Replies, then Alice will know 
that Bob received the Request, so there is no need for an Ack in 
this case.  But Bob (the receiver of the request) has no way of 
knowing if Alice received the Reply.  It would be appropriate for 
Alice to send an Ack to Bob: 

 reply request ack  
Figure 5 

If this is the case, then Reply looks a lot like inform.  It's a 
specialization (subtype) of Inform: 

 
Figure 6 

This makes sense: after all, if I’m replying to you, I’m informing 
you of what I’m doing with your request.   

                                                             
6 But Alice won't know if Bob didn't receive the Inform, since the 

Ack could have been lost.  This is a well known problem in the 
literature. 

Furthermore, it would be consistent to think of a Reply as being a 
kind of Ack to a Request.  After all, if we reply to a request, the 
reply certainly carries all the functionality of an Ack.  Therefore, 
Reply would be a subtype of both Inform and Ack: 

 

  

inform   

reply   

request   

T   

ack   

 
Figure 7 

By the same reasoning as a reply is an inform, we can derive that 
a request must also be in an form.  After all, if I’m requesting 
something of you, I’m informing you that I want you to do 
something for me: 

 

inform 

reply request 

T 

ack 

 
Figure 8 

This seems to be a rather satisfying configuration, although 
slightly asymmetrical. 

2.3 Adding Constraints 
We will overload the last diagram by adding a sequence relation 
to indicate that an Inform is followed by an Ack: 

 

inform 

reply request 

T 

ack 

 
Figure 9 

One can observe that an Inform must be followed by an Ack, and 
a Request must be followed by a Reply (and not an Ack).  This 
does not violate the Inform/Ack constraint since Reply is a 
subtype of Ack anyway.  In addition, the above diagram says that 
one can't Ack a Request, because it's not a Reply7.  Just what we 
want. 

2.4 Composing Messages 
All this has interesting consequences in implementation.  
Nothing in the CASA message exchange changes, but it does tell 
us that a request protocol is a composition of two inform 
                                                             
7 One might argue that a request might be followed by both an 

Ack and a Request, and conform to this diagram, but this 
cannot be because in a proper conversation thread, speech acts 
are well ordered: one message cannot be followed by more than 
one other message.  

  

inform   

reply   

request   

T   

ack   



protocols (where the [overloaded] middle message is a 
specialized Ack): 

 inform ack inform ack 

reply request ack  
Figure 10 

This composition is legal only because we had previously 
observed that a Reply is a subtype of both Ack and Inform.  The 
fact that we can do this composition lends support to our earlier 
analysis that Request is a subtype of Inform and Reply is a 
subtype of both Inform and Ack. 

2.5 When things go wrong 
All this is fine when the world is unfolding as it should.  But 
sometimes things don't go as planned and errors happen.  An 
agent may want to negatively acknowledge (Nack) an inform ("I 
don't believe you", "I don't understand the message").  Or an 
agent may be unable (or unwilling) to perform a request ("Sorry, 
can't do it").   Or a message may simply not be returned for 
whatever reason. 

Since these forms of failure can be regarded as being speech acts 
(as opposed to physical acts), we can simply add them as 
subtypes of replies (which also makes them subtypes of acks as 
well): 

 

inform 

reply request 

T 

ack 

error refuse timeout not-understood 

nack 

 
Figure 11 

Thus, conversation specifications (protocols), don't need to worry 
about error conditions: since an error is just a specialization of a 
reply or an ack, it is a "normal" part of a regular conversation, at 
least at the speech-act level.  Agents may and will alter their 
behaviour when errors occur, but there is no reason to unduly 
complicate a protocol description if the circumstances do not 
warrant it. 

The errors defined in Figure 11 are: 

?  error, which is general catch-all for some exceptional error that 
may occur.   

?  refuse, which is used when an agent explicitly refuses a request 
(or possibly to deny an inform, similar to the FIPA disconfirm). 

?  not-understood, which is used to inform the sending agent that 
the receiving agent cannot interpret the message. 

?  timeout, which is a special case explained below. 

There are several ways to handle the case where an acknowledge 
to an inform or a reply to a request is not returned.  We find it 
very convenient to make use of a timeout message, which, in 
fact, are not ordinary messages in that they are not normally sent 
between agents.  But rather, agents "send" timeout messages to 
themselves as a simple "bookkeeping" technique:  Whenever a 

message is sent it includes a timeout field which specifies by 
when an acknowledge/reply is expected.  If no 
acknowledge/reply is received by the time the timeout expires, 
the agent merely "sends" a matching timeout message to itself.  
This technique greatly simplifies agent logic because agents are 
always guaranteed to receive a reply (even if it may only be a 
timeout).  In addition, since overworked receiving agents also are 
aware of the timeout encoded in the message header, they may 
safely ignore expired messages without further processing. 

2.6 Acts 
Now we turn our attention the type lattice of acts we had 
mentioned in Section 2.2.  We have created a separate type 
lattice of acts that is somewhat subservient to the smaller type 
lattice of performatives.  We attempted this type lattice for the 
fundamental messages necessary to manage the CASA 
infrastructure (see Figure 12)8.  

The figure shows remarkable regularity.  There are three 
fundamental (but not necessarily exclusive) types of acts: create, 
destroy, and get, corresponding to the three fundamental things 
one can do with data: write, delete, and read.  For each of the 
agent types, there is a corresponding triplet of messages that 
represent it's functionality.  For example, an agent may request of 
a YellowPages agent to be advertised (advertise), to be removed 
from the list of advertised agents (unadvertised), or to search for 
some other agent among the YellowPages agent's registered 
advertisers (search).   This otherwise perfect symmetry is broken 
only in one case: An agent may delete a history list 
(deleteHistoryCD) and read the history list (getHistoryCD), but 
it may not write into the history list (the history list is written to 
as the Cooperation Domain records all the messages it 
processes). 

2.7 A More Powerful Message 
As already mentioned, CASA exchanges messages with headers 
in either KQML formal or XML format. Both of these formats 
contain exactly the same information, so it matters little (except 
that XML is more verbose) which is used.  The XML DTD in 
Figure 13 describes our message format. 

Most of the fields in the message are either described above or 
are standard to FIPA [8]. 

Why did we extend the FIPA message header format?  Largely, 
this is because we are concerned with the observable properties 
(as opposed to the internal, private properties) of agent 
interaction.  We want an external observer to be able to judge the 
soundness (conformance to social conventions or protocols) of a 
conversation without necessarily understanding all of the 
subtleties and details of the conversation.  That is, an external 
observer should be able "understand" a conversation even though 
the observer does not understand the language and ontology used 
in the content section of the message.  FIPA's message format is 
a very good foundation for such understanding.  For example, the 
                                                             
8 The initial formulation of the ACT type lattice, or course, was 

not so clean.  The process of building this diagram caused us to 
tweak our design by renaming a few messages, combining 
similar functions into single more powerful functions, and 
adding a few messages that had remained missing. 



ideas of the performative label to enable an observer to 
superficially understand the message type; the idea of the 
separate sender/receiver and to/from labels to enable an observer 

to understand when a message is merely be forwarded as 
opposed to being actually addressed to the recipient agent; the 
idea of the language label to enable the observer to judge 
whether the observer can understand the content; and the reply-
with and in-reply-to labels to enable the observer to 
disambiguate multiple concurrent conversational threads.  
However, our experience with strict reliance on observable 
properties motivated us to put more "semantic" information in 
the message.  These include: 

?  We have arranged the performatives in a type lattice to enable 
an external observer, not conversant in the details of some 
specialized conversational domain, to understand the 
conversation based on being able to follow a particular foreign 
performative (or act) up the type lattice until the observer finds 
a performative (or act) that is understood (see section 2.2). 

?  We have added a separate act label, motivated by our 
observation that the more fundamental performative, such as 
inform, request, and reply, are qualitatively different from the 
lower-level "performatives".  (see section 2.6).  We have 
therefore taken out some many of FIPA's (and or own) 
"performatives", and placed them in a separate type lattice 
under the message label act. 

?  We have added an ontology label, which is intended to extend 
the FIPA language label, since an observer my understand a 
certain language (e.g. prolog) but not understand the ontology 
used (e.g. the prolog predicate library used). 

 

registerAgent unregisterAgent getAgents 

registerYellowPages unregisterYellowPages getYellowPages 

advertise unadvertise search 

inviteToJoinCD 

withdrawCD 

getHistoryCD 

retrievegetDataCD saveDataCD 

Agent 

CooperationDomain 

LAC 

YellowPages 

register unregister 

get 

save-info 

create destroy 

delete-info 

act 

get-info 

deleteDataCD 

deleteHistoryCD 

getAgents joinCD 

 
Figure 12: Partial ontology of messages.  This diagram describes this ontology in terms of typing (the solid arrows represent 
the is-a relationship), sequence (the V-arrows represent the direction of the message, as in "from-agent ?  message ?  to-
agent"), and grouping (the messages in the dotted boxes all conform the to relationships impinging on the dotted box).  Thus, 
we may read the advertise message as being a subtype of register, and being sent by an AbstractAgent and received by either a 
AbstractYellowPages agent or an AbstractLAC agent. 

<!DOCTYPE CASAmessage [ 
  <!ELEMENT CASAmessage (version, 

performative, act?, sender, receiver, 
from?, to?, timeout?, reply-with?, 
in-reply-to?, request-ack?, language?, 
language-version?, ontology?, 
ontology-version?, content?)> 

  <!ELEMENT version           (#PCDATA)> 
  <!ELEMENT performative      (#PCDATA)> 
  <!ELEMENT act               (#PCDATA)> 
  <!ELEMENT sender            (#PCDATA)> 
  <!ELEMENT receiver          (#PCDATA)> 
  <!ELEMENT from              (#PCDATA)> 
  <!ELEMENT to                (#PCDATA)> 
  <!ELEMENT timeout           (#PCDATA)> 
  <!ELEMENT reply-with        (#PCDATA)> 
  <!ELEMENT in-reply-to       (#PCDATA)> 
  <!ELEMENT request-ack       (#PCDATA)> 
  <!ELEMENT language          (#PCDATA)> 
  <!ELEMENT language-version  (#PCDATA)> 
  <!ELEMENT ontology          (#PCDATA)> 
  <!ELEMENT ontology-version  (#PCDATA)> 
  <!ELEMENT content            ANY     > 
]> 
Figure 13: A CASA message DTD (there are additional 
elements for thematic roles and semantic modifiers, but 
these have be omitted in the interests of  brevity. 



?  We have also qualified the message and language and ontology 
labels with version numbers to support the evolution of these 
definitions.  The version numbers allow observers (and 
conversation participants) to recognize when they have an older 
version of the message/language/ontology definition, and may 
not understand the entire contents, or when they are dealing 
with a conversation participant who has an older definition, 
and may be able to adjust their interpretations and utterances 
to match. 

All of these extensions are optional, and allow us to still be 
compliant with FIPA message, so long as the FIPA agents are 
willing to ignore foreign labels in incoming messages.  Figure 14 
shows an example of a CASA request/reply message pair. 

These extensions allow an external observer to monitor messages 
and make sense of them without having the omniscient and gaze 
into the internal "thought process" of the participating agents. 
While the original FIPA definition of the agent allows this to 
some extent, our extensions support further semantic 
interpretation of messages, and offer pragmatic solutions to some 
of practical problems that occur in real-life, evolving situations. 

All of this is useful, but must be extended to the composition of 
messages, which is described in the next section. 

3. CONVERSATIONS 
In our work with CASA, we are aiming a high degree of 
flexibility with respect to the construction of agents.  We 
therefore choose to design in enough flexibility to allow agents 
that are based on either conversation protocols or on social 
commitments [4]. 

3.1 Conversation Protocols 
When in conversation protocols mode, CASA conversations are 
modeled by using conversation protocols (CPs) to define the 
possible utterances and responses that can be exchanged between 
agents. Following FIPA standards for interaction protocols [8], 

we define a variety of patterns in which initiators and 
participants interact. This model is flexible in that any new 
interaction or conversation can be added by simply defining the 
possible messages (such as INFORM/REQUEST), and their 
counterparts (ACK/REPLY). For example, suppose a very simple 
interaction was needed to model two agents: one with the role of 
requesting a service, and another that may or may not agree to 
provide the service. This can be done by adding the following to 
each of the agents’ list of possible messages: 

Agent 1 Agent 2 
performative: Reply 
act: service X performative: Request 

act: service X performative: Reject 
act: service X 

In addition, the agents' library of reactive protocols in updated 
(which is consulted when a CP agent receive a message "out of 
the blue" starting a new conversation), and a pattern is written to 
handle the particular protocol. In this fashion, more complex 
interactions can be added.  

The internal mechanisms, which determine how an agent will 
decide what (if any) message to send, are implementation 
dependant. In fact, we leave such details out since we wish to 
concentrate on the way in which agents communicate and on 
observable agent behaviour. We leave the matter of how agents 
should behave and their internal workings to the individual agent 
developer. The key is that agents involved in the interaction 
require the protocol to be pre-defined. 

3.2 Social Commitments 
The social commitment (SC) model is an alternative to the CP 
model described above, and provides a mechanism by which 
agents can negotiate obligations among one another. A social 
commitment is an obligation that is negotiated between potential 
debtor and creditor agents (see [5], [4], [11], [6], [2] & [14]).  
Such negotiation of obligations mimics the behaviour of agents 

( :request  
  :act         register.instance  
  :sender      casa://kremer@192.168.1.42:8700/casa/CooperationDomain/coolness  
  :receiver    casa://kremer@192.168.1.42:9000  
  :timeout     1066456360438  
  :reply-with  casa://kremer@192.168.1.42:8700/casa/CooperationDomain/coolness--0  
  :language    casa.URLDescriptor  
  :content     "casa://kremer@192.168.1.42:8700/casa/CooperationDomain/coolness true"  
) 
 
( :reply  
  :act         register.instance  
  :sender      casa://kremer@192.168.1.42:9000/casa/LAC/ResearchLAC  
  :receiver    casa://kremer@192.168.1.42:8700/casa/CooperationDomain/coolness  
  :timeout     1066456360438  
  :reply-with  casa://kremer@192.168.1.42:9000/casa/LAC/ResearchLAC--1  
  :in-reply-to casa://kremer@192.168.1.42:8700/casa/CooperationDomain/coolness--0  
  :language    casa.StatusURLandFile  
  :content     "( 0 \"Success\" casa://kremer@192.168.1.42:8700/casa/CooperationDomain/coolness#lac=9000  
               \"/casaNew/root/casa/CooperationDomain/coolness.casa\" )"  
) 
Figure 14: An example of a CASA request/reply message pair using the KQML message format.  In this case, a Cooperation 
Domain is registering with a LAC (to let the LAC know it is running).  The LAC responds with a success status together with 
the Cooperation Domain’s fully-qualified URL and the file it should use to use to store any persistent data.  (Backslashes are 
used as escape characters in the content part.) 



using CPs, but in more flexible manner. For example, suppose an 
agent (agent A) were to issue a proposal to another agent (agent 
B). Figure 15 shows the sequence of events and the possibilities 
agent B can reply with. If the debtor agent (agent B) accepts the 
proposal by responding with an accept reply to agent A, it adopts 
the obligation to provide the creditor agent (agent A) with some 
service. It should also be noted that the commitment is not 
imposed on the debtor agent; it is negotiated. A more complex 
example might allow for agent B to refuse the proposal and make 
a counterproposal which would, in turn, be evaluated by agent A. 

The possible replies that might be issued by the receiving agent 
include acceptance, rejection or counterproposal, and the sending 
agent may at any time issue a withdrawal its own proposal. 

The value of using the social commitments model is twofold. 
First, it allows for linking the external world (including 
interactions with other agents) with the internal agent 
mechanisms. An agent maintains a list of the current and past 
obligations both owed to other agents and to itself. This 
information could be used to “rationally” influence the agent’s 
future actions. Thus, a conversation is never rigidly “scripted” as 
in conversation protocols, but flows naturally from an agent 
disposing its current obligations. Second, it provides a degree of 
autonomy (through the negotiation process) for adopting 
commitments. An agent is free to accept or reject proposals as 
described above. 

3.3 Observer Agent 
One aspect that enhances the flexibility of the CASA model is 
that agents can be used in various capacities other than being 
directly involved in conversations. A sufficiently privileged agent 
may join a cooperation domain and observe the communication 
between other agents. This agent, which may simply be a “plug-
in agent” for the cooperation domain, could perform various 
functions. It could perform the role of a conversation manager, 
tracking and organizing the messages sent between agents; it 
could perform the role of janitor, cleaning up obsolete 
conversations and connections; or it could perform the role of a 
translator, resending messages broadcast in one language in 
another language. An agent may also observe conversations 
between other agents in order to gather information about how it 
can best proceed toward its goals.  Note that, it is owing to the 
arrangement of the performatives and acts into a type lattice that 
there is sufficient information in the message “envelope” to 
allow an “outside” agent to “understand” a conversation even if 
it does not understand the domain-specific performatives, acts, 
content language, and ontology of the participating agents. 

In the context of the social commitments model, it might be 
useful to have a judging or policing agent observing interactions 
between agents, checking on their conformance to social norms, 
such as whether or not agents discharge their obligations within 
an acceptable period of time (or at all).  This is only possible 
because the SC model relies only on observable behaviour. 

The above examples are meant to illustrate the flexibility of 
CASA, in that it can be extended in many ways other than adding 
additional conversation protocols. It supports future 
developments in the areas of rationality and social knowledge as 
they relate to conversations and interactions among agents in a 
society. 

4. FUTURE WORK 
Although the work in CASA and social commitment theory is 
progressing well, there is still much to do.  We have several 
projects underway in various related research fields.  We are 
working on further extending the CASA message “envelope” to 
include more formal reference objects and relationships based on 
theories from linguistics (e.g. [12], [13]).  For example, we can 
add fields such as agent (initiator of an act), patient (the entity 
undergoing the effects of an act), theme (the entity that is 
changed by the act), experiencer (the entity that is a aware, but 
not in control of, the act), and beneficiary (the entity for who’s 
benefit the act is preformed.   

The detailed semantics of messages, as described here, has not 
yet been worked out.  Some of our future work involves the 
formal specification of message semantics, at least as it relates to 
the services offered within CASA.  Some formal specification of 
the social commitment model has been done (see [4] & [5]), but 
the formal specification of CASA services has hardly been 
touched so far.  

Furthermore there a several pragmatic areas that need to be 
worked out if CASA, or a CASA-like system is to be used in real 
settings (such as what we are working for manufacturing 
systems).  For example, security will be an issue, and we are 
currently undertaking research to determine an appropriate 
approach to protecting stored data, messages themselves, and 
cooperation membership in such a dynamic and distributed 
environment. 

5. CONCLUSIONS 
In this paper, we have described some our design decisions in the 
CASA infrastructure primarily with respect to the structure of 
inter-agent messages.  Most of the discussion contrasts our 
structure with that of the FIPA model.  We differ from FIPA's 
viewpoint primarily in that we concern ourselves more with the 
observable behaviour of agents, and the ability of an outside 
observer to understand the meaning of a conversation.  
Minimally, we would like the outside observer to be able to 
deduce if the agents are participating in logical conversation  and 
conforming to a set of social norms.  

To this end, we have conformed to the FIPA message structure 
with a few changes (primarily ordering the performatives in a 
type lattice), and extending it in several ways.  We have 
extended the message structure by adding the fields such as act, 
and ontology.  In addition, we have added version numbers as 

 
Figure 15: A simple proposal 



attributes to the message language itself, and to the language and 
ontology fields. 

We also briefly discussed conversations, which are composed of 
messages, and discussed CASA's support for agents based on 
either conversational protocols or social commitments. 

6. ACKNOWLEDGMENTS 
We are grateful to the Natural Sciences and Engineering Council 
of Canada (NSERC), Smart Technologies, Inc., the Alberta 
Software Engineering Research Consortium (ASERC) and the 
Alberta Informatics Circle of Research Excellence (iCORE) for 
their financial support throughout the realization of this work. 

7. REFERENCES 
[1] Becerra, G. "A Security Pattern for Multi-Agent Systems". 

In Proceedings of Agent Based Technologies and Systems, 
Far, B.H., Rochefort, S. and Moussavi, M. (eds.), Calgary, 
Canada, August, 2003, pp 142-153. 

[2] Chopra, A. and Singh, M.P. "Nonmonotonic Commitment 
Machines". In Dignum, F. (ed.), Advances in Agent 
Communication, LNAI, Springer Verlag.  In this volume. 

[3] Finin, T. and Labrou, Y. "KQML as an Agent 
Communication Language". In Bradshaw, J.M. (ed.), 
Software Agents, MIT Press, Cambridge, 1997. pp. 291-
316. 

[4] Flores, R.A. "Modelling Agent Conversations for Action". 
Ph.D. Thesis, Department of Computer Science, University 
of Calgary, Canada. 2002. 

[5] Flores, R.A. and Kremer, R.C. "To Commit or Not To 
Commit: Modelling Agent Conversations for Action". In B. 
Chaib-draa and F. Dignum (eds.), Computational 
Intelligence, Special Issue on Agent Communication 
Languages, Blackwell Publishing, 18:2, May 2002, pp. 120-
173. 

[6] Fornara, N. and Colombetti, M. "Protocol Specification 
using a Commitment-based ACL". In Dignum, F. (ed.), 
Advances in Agent Communication, LNAI, Springer 
Verlag.  In this volume. 

[7] Foundation for Intelligent Physical Agents (FIPA).  FIPA 
Communicative Act Repository Specification.  Foundation 
for Intelligent Physical Agents.  Oct. 18, 2002. 
http://www.fipa.org/specs/fipa00037/ 

[8] Foundation for Intelligent Physical Agents (FIPA).  FIPA 
Interaction Protocol Library Specification.  Foundation for 
Intelligent Physical Agents.  Aug. 10, 2001. 
http://www.fipa.org/specs/fipa00025/XC00025E.html#_Toc
505480198 

[9] Foundation for Intelligent Physical Agents (FIPA). FIPA 
Specifications, Version 1. 1997. 

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.  
"Design Patterns: Elements of Reusable Object-Oriented 
Software". Addison-Wesley Professional Computing  
Series, Addison-Wesley, Reading Mass., 1994. 

[11] Mallya, A.U., Yolum, P. and Singh, M. "Resolving 
Commitments Among Autonomous Agents". In Dignum, F. 
(ed.), Advances in Agent Communication, LNAI, Springer 
Verlag.  In this volume. 

[12] Saeed, J.I. "Semantics". Blackwell Publishers Ltd., Oxford, 
UK, 1997. 

[13] Thurgood, G.  "English 222: Pedagogical Grammar". 
Chapter 9.  English Department, California State 
University, Chico. Aug, 2002. 
http://www.csuchico.edu/~gt18/222/Ch%2009.pdf 

[14] Verdicchio, M. and Colombetti, M. "A logical model of 
social commitment for agent communication".  In Dignum, 
F. (ed.), Advances in Agent Communication, LNAI, 
Springer Verlag.  In this volume. 

[15] World Wide Web Consortium (W3C) "Extensible Markup 
Language (XML)". Architecture Domain, World Wide Web 
Consortium, Oct. 14, 2002.  http://www.w3.org/XML/.

 


