
ANSWER SET PROGRAMMING WITH CLAUSELEARNINGDISSERTATIONPresented in Partial Ful�llment of the Requirements forthe Degree Dotor of Philosophy in theGraduate Shool of The Ohio State UniversityByJe�rey Alan Ward, B.A., B.S., M.S., M.S.* * * * *The Ohio State University2004Dissertation Committee:Timothy J. Long, Co-AdviserJohn S. Shlipf, Co-AdviserEri Fosler-LussierNeelam Soundarajan
Approved byCo-AdviserCo-AdviserDepartment of Computerand Information Siene

ABSTRACT
In this dissertation we show how onit lause learning, a tehnique that hasbeen very useful in improving the eÆieny of Boolean logi satis�ability searh, anbe adapted to speed up dramatially the searh for models of answer set programs.Answer set programming is a knowledge representation paradigm related to theareas of logi programming and nonmonotoni reasoning. Many of the appliationsof answer set programming ome from the areas of arti�ial intelligene{related diag-nosis and planning. The problem of �nding an answer set for a normal or extendedlogi program is NP-hard. Current omplete answer set solvers are patterned afterthe Davis-Putnam-Loveland-Logemann (DPLL) algorithm for solving Boolean satis-�ability (SAT) problems, but are adapted to the nonmonotoni semantis of answerset programming.Reent SAT solvers inlude improvements to the DPLL algorithm. Conit lauselearning has been partiularly e�etive in this regard. A onit lause represents abaktraking solver's analysis of why a onit ourred. This analysis an be usedto further prune the searh spae and to diret the searh heuristi. The use of suhlauses has improved signi�antly the eÆieny of satis�ability solvers over the pastfew years, espeially on strutured problems arising from appliations.In this dissertation we desribe how we have adapted onit lause tehniques foruse in the answer set solver Smodels. We experimentally ompare the performane ofii

the resulting program, Smodels, to that of the original Smodels program. Our testsshow dramati speedups for Smodels on a wide range of problems.We also ompare the performane of Smodels with that of two other reent an-swer set solvers, ASSAT and Cmodels-2. ASSAT and Cmodels-2 diretly all Booleansatis�ability solvers in order to searh for answer sets. On so-alled \non-tight" prob-lems, Smodels showed substantially better performane than these solvers. Theperformane advantage that Smodels enjoys on non-tight problems is due to theunfounded set test that Smodels inherits from the Smodels solver, and the fat thatthis test is exeuted frequently throughout the program's searh for answer sets.

iii

This is dediated to the memory of my father, Robert, and to my mother, Carleen.

iv

ACKNOWLEDGMENTS
My most sinere thanks to both of my o-advisors, John Shlipf and Tim Long.John basially taught me what I know about answer set programming. He was alsovery generous with his time, engaging me in many brainstorming sessions, patientlyritiquing my ideas, and providing many detailed suggestions that improved my writ-ing.Tim has been an enormous enouragement and aid to me along this journey. Heengaged me in many useful disussions of this work, and showed a very keen sense ofwhat would onstitute a good researh diretion. He also went well above the all ofduty in navigating bureauray on my behalf.Thanks to my other dissertation ommittee members, Neelam Soundarajan andEri Fosler-Lussier, whose suggestions greatly improved the exposition of this disser-tation.Thanks to John Frano for introduing me to the literature on onit lauselearning in the realm of Boolean satis�ability searh.Thanks to Ilkka Niemel�a, Patrik Simons, and Tommi Syrj�anen for the Smodelsand Lparse programs. Moreover, thanks for making Smodels open soure, so that Iould base the ode for my program, Smodels, on it.Thanks also to two of the developers of Cmodels-2: Yuliya Lierler and MaroMaratea. Yuliya answered many of my questions about Cmodels-2. Maro providedv

useful bug reports on early versions of Smodels, and suggested trying the boundedmodel heking benhmark problems.

vi

VITA
February 11, 1961 . Born - Ft. Thomas, Kentuky1984 .B.A. Philosophy,B.S. Mathematis,Northern Kentuky University1987 .M.S. Mathmatis,The Ohio State University1988 .M.S. Computer and InformationSiene,The Ohio State University1985-1993 . Graduate Teahing Assoiate,Mathematis and CIS Departments,The Ohio State University1994-1996 . Assistant Professor,Department of Mathematis andComputer Siene,College of Mount Saint Joseph1996-1999 . Computer Game Programmer,PyroTehnix, In.,Cininnati, Ohio1999-2002 . Graduate Researh Assistant,Department of Eletrial andComputer Engineering andComputer Siene,University of Cininnati

vii

PUBLICATIONSResearh PubliationsWolfgang W. Kuehlin and Je�rey A. Ward. \Experiments with Virtual C-Threads".Proeedings of the Fourth IEEE Symposium on Parallel and Distributed Proessing,Ft. Worth, Texas, Deember 1991.John Frano, Mihal Kouril, John Shlipf, Je�rey Ward, Sean Weaver, Mihael Drans-�eld, and Mark Vaneet. \SBSAT: A State-based, BDD-based Satis�ability Algo-rithm". Theory and Appliations of Satis�ability Testing: 6th International Confer-ene (SAT 2003), Santa Margherita Ligure, Italy, May 2003.Je�rey Ward and John S. Shlipf. \Answer Set Programming with Clause Learn-ing", Proeedings of Logi Programming and Nonmonotoni Reasoning 7 (LPNMR-7),Ft. Lauderdale, Florida, January 2004.FIELDS OF STUDYMajor Field: Computer SieneStudies in:Logi and Logi Programming Prof. John S. ShlipfProf. Wolfgang W. KuehlinProf. Timothy J. CarlsonTheory of Computation Prof. Timothy J. LongComputer Algebra Prof. George C. Collins

viii

TABLE OF CONTENTS
PageAbstrat . iiiDediation . vAknowledgments . viVita . viiiList of Tables . xiiiList of Figures . xvChapters:1. Introdution . 11.1 Answer Set Programming . 11.2 Clause Learning . 31.3 Contributions . 42. Bakground: Answer Set Programming 72.1 Delarative Logi Programming . 72.1.1 Ground Instantiations . 82.2 Answer Set Semantis for Normal Logi Programs 102.3 Relationship to Classial Boolean Satis�ability (SAT) 152.3.1 Redution of SAT to ASP 172.3.2 Completion Semantis . 182.3.3 Expressing the Hamiltonian Cyle Problem 202.3.4 Unfounded Sets . 262.3.5 Reduing ASP to SAT . 29ix

2.4 Extended Rules . 302.5 Disjuntive Logi Programming . 353. Bakground: Basi Searh Algorithms for SAT and ASP 383.1 DPLL SAT algorithm . 383.2 Smodels . 413.2.1 Smodels' Inferene Rules for Normal Programs 433.2.2 Smodels' Inferene Rules for Extended Programs 473.2.3 Lookahead-Based Heuristi 503.2.4 Computing Multiple Answer Sets 523.2.5 Implementing Minimize Statements 524. Conit Clauses for SAT and ASP . 554.1 Overview of Conit Clauses . 554.2 Relationship to Previous Work . 614.3 Generating the Impliation Graph 634.3.1 Generating the Impliation Graph in a SAT Solver 634.3.2 Generating the Impliation Graph in an ASP Solver 674.3.3 An ASP Impliation Graph Example 724.3.4 Inorporating Extended Rules 774.4 Unique Impliation Points . 814.4.1 UIP-based Clause Generation Strategies 844.4.2 Finding UIPs . 864.5 Generating the Conit Clause . 934.6 Using Conit Clauses in the Searh 954.6.1 Bakjumping . 954.6.2 Serving as Additional Constraints 964.6.3 Searh Heuristis . 984.6.4 Restarts . 1024.6.5 Clause Deletion . 1044.7 Computing Multiple Answer Sets 1074.7.1 Minimize statements . 1085. Answer Set Solvers that Call SAT Solvers Diretly 1095.1 Cmodels-1 . 1105.2 ASSAT . 1115.3 Cmodels-2 . 1125.4 Comparison with Smodels . 113x

6. Experimental Results . 1156.1 Boolean Satis�ability . 1186.2 Graph Coloring . 1216.3 Hamiltonian Cyles . 1236.4 Bounded Model Cheking . 1277. Conlusions and Future Work . 1317.1 Summary . 1317.2 Conlusions . 1327.3 Future work . 132Appendies:A. Redutions of ASP to SAT . 134A.1 Redutions that Inrease the Number of Atoms 134A.2 An Exponential Spae Redution that Does Not Inrease the Num-ber of Atoms . 136B. Weight Constraint Rules: Semantis and Translations 140B.1 Formal Semantis . 140B.2 Translation to Basi Rules . 142C. Smodels Proof of Corretness . 144D. Smodels Proof of Completeness . 151E. Comparison of Hamiltonian Cyle Redutions 154F. Experimental Results with Lookahead Options in Smodels and Smodels 160Bibliography . 165
xi

LIST OF TABLES
Table Page2.1 Answer set for Hamiltonian yle problem instane 232.2 Completion semantis model for Hamiltonian yle problem instane,with di�erenes from Table 2.1 highlighted. 243.1 Davis-Putnam-Loveland-Logemann algorithm for SAT 403.2 Smodels algorithm . 423.3 Smodels' lookahead-based heuristi 534.1 Computing skip-to-depths . 924.2 Skip-to-depths of nodes from example impliation graph 924.3 Finding the losest UIP . 934.4 Computing a onit lause . 945.1 ASSAT algorithm . 1126.1 Boolean satis�ability runtimes . 1206.2 Coloring runtimes . 1226.3 Runtimes on uniform Hamiltonian yle problems 1256.4 Runtimes on lumpy Hamiltonian yle problems 1276.5 Runtimes on lumpy Hamiltonian yle problems, Extended redution 128xii

6.6 Bounded model heking runtimes - step semantis 1296.7 Bounded model heking runtimes - interleaving semantis 130E.1 Runtime omparison of di�erent Hamiltonian Cyle redutions 158E.2 Grounding omparison for di�erent HC redutions 158E.3 Grounding omparison for a larger HC problem 159F.1 Lookahead results on satis�ability problems 161F.2 Lookahead results on oloring problems 161F.3 Lookahead results on uniform Hamiltonian yle problems 162F.4 Lookahead results on lumpy Hamiltonian yle problems 162F.5 Lookahead results on Bounded Model Cheking - step semantis . . . 163F.6 Lookahead results on Bounded Model Cheking - interleaving semantis164

xiii

LIST OF FIGURES
Figure Page2.1 A Hamiltonian yle problem instane 232.2 The solution to the HC problem instane 242.3 A \solution" under the ompletion semantis 254.1 Reahing the �rst onit in a DPLL-based searh 574.2 Baktraking from the �rst onit 584.3 Situation after bakjumping based on :a2 _ :a3 _ :a100 604.4 Impliation graph for a single inferene 644.5 A SAT-based impliation graph with onit 654.6 Adding a onit edge . 664.7 Impliation graph involving unfounded set inferenes 714.8 Impliation graph after hoosing a = true 734.9 Impliation graph after inferring b by Modus Ponens 744.10 Impliation graph after inferring : from All Rules Canelled 744.11 Impliation graph after inferring :d from Bakhain True 754.12 Impliation graph after inferring e from Bakhain False 75xiv

4.13 Impliation graph after unfounded set detetion 764.14 SAT impliation graph example (Figure 4.6) revisited 834.15 A path from the hoie node to a onit node 884.16 Adjusting the onit node and orresponding path 894.17 Adding a onit edge to the adjusted onit node 90

xv

CHAPTER 1INTRODUCTION
1.1 Answer Set ProgrammingAnswer set programming (ASP) is a knowledge representation paradigm relatedto the areas of logi programming and nonmonotoni reasoning. In this approah,a problem is represented as a logi program whose models under the answer setsemantis onstitute solutions (answer sets). The logi program representation istypially presented as input to an answer set searh engine, whih searhes for one ormore valid models. The answer set semantis was de�ned by Gelfond and Lifshitz [23℄as a generalization of their de�nition in [22℄ of the stable model semantis. The answerset/stable model semantis is urrently the leading delarative semantis for logiprograms.Many of the urrent pratial appliations of answer set programming are in theareas of arti�ial intelligene{related diagnosis and planning [34, 21, 2, 52, 50, 11℄.Due to the expressive power of logi programs under the answer set semantis, appli-ations have also been onsidered in other areas, suh as graph algorithms [50℄ andbounded model heking [28℄. 1

Answer set programming may be ompared to the widely used knowledge represen-tation approahes that represent problems as lassial, Boolean logi formulas. Theproblem of �nding a model for suh a formula is essentially the well-known satis�abil-ity testing problem (SAT), whih involves reasoning in a monotoni logi. There areparallels between the way that reasoning is urrently done in answer set programmingand in SAT. Firstly, logi programs that are to be tested for answer sets are normally\grounded" by a preproessing stage so that they, like SAT problems, are representedin a propositional form before being presented to a searh engine. Seondly, a solutionto an answer set program, like a solution to a SAT problem, onsists of a model thatsets some of the atomi propositions in the problem to true, and the remaining atomipropositions to false. Thirdly, omplete answer set searh engines, like omplete SATsearh engines, are generally based on a depth-�rst, baktraking searh patternedafter the Davis-Putnam-Loveland-Logemann (DPLL) algorithm [10, 9℄.However, some ontrasts an be made between answer set programming and SATthat motivate onsidering answer set programming as a useful alternative. Someproblems seem to be representable asymptotially more onisely as logi programsunder the answer set semantis than they an be represented as SAT formulas. Oneimportant advantage of this is greater onveniene for the user in representing theproblem. Previous work has suggested that this an also result in a faster searh forsolutions on some problems. (See, for instane, experiments by Simons [54℄ on solvingHamiltonian yle problems with SAT and ASP solvers.) Although the SAT deisionproblem an easily be redued in linear time to the problem of the existene of answersets, there is no known linear time redution of answer set programming problemsto SAT. Furthermore, all ASP to SAT redutions either (1) introdue a signi�ant2

number of new atoms, whih ould substantially inrease the size of the searh spae,or (2) reate a representation that, in the worst ase, is exponentially larger than theoriginal answer set programming representation.An important key to the ability of answer set languages to express ertain prob-lems suintly is the priniple of negation as failure, whih is ommon to logi pro-gramming formalisms. This priniple states that, if an atomi proposition annot be\proven" from the rules given in the program/database, then the proposition will beassumed to be false. The embodiment of this priniple in the answer set semantisadds onsiderable expressive power and onveniene to the paradigm, but also resultsin answer set solvers having a onsiderably more omplex set of inferene rules thanthe set of inferene rules used in SAT solvers.The problem of determining whether a normal logi program has an answer set isNP-omplete [43℄. Thus, it is not surprising that the task of omputing answer sets isoften omputationally expensive in pratie. In order to expand the usefulness of theanswer set programming paradigm, it will be very useful to improve the eÆieny ofurrent answer set searh algorithms. This is a topi of onsiderable urrent interestin the answer set programming ommunity [17, 41, 54, 24℄ and is the subjet of thisdissertation.1.2 Clause LearningPerhaps the most important development over the past several years towards mak-ing SAT solvers more eÆient in solving pratial problems has been the use of onitlauses [3, 44℄. A onit lause represents a baktraking solver's analysis of why aonit ourred during the searh. This analysis an be used to further prune the3

searh spae and to diret the searh heuristi. Conit lauses have been espeiallyuseful in improving the eÆieny of SAT solvers on strutured problems arising fromappliations. The majority of urrent, well-known, omplete SAT solvers, suh asGRASP [44℄, rel sat [3℄, SATO [63℄, Cha� [47℄, BerkMin [27℄, and SIMO [26℄, onen-trate their optimizations and heuristis around eÆiently and e�etively generatingand using onit lauses.1.3 ContributionsFor this dissertation we inorporate onit lause learning into one of the mostwidely used answer set solvers, Smodels [51℄. The resulting program, Smodels[62℄, isable to use onit lauses to prune the searh spae and to diret the searh heuris-ti. The fundamental new problem that we had to address in order to aomplishthis onerned �nding an algorithm to diagnose the auses of onits in Smodels'searh. The main hallenge in this regard involved analyzing onits that resultedfrom negative inferenes derived from Smodels' detetion of unfounded sets.1 Thedetetion of unfounded sets is entral to Smodels' enforement of the answer set se-mantis' version of negation as failure. Negative inferenes derived from unfoundedsets result in a number of ompliations when performing a onit diagnosis. Weoutline these ompliations in Setion 4.3.2. However, our experimental results showthat frequently testing for unfounded sets is ritial to obtaining good performaneon ertain important problems.We ondut experimental tests omparing the performane of Smodels to thatof the original Smodels program. We also ompare the performane of Smodels to1The notion of an unfounded set was de�ned by van Gelder, Ross, and Shlipf in [20℄. We disussit in Setion 2.3.4. 4

that of two other reent high-performane answer set solvers, ASSAT and Cmodels-2.These two solvers instead take the approah of diretly alling SAT solvers to performthe majority of the work involved in an answer set searh.The results of these experiments support two onlusions:1. Adding onit lause learning an greatly improve the runtime performane ofSmodels on a wide range of problems. This was evident on problems arisingfrom appliations (hardware veri�ation and bounded model heking), and onrandomly generated problems that had a non-uniform data distribution (e.g.,graph oloring where the distribution of edges was \lumpy"). Conit lausesalso sped up, by orders of magnitude, the performane of Smodels on Hamilto-nian yle problems, regardless of whether the distribution of edges was uniformor non-uniform.2. On so-alled \non-tight" logi programs, the approah of ASSAT and Cmodels-2,whih separates the test for unfounded sets from the main searh proess, is lesseÆient than the approah used in Smodels. On \tight" problems2, ASSATand Cmodels-2 provided somewhat better performane than Smodels. Thiswas expeted sine they all reent, highly optimized SAT solvers to performthe searh, and tight problems are easily redued to SAT.However, in our tests involving non-tight problems, suh as the Hamiltonianyle problems mentioned above, Smodels performed muh better than AS-SAT and Cmodels-2. On these problems, Smodels is able to provide strongerpruning of the searh spae than ASSAT and Cmodels-2 beause of the test for2See De�nition 25 in Setion A.2 for the distintion between tight and non-tight problems.5

unfounded sets that Smodels inherits from the original Smodels solver, andthe fat that this test is exeuted frequently throughout the program's searh.

6

CHAPTER 2BACKGROUND: ANSWER SET PROGRAMMINGThis hapter provides bakground information on the area of Answer Set Pro-gramming. Nothing in this hapter is new to this dissertation. Citations are providedfor major de�nitions and results.2.1 Delarative Logi ProgrammingA logi program is a set of rules of the form' 1; : : : ; nwhere '; 1; : : : ; n are formulas in some logi. In the above general form, ' is referredto as the head of the rule and 1; : : : ; n is the rule's body. Intuitively, suh a rulesays that if all of the formulas in the body of the rule are true, then the formula atthe head of the rule must also be true. If n = 0 then we normally omit writing the symbol. In suh a ase the rule simply states unonditionally that ' is true.The basi task of a delarative logi programming system is to answer questionsabout whih fats are implied by the logi program at hand, or to �nd a set of fatsthat would onstitute a model for the logi program. There are di�erent ways ofinterpreting these questions formally, whih gives rise to di�erent logi programmingsemantis. 7

2.1.1 Ground InstantiationsThe formulas that appear in a logi program may inlude prediates that takeone or more arguments, and some of these arguments may be variables. The vari-ous delarative logi programming semantis generally treat a rule with variables asrepresenting the set of ground instantiations of that rule. Thus the meaning of alogi program with variables is redued to the meaning of a logi program withoutvariables.Example 1 Assume that a, b, and are treated as onstants and that X and Y aretreated as variables.3 Consider the logi program P :ar(a; b)ar(b;)nonterminal(X) ar(X;Y)The ground instantiation of this program would be:ar(a; b)ar(b;)nonterminal(a) ar(a; a)nonterminal(a) ar(a; b)nonterminal(a) ar(a;)nonterminal(b) ar(b; a)nonterminal(b) ar(b; b)nonterminal(b) ar(b;)nonterminal() ar(; a)nonterminal() ar(; b)nonterminal() ar(;)A pratial problem with reating a ground instantiation is that its size may beexponentially large in terms of the size of the original logi program. Most intelligent3It is, in fat, a ommon onvention in logi programming that arguments that begin with low-erase letters are onstants, and arguments that begin with upperase letters are variables. We willadopt this onvention throughout this dissertation.8

grounding programs try to produe relatively small ground instantiations, while stillpreserving the meaning of the original program. For instane, under the varioussemantis that we will onsider in this dissertation, it would be permissible to restritthe ground instantiation above to only the rules:ar(a; b)ar(b;)nonterminal(a) ar(a; b)nonterminal(b) ar(b;)This is beause it is lear that the only instantiations of the ar prediate thatan be established based on the given program are ar(a; b) and ar(b;).The methods used by the various grounding programs to ut down the size ofthe ground instantiation may vary. However, the grounding proess is not a entralonern of this dissertation. For our experiments in Chapter 6 we used the Lparseprogram[58℄ to reate ground instantiations of our logi programs.The upshot is that, in this dissertation, we will restrit our attention to �nite,propositional logi programs. The kinds of deision problems that one would usuallyask about a logi program, suh as whether it has a model or whether it implies apartiular statement, are generally deidable when the program is �nite and propo-sitional.4Sine the arguments to the prediates mentioned in a ground instantiated programwill be onstants, we an view eah atomi proposition in the program as essentially a4In order to ensure that the ground instantiation is �nite, answer set grounders make some restri-tions on how funtion symbols and variable symbols may be used in a program. These restritionsmay vary from system to system, but are not regarded as part of the ore de�nition of the answerset semantis. The interested reader may �nd details on Lparse's restritions in [58℄ and [59℄. Innon-answer set logi programming languages with less tight syntati restritions, suh as Prolog,ground instantiations may be in�nite, and typial deision problems, e.g., the Halting problem, areoften undeidable. 9

0-ary prediate. Thus, the logi program above, after grounding, might be expressedto a solver as follows:
pqr ps q

2.2 Answer Set Semantis for Normal Logi ProgramsIn the following disussion, we will assume that Atoms is some �xed set of atomipropositions (0-ary prediate symbols).De�nition 1 (Horn program) A Horn rule is a logi programming rule of the formh a1; : : : ; anwhere h; a1; : : : ; an 2 Atoms. A Horn program is a olletion of Horn rules.We will denote the set of atoms mentioned in P by Atoms(P). Also, we willassume that the logi programs onsidered in this dissertation have a �nite numberof rules.De�nition 2 (Model of a Horn program) A model of a Horn program P is asubset M � Atoms suh that for every rule h a1; : : : ; an 2 P , a1; : : : ; an 2 Mimplies h 2M .De�nition 3 (Minimum model) A minimum model of a program P is a model ofP that is a subset of all other models of P .10

If a program has a minimum model, then it has only one minimum model. Animportant fat is that every Horn program does have a minimummodel. Furthermore,the minimum model of a Horn program an be omputed by the following proedure:MinimumModel(HornProgram P)f M ;while 9 rule R = h a1; : : : ; an 2 Psuh that a1; : : : ; an 2Mand h =2Mdo M M [fhgreturn Mg Note, then, that the minimum model of a Horn program P is therefore the dedu-tive losure of P , if we view the rules of P as inferene rules. The minimum modelis generally taken to be the anonial model of a Horn program. Using suitable datastrutures, the runtime of the above proedure is linear in the size of P . (This wasshown by Dowling and Gallier in [12℄, and the resulting version of the proedure isknown as the Dowling-Gallier algorithm). Thus, reasoning with Horn programs iseasy from a omputational omplexity viewpoint.An important onern in logi programming researh is how to deal with the pres-ene of logial negation operators in programs. The preeminent negation operator inlogi programming is the not operator, also known as the negation as failure operator.De�nition 4 (Normal program) A normal rule is a rule of the form:h a1; : : : ; an; not b1; : : : ; not bmwhere h; a1; : : : ; an; b1; : : : ; bm 2 Atoms. A normal logi program is a olletion ofnormal rules. 11

Atom h is the head of the above rule, while a1; : : : ; an; not b1; : : : ; not bm form therule's body. We refer to a1; : : : ; an as the body's positive subgoals, and not b1; : : : ; not bmas its negative subgoals. The logi programming semantis that we onsider will viewthe body of a rule as a set of subgoals: the order in whih the subgoals appear in thebody does not matter.The next two de�nitions give the answer set semantis for normal logi programs,and therefore formally de�ne the meaning of the not operator in the answer setprogramming paradigm.De�nition 5 (Redut) Given a normal logi program P and a set S � Atoms(P),the redut of P by S, denoted P S, is the logi program obtained from P by deleting1. eah rule ontaining a negative literal not bi in its body where bi 2 S, and2. all negative subgoals from the bodies of the remaining rules.Note that the redut P S is a Horn program, and therefore has a (unique) minimummodel. The mapping that takes P and S and produes P S is alled the Gelfond{Lifshitz transform. This mapping is the key to the following de�nition.De�nition 6 (Answer set) (Gelfond and Lifshitz [22℄) If P is a normal logi pro-gram, then a set S � Atoms(P) is an answer set for P if the minimum model of P Sis equal to S.A normal logi program may have zero, one, or more than one answer sets. Theproblem of determining whether a grounded normal logi program has any answersets is NP-omplete [43℄. 12

Example 2 The logi programa b, not b not not bhas two answer sets: S1 = fa; bg and S2 = fg.Example 3 The logi programb not bhas no answer sets.Note that if a normal logi program does not ontain the not operator, then it isa Horn program and it has exatly one answer set, namely the minimum model.As suggested earlier, the not operator in logi programs is used to express a formof negation based on the priniple of negation as failure. In other words, an expressionof the form not a is satis�ed if there is no evidene for the truth of a, i.e. it is notpossible to prove a. An answer set S for a normal logi program P onstitutes atwo-valued logial interpretation of the atoms mentioned in P . Those atoms that areonsidered to be true are those that are elements of S. Atoms not in S are onsideredto be false. The atoms onsidered false in an answer set S are exatly those atomsfor whih there is no proof (spei�ally, no proof from P S). The atoms that areonsidered true in S are exatly those atoms that have proofs (from P S). The fatthat P S is a Horn program (does not mention not) means that the notion of whetheran atom has a proof from P S is well-de�ned and straightforward.
13

Classial negationAnswer sets for normal logi programs are also referred to as stable models, whihwas the term used in the paper where these notions were �rst de�ned ([22℄). Theterm \answer set" was used in [23℄, where the semantis was extended to programsinorporating the : operator.The : operator is often referred to as the lassial negation operator, whereas thenot operator is referred to as the negation as failure operator. Informally, :a meansthat a is false, whereas not a means that a does not have a proof. Syntatially, themain di�erene is that the : operator is allowed in the head of a rule, whereas thenot operator is not allowed in the head. Thus, a rule suh as:a b; whih says that \if b and are true, then a is false" is allowed in an extended logiprogram [23℄. However, a rule suh asnot a b; whih says that \if b and are true, then a does not have a proof" is not allowed.The interested reader may refer to [23℄ for the semantis and uses of the : operatorin answer set programming. Typially, one would inlude lassial negation if onewanted to work with three- or four-valued logial models rather than two-valued(\true/false") models. For instane, if : is used, then a and :a are both treated asliterals that may belong to an answer set M . If a 2M , then a is regarded as true inthe model. If :a 2 M , then a is regarded as false. If neither a nor :a belong to M ,then the truth value of a is onsidered unknown. If both a and :a belong to M , thena represents a ontradition. 14

However, in [23℄, it was shown how programs involving both the not and : oper-ators ould easily be redued to normal programs (i.e., to programs that use not asthe only negation operator). In fat, the Lparse program automatially performs thisredution on all programs involving :. Hene, we will restrit our onsideration ofnegation operators to the not operator only.Integrity onstraintsSometimes we would like to express in our logi program that a set of onditionsis impossible. We an do this by writing an integrity onstraint, whih is simply arule with an empty head.Example 4 The rule R = a; not bstates that no answer set of the program an have both a = true and b = false.Formally, the rule R above is dealt with by treating it as shorthand for the ruleR0 = f a; not b; not fwhere f is a new atom introdued into the program spei�ally for use, as above, inintegrity onstraints. The reader an hek that the resulting program, whih inludesR0, annot have an answer set with both a = true and b = false.2.3 Relationship to Classial Boolean Satis�ability (SAT)One of the useful features (alluded to in Setion 2.1.1) of answer set systems isthat they allow the user to write prediates that an take variables as arguments. As15

we will see, this greatly helps to make it onvenient to express problems in an answerset language. Answer set systems also generally provide a riher syntax than merelynormal logi programs. For example, the Lparse and Smodels systems provide the\extended rules" that we will onsider in Setion 2.4. These are some of the strengthsof answer set programming over lassial Boolean logi as a knowledge representationparadigm.However, for the remainder of this setion we will restrit our attention to a om-parison of grounded normal logi programs interpreted under the answer set semantisversus lassial Boolean logi expressions (written, say, in onjuntive normal form)interpreted under the usual semantis in that domain. It turns out that even withthese restritions, the answer set programming paradigm has a signi�ant advantageover lassial Boolean logi when it omes to expressing problems onisely and on-veniently. This advantage omes from the way in whih the answer set semantis em-bodies the priniple of negation as failure. In pratie, one of the payo�s of negationas failure in the answer set semantis is that it allows us to write indutive de�nitionsof prediates. We will see an instane of this in Setion 2.3.3, where we express theHamiltonian yle problem as an answer set problem. Expressing indutively de�nedprediates tends to be muh more diÆult in lassial Boolean logi.Before we look at that example, we will onsider the problem of reduing lassialBoolean logi problems to answer set programming problems (Setion 2.3.1). Welabel the respetive deision problems as SAT and ASP. We reall that both SATand ASP are NP-omplete. Later, in Setion 2.3.5, we will onsider the problem ofreduing ASP to SAT. We will see that it seems to be muh easier to devise a onise,pratial redution of SAT to ASP than to do the reverse. We will see how this16

relates to the negation as failure priniple. This motivates onsidering the answerset paradigm as an alternative to lassial Boolean logi on ertain problems. It isalso relevant to understanding the di�erenes between our approah with Smodels(disussed in Chapter 4), and the approah of answer set solvers that all SAT solversdiretly (Chapter 5).2.3.1 Redution of SAT to ASPReduing SAT to ASP is rather simple, as we will see below.De�nition 7 (Literal) A literal is an expression of the form a or :a, where a isan atom (proposition letter).In the above de�nition, a is a positive literal, and :a is an negative literal.De�nition 8 (Clause) A lause is a disjuntion of literals.De�nition 9 (Conjuntive Normal Form) A Boolean statement is in onjun-tive normal form (CNF) if it is expressed as the onjuntion of a set of lauses.Example 5 The Boolean expression(a _ b) ^ (a _ :b) ^ (:a _ :b _)is in onjuntive normal form.Suppose S is a formula written in onjuntive normal form. We onstrut aorresponding normal logi program P as follows:1. For eah atom a appearing in S, inlude atoms a and a0 in P , along with therules 17

a not a0a0 not a2. For eah lause C = a1_ : : :_am_:b1_ : : :_:bn in S, inlude in P the integrityonstraint not a1; : : : ; not am; b1; : : : ; bnThen M has a satisfying assignment if and only if P has an answer set.Two favorable properties are evident in the above redution. First, the size ofthe resulting logi program is linear in the size of the original CNF formula, with arather small expansion fator. Seondly, although the redution doubles the numberof atoms that were in the original problem, the new atoms do not atually add to thesize of the searh spae that needs to be onsidered. That is, for any of the ommonlyused answer set solvers, if a truth value is assigned to atom a at any time in the searh,the solver an immediately infer the opposite truth value for a0 from the rules givenabove. Likewise, if the solver assigns a truth value for a0, it an immediately infer theopposite truth value for a. As a result, the new atoms that are introdued by thisredution do not inrease the number of hoies that would need to be made in thesearh for a solution to a problem instane.2.3.2 Completion SemantisBefore onsidering redutions of ASP to SAT, we will look at a semantis fornormal logi programs, alled the ompletion semantis, that is de�ned in terms oflassial Boolean logi. Understanding the relationship of the answer set semantis to18

the ompletion semantis is helpful in understanding the redutions of ASP to SAT,and is partiularly relevant to understanding the approah of the solvers disussed inChapter 5.De�nition 10 (Program Completion) Let P be a normal logi program. Foratom h 2 Atoms(P) let 'h be the propositional formulah$ Wfa1 ^ : : : ^ an ^ :b1 ^ : : : ^ bm j h a1; : : : ; an; not b1; : : : ; not bm 2 PgThen the ompletion of P , denoted Comp(P), is the formula Vf'hjh 2 Atoms(P)g.An interpretation M is said to be a model of P under the ompletion semantisif it satis�es Comp(P). This semantis is due to Clark [7℄. It is easy to hek thatevery model of P under the answer set semantis is a model of P under the ompletionsemantis. However, the onverse is false:Example 6 a bb aThe ompletion of the preeding program is the Boolean logi statement(a$ b) ^ (b$ a):Thus the program has two models under the ompletion semantis: M1 = fg andM2 = fa; bg. However, M1 is the only answer set of P .Both the ompletion semantis and the answer semantis embody the priniple ofnegation as failure, whih states that an atom will be onsidered false if and only if it19

annot be proven true. However, the answer set semantis interpretes this priniplemore stritly. That is, the answer set semantis plaes a tighter restrition on whatkind of proof is permitted to justify the assertion of an atomi proposition.To see this, suppose that we have a normal logi program P and we wish tohek whether a partiular interpretation I is a model of P under the answer set andompletion semantis, respetively. Let I+ = fa 2 Atoms(P) : a is true in I g. LetI� = f:a : a 2 Atoms(P), a is false in I g. Then from De�nition 6 we an see thatI is an answer set of P if and only if I+ is exatly the dedutive losure of I� [P .On the other hand, I is a model of the ompletion of P if and only if I+ is exatlythe dedutive losure of I+ [I� [P . Thus, under the ompletion semantis, theelements of I+ an be used as assumptions to prove the elements of I+. This meansthat atoms that are asserted true in ompletion semantis models may have irularjusti�ations.Suh irular proofs are not allowed as justi�ations under the answer set seman-tis. Example 6 gave an instane of this distintion. We give another illustratingexample in Setion 2.3.3.2.3.3 Expressing the Hamiltonian Cyle ProblemSuppose that we wish to express in a normal logi program the problem of �ndinga Hamiltonian yle in a direted graph. As is often the ase in logi programming,we will express the problem in two parts. The �rst part of our program, alled theintentional database (IDB), onsists of a set of rules (typially involving variables) thatexpress the logi of the problem. The seond part of the program, the extensionaldatabase (EDB), will onsist of the set of fats (expressed as rules with empty bodies)20

that determine a partiular instane of the problem. In the ase of the Hamiltonianyle problem, the IDB will onsist of a set of rules that speify that a Hamiltonianyle is a set of edges whih form a path that starts from an initial node, visits everynode exatly one, and returns to the initial node.The following is an IDB similar to one given by Niemel�a [49℄ for the Hamiltonianyle problem:% Selet edges for the yleh(X;Y) not h0(X;Y); edge(X;Y)h0(X;Y) not h(X;Y); edge(X;Y)% Eah vertex has at most one inoming edge in a yle h(X1; Y); h(X2; Y); edge(X1; Y); edge(X2; Y); vertex(Y);X1 6= X2% Eah vertex has at most one outgoing edge in a yle h(X;Y1); h(X;Y2); edge(X;Y1); edge(X;Y2); vertex(X); Y1 6= Y2% Every vertex must be reahable from the initial vertex% through the hosen h edges. vertex(X); not r(X)r(Y) h(X;Y); edge(X;Y); initialvertex(X)r(Y) h(X;Y); edge(X;Y); r(X)Of speial signi�ane in this redution is the reahability prediate, r. r(Y)means that Y is reahable from the initial vertex. Note that r is de�ned indutivelyin this program. The rules state how to prove that the r prediate is true. It is notneessary to state when the r prediate is false: By the priniple of negation as failure,it is assumed that if r(Y) annot be proven true based on the above rules, then r(Y) isfalse. The problem of expressing the reahability relation is what seems to make theHamiltonian yle problem diÆult to express onisely in lassial Boolean logi.(See Simons [54℄ for some experiments ontrasting solving the Hamiltonian yleproblem with an answer set solver versus solving it with SAT solvers. He was able21

to obtain muh smaller redutions, and muh better runtimes with the answer setapproah.)Now, suppose that the partiular instane at hand is the direted graph shown inFigure 2.1. Then a orresponding EDB would be:initialvertex(1)vertex(1)vertex(2)vertex(3)vertex(4)vertex(5)vertex(6)vertex(7)vertex(8)edge(1; 2)edge(2; 4)edge(3; 1)edge(4; 3)edge(4; 6)edge(5; 3)edge(5; 6)edge(6; 8)edge(7; 5)edge(8; 7)Our program P will be the grounding of the union of the above IDB and EDB.From the perspetive of feasibly solving HC problems, a very nie feature of the aboveredution is that the size of the grounded program P will be linear in the size of thegraph being represented.There is only one answer set to the above program, and it is given in Table 2.1.This answer set orresponds to hoosing the set of edges highlighted in Figure 2.2,whih is the only set of edges from this graph that yields a Hamiltonian yle.Table 2.2 gives an interpretation whih is a model of the program under theompletion semantis. The orresponding set of edges is highlighted in Figure 2.3.22

1 2

3 4

5 6

7 8Figure 2.1: A Hamiltonian yle problem instane
initialvertex(1)vertex(1) edge(1; 2) h(1; 2) r(1)vertex(2) edge(2; 4) h(2; 4) r(2)vertex(3) edge(4; 6) h(4; 6) r(3)vertex(4) edge(6; 8) h(6; 8) r(4)vertex(5) edge(8; 7) h(8; 7) r(5)vertex(6) edge(7; 5) h(7; 5) r(6)vertex(7) edge(5; 3) h(5; 3) r(7)vertex(8) edge(3; 1) h(3; 1) r(8)edge(4; 3) h0(4; 3)edge(5; 6) h0(5; 6)Table 2.1: Answer set for Hamiltonian yle problem instane

23

1 2

3 4

5 6

7 8Figure 2.2: The solution to the HC problem instane
initialvertex(1)vertex(1) edge(1; 2) h(1; 2) r(1)vertex(2) edge(2; 4) h(2; 4) r(2)vertex(3) edge(4; 6) h0(4;6) r(3)vertex(4) edge(6; 8) h(6; 8) r(4)vertex(5) edge(8; 7) h(8; 7) r(5)vertex(6) edge(7; 5) h(7; 5) r(6)vertex(7) edge(5; 3) h0(5;3) r(7)vertex(8) edge(3; 1) h(3; 1) r(8)edge(4; 3) h(4;3)edge(5; 6) h(5;6)Table 2.2: Completion semantis model for Hamiltonian yle problem instane, withdi�erenes from Table 2.1 highlighted. 24

1 2

3 4

5 6

7 8Figure 2.3: A \solution" under the ompletion semantisLabel the answer set given in Table 2.1 M , and the ompletion semantis modelgiven in Table 2.2 N . We will again take speial note of the reahability prediater. r(X) had to be true for every vertex X in eah model, beause of the integrityonstraint vertex(X); not r(X). It is not hard to hek that eah r(X) is in thededutive losure of M� [P , for X = 1; : : : ; 8.However, as we turn our attention to N , we observe that r(5); : : : ; r(8) are notprovable from N� [P . The only way to justify r(5); : : : ; r(8) from N is by usingelements of N+ as assumptions. Spei�ally, r(5); : : : ; r(8) an be proven only by airular sequene of dedutions.We will return to this example in the next setion.
25

2.3.4 Unfounded SetsDe�nition 11 (Partial Interpretation) Let P be a logi program. A (partial) in-terpretation (on P) is a set of literals mentioning only atoms from Atoms(P).A (partial) interpretation I on P is onsidered total if every element of Atoms(P)ours in some element of I.For example, if Atoms(P) = fa; b; g, then I1 = fa;:g is a partial interpretationon P and I2 = fa; b;:g is a total interpretation. Informally, we onsider a partialinterpretation to be a set of assertions about whih atoms are true, and whih atomsare false in a model of P . For instane, based on the above, we may write I1(a) = true,I1() = false, and I1(b) = unknown.5 Also, if, for some atom d, both d and :dare members of an interpretation I, then I is inonsistent and we may write bothI(d) = true and I(d) = false.6 (Partial) interpretations are sometimes referred to as(partial) truth assignments.We denote the positive (resp., negative) elements of I by I+ (resp., I�). In theexample above, I+2 = fa; bg and I�2 = f:g. We always have I = I+ [I�. And I isonsistent if Atoms(I+) \ Atoms(I�) = ;.We say that an interpretation J extends an interpretation I if I � J .Suppose P is a logi program and S � Atoms(P). Then the total interpretation onP orresponding to S isM+[M� whereM+ = S andM� = f:a : a 2 Atoms(P)nSg.Likewise, a total interpretation M orresponds to the set of atoms M+. If westate that an interpretationM is an answer set of a normal program P then we mean5In the literature, I1(b) = unknown is often written I1(b) = ?.6This situation is sometimes expressed by the equation I(d) = >.26

that (1) M is a total interpretation on P , and (2) M+ is an answer set of P underDe�nition 6.The following de�nition is due to Van Gelder, Ross, and Shlipf [20℄:De�nition 12 (Unfounded Set) Let P be a normal logi program and I a partialinterpretation on P . Then H � Atoms(P) is said to be unfounded with respet to Pand I if for every rule R of P with head h 2 H we have at least one of the followingonditions:1. there is a negative subgoal 'not d' in the body of R suh that I(d) = true,2. there is a positive subgoal '' in the body of R suh that I() = false, or3. there is a positive subgoal '' in the body of R suh that 2 H.Example 7 Let P be the logi program from Setion 2.3.3 that expresses the Hamil-tonian yle problem instane given in Figure 2.1. Let I = f:h(4; 6)g. ThenH = fr(5); r(6); r(7); r(8)g is unfounded with respet to P and I.Observe that if H is unfounded with respet to P and I, and interpretation Jextends I, then H is unfounded with respet to P and J .The following proposition is an immediate orollary to Theorem 6.1 in [20℄. How-ever, we prove the result diretly here.Proposition 1 (Van Gelder, Ross, and Shlipf [20℄) Let P be a normal logiprogram and I a partial interpretation on P . Let H � Atoms(P) be unfoundedwith respet to P and I. Let M be a onsistent, total interpretation on P that extendsI, suh that M+ is an answer set of P . Then M+ \H = ; (i.e., M interprets everyelement of H as false). 27

Proof: Sine M+ is an answer set of P , we have M+ = DedutiveClosure(PM+).We will show that H \DedutiveClosure(PM+) = ; by induting on the length of aderivation D = [b1; : : : ; bn℄ from PM+. So we take as our indution hypothesis thatbi =2 H for 1 � i < n. For the sake of showing a ontradition, suppose that bn 2 H.Let RM+ = bn 1; : : : ; mbe the rule from PM+ used to derive bn in D. Then in P there is a orresponding ruleR = bn 1; : : : ; m; not d1; : : : ; not dqwhere eah di =2 M+. Sine H is unfounded with respet to P and I, we have threepossible ases for R:1. di 2 I � M , for some 1 � i � q. This is not possible sine it ontradits ourassumption about R.2. :i 2 I � M , for some 1 � i � m. Sine RM was used to dedue bn in D,i = bj for some 1 � j < n. Thus, i is in the dedutive losure of PM+, andis therefore in M+. This ontradits M being onsistent. Thus this ase isimpossible.3. i 2 H, for some 1 � i � m. Again, sine RM was used to dedue bn in D,i = bj for some 1 � j < n. But our indution hypothesis was that no suh bjwas an element of H. Hene, this ase is also impossible.We onlude that bn =2 H, whih ompletes the indutive proof. �Example 8 Let P , I, and H be as in Example 7. Let N be the set of atoms givenin Table 2.2, whih onstituted a model of P under the ompletion semantis. If we28

onsider the total interpretation M on P suh that M+ = N , we see that M extendsI, but M+ \H 6= ;. Hene, by Proposition 1, N =M+ is not an answer set of P .In summary, if I is a partial interpretation of P , the set of atoms U is unfoundedwith respet to I, and we hope to extend I to an answer set of P , then we will needto ensure that every element of U is interpreted as false in the extension. Detetingunfounded sets early in the searh will be one of the key issues as we onsider di�erentapproahes to searhing for answer sets.2.3.5 Reduing ASP to SATWe saw in Setion 2.3.1 that it is straightforward to redue the Boolean satis�-ability problem to the problem of �nding an answer set for a normal logi program.We ited some nie pratial properties of the redution given there. Spei�ally, theredution did not inrease the size of the representation muh, and the new repre-sentation did not inlude any new atoms that would require extra hoie points ina searh for a model. The task of reduing answer set programming problems toSAT problems is less straightforward, and has been studied in various papers. Wedivide suh redutions into two lasses: (1) those redutions that operate in poly-nomial time, but whih signi�antly inrease the number of atoms in the problemrepresentation, and (2) those that do not inrease the number of atoms, but whihexponentially inrease the representation size. Beause the known redutions fall intoeither of these two types, it presently does not seem to be feasible, in general, to solvean ASP problem by �rst reduing the problem to SAT and then alling a SAT solver.We present examples of ASP-to-SAT redutions in Appendix A.
29

2.4 Extended RulesCertain ideas are diÆult to express onisely in normal logi programs. Anexample would be a onstraint that says that from a set of n atoms, fa1; : : : ; ang,at least k atoms must be true. Or, suppose that the edges in a graph have variousweights, and we wish to express that a Hamiltonian yle whih is hosen throughthe graph is to have at most a ertain total weight.In order to make expressing suh onstraints feasible, Simons, Niemel�a, and Soini-nen [55℄ introdued weight onstraint rules, whih are implemented in Lparse andSmodels. We summarize their de�nitions below.De�nition 13 (Weight Constraint) A weight onstraint is an expression of theform l � fa1 = wa1 ; : : : ; an = wan ; not b1 = wb1 ; : : : ; not bm = wbmg � uwhere eah ai and bj is an atom; and l, u, and eah wx is a real number.7In the above de�nition, l and u are alled the lower and upper bounds of theonstraint, respetively. Eah w term in the above expression is a weight. Intuitively,the onstraint says that W , the sum of the weights of the satis�ed ai and not bjexpressions, satis�es the inequality l � W � u. Either of the bounds may be omittedfrom the onstraint. A missing lower bound in the weight onstraint is taken toindiate a lower bound of �1. Similarly, the default upper bound is +1.De�nition 14 (Weight Constraint Rule) A weight onstraint rule is an expres-sion of the form C0 C1; : : : ; Cn7In Smodels, l, u, and the wx terms are all restrited to integers.30

A weight onstraint rule program is a program onsisting of weight onstraintrules. Appendix B, Setion B.1 gives the formal de�nition of an answer set for aweight onstraint rule program.Useful shorthand notationThe notation given below (all of whih omes from [55℄) provides some usefulshorthand for some ommonly utilized weight onstraint rule onstruts. Of partiularrelevane to the implementation of the Smodels program, the grounding programLparse translates any weight onstraint rule program into a program onsisting only ofthe types of rules that we desribe below in this subsetion. Thus, handling these ruletypes is suÆient for Smodels to deal with arbitrary weight onstraint rule programs.A ardinality onstraint is an expression of the forml fa1; : : : ; an; not b1; : : : ; bmg uwhih is shorthand for the following weight onstraint with all weights equal to one:l � fa1 = 1; : : : ; an = 1; not b1 = 1; : : : ; not bm = 1g � u:A weight rule is a rule of the formh l � fa1 = wa1 ; : : : ; an = wan ; not b1 = wb1; : : : ; not bm = wbmgwhere l and all of the weights are non-negative. This is a shorthand for the rule1 � fh = 1g l � fa1 = wa1 ; : : : ; an = wan ; not b1 = wb1; : : : ; not bm = wbmg:A hoie rule is a rule of the formfh1; : : : ; hkg a1; : : : ; an; not b1; : : : ; not bm31

and is shorthand for0 � fh1 = 1; : : : ; hk = 1g n+m � fa1 = 1; : : : ; an = 1; not b1 = 1; : : : ; not bm = 1g:Informally, a rule of this form states that if a1; : : : ; an are true and b1; : : : ; bm are false,then any of h1; : : : ; hk may be true.A ardinality rule8 is a rule of the formh k fa1; : : : ; an; not b1; : : : ; bmgand orresponds toh k � fa1 = 1; : : : ; an = 1; not b1 = 1; : : : ; not bm = 1g:Thus a ardinality rule is shorthand for a weight rule with weights all equal to one.A normal rule is a rule of the formh a1; : : : ; an; not b1; : : : ; not bmand orresponds toh n+m � fa1 = 1; : : : ; an = 1; not b1 = 1; : : : ; not bm = 1g:This formal de�nition of a normal rule in terms of weight rules results in the samesemantis for normal rules as that given in De�nition 6.An integrity onstraint is a rule of the form a1; : : : ; an; not b1; : : : ; not bmand orresponds tof n+m + 1 � fa1 = 1; : : : ; an = 1; not b1 = 1; : : : ; not bm = 1; not f = 1g8In the Lparse user's manual, and in the Smodels soure ode, ardinality rules are referred toas \onstraint rules". 32

where f is a new atom used only in integrity onstraints.In their paper, Simons, Niemel�a, and Soininen show how to translate arbitraryweight onstraint rule programs rules into programs using only weight rules and hoierules. (We outline their translation in Appendix B, Setion B.2.) Lparse uses asimilar approah whereby it translates arbitrary weight onstraint rule programs intoprograms onsisting only of weight rules, hoie rules, ardinality rules, and normalrules. Separate data strutures and lasses are used by Smodels to deal with eah ofthese four rule types.Conditional literalsConditional literals are relevant only to logi programs with variables. They pro-vide a onvenient way to express to the grounding program (suh as Lparse) how thevariables mentioned in a onstraint may be grounded.A onditional literal is an expression of the form p : d where p is a prediate or aprediate preeded by the not operator. d is the onditional part of the literal, andalso must be a prediate. The : operator in the literal may be read as \suh that".The grounding program reates from the p : d expression groundings of p suh that dis true.For example, reall the extensional database for the Hamiltonian yle probleminstane in Setion 2.3.3:initialvertex(1)vertex(1)vertex(2)vertex(3)vertex(4)vertex(5)vertex(6)vertex(7) 33

vertex(8)edge(1; 2)edge(2; 4)edge(3; 1)edge(4; 3)edge(4; 6)edge(5; 3)edge(5; 6)edge(6; 8)edge(8; 7)edge(8; 7)Given that the EDB uses the prediates \vertex" and \edge" as shown above,then the statement 1 fh(X; Y) : edge(X; Y)g 1 vertex(Y)expresses that every vertex Y must have exatly one inoming edge satisfying the\h" prediate.The onditional prediate d is used to determine whih groundings of p are allowed.Therefore, for any ground instane of d0 of d, it should be well-de�ned whether d0 istrue or false. That is, it should not be the ase that d0 is true in some models of theprogram and false in others. Also, it should be omputationally easy to determinewhether d0 is true or false, sine this needs to be determined by the grounding programbefore the ground instantiation is given to the answer set solver.In [55℄, Simons, Niemel�a, and Soininen enfore this restrition by stating that dmust a domain prediate. Domain prediates are suh that, if we restrit a logi pro-gram to only those rules whih de�ne domain prediates, then the resulting programwill have a unique, easily omputed answer set.99The de�nition of what quali�es as a domain prediate for Lparse has hanged over time. Theinterested reader may refer to the Lparse manual [58℄ and to a paper by Syrj�anen [59℄. In this34

Minimize statementsA minimize statement is a statement of the formminimizefa1 = wa1 ; : : : ; an = wan ; not b1 = wb1 ; : : : ; not bm = wbmg:Suh a statement asks the solver to �nd an answer set that minimizes the total weightof the satis�ed subgoals listed inside the braes. If more than one minimize statementis given in a logi program, then the olletion of minimize statements indue a lexi-ographi ordering on the answer sets of the program. Under this ordering, minimizestatements that our earlier in the program are taken to be more signi�ant.The maximize statementmaximizefa = wa; not b = wbgis shorthand for minimizefa = �wa; not b = �wbg.2.5 Disjuntive Logi ProgrammingA disjuntive rule di�ers from a normal rule in that it may ontain a disjuntionof atoms in its head. Thus a disjuntive rule is a rule of the form:h1 _ : : : _ hk a1; : : : ; an; not b1; : : : ; not bmwhere h1; : : : ; hk; a1; : : : ; an; b1; : : : ; bm 2 Atoms. A disjuntive logi program is aolletion of disjuntive rules. The answer set semantis for disjuntive programswas de�ned by Gelfond and Lifshitz in [23℄. The relevant de�nitions parallel thedissertation, we will use as onditional prediates only prediates that are de�ned by the program'sextensional database (EDB). Sine all rules in the EDB have empty bodies, suh prediates ertainlyqualify as domain prediates. Note also that the grounding phase is not the part of the solution�nding proess where our ontribution lies. 35

de�nitions by whih the same authors de�ned the answer set semantis for normalprograms. We provide their de�nitions below.A disjuntive program is positive if none of the rules involve the not operator. Aset of atoms M is a model of a positive ruleh1 _ : : : _ hk a1; : : : ; anif M is a model of the lassial logi formula(a1 ^ : : : ^ an)! (h1 _ : : : _ hk):If P is a disjuntive program that onsists of positive rules only, then M is an answerset of P if M is a minimal model of P . \Minimal model" means that M is a modelof every rule of P , and no strit subset of M is a model of every rule of P .The (Gelfond-Lifshitz) redut, PM , of a disjuntive program is onstruted fromP and M just as it is in the ase of a normal program:1. Remove every rule that has a subgoal of the form not b where b 2M , and2. Remove every negative subgoal from the resulting program.Note that, for an arbitrary disjuntive program P , PM is positive. Hene, whethera set is an answer set of PM is de�ned above.De�nition 15 (Answer Set of a Disjuntive Program) Let P be an arbitrarydisjuntive logi program. Then a set M is an answer set of P if it is an answer setof PM .The question of whether a disjuntive program has an answer set is �P2 -omplete [15℄.Disjuntive logi programming systems generally ompute answer sets through atwo phase guess-and-hek proess that works as follows:36

1. (Guess Phase) Searh for a set of atoms M that is a model of its own redutPM .2. (Chek Phase) Determine whether there is a set M 0 (M suh that M 0 is alsoa model of PM . M is an answer set of P i� no suh M 0 exists.The leading solver for disjuntive logi programming for the past several yearshas been DLV [13℄. A reent system, GnT (\Guess 'n' Test") [30℄, performs theguess and hek phases above by reating normal program instanes from the originaldisjuntive problem. GnT makes suessive alls to the Smodels solver to solve thesenormal instanes until an answer set has been determined for the original problem.

37

CHAPTER 3BACKGROUND: BASIC SEARCH ALGORITHMS FORSAT AND ASP
This hapter provides bakground information on the Davis-Putnam-Loveland-Logemann (DPLL) algorithm, whih searhes for satisfying assignments to Booleanformulas. It also desribes in some detail the answer set searh program Smodels,whose high-level struture is based on DPLL. Here again, nothing in this hapter isnew to this dissertation. However, it sets the stage for Chapter 4, where we desribehow others have used onit lause learning to improve the eÆieny of DPLL, andalso where we desribe how we have adapted onit lause learning to Smodels toreate the program Smodels.3.1 DPLL SAT algorithmCurrent algorithms that searh for satisfying assignments to lassial Booleanlogi formulas an be plaed into either of two broad ategories: omplete methodsor inomplete methods. Complete methods are those methods that, in priniple, areguaranteed to return a satisfying assignment if the problem has one, or a messagethat states that the problem is unsatis�able if no satisfying assignment exists. Theinomplete methods searh for a solution to the given problem instane but are not38

guaranteed to return a result if the instane is unsatis�able. So an inomplete methodmay in priniple run forever if no satisfying assignment exists.Inomplete methods for SAT usually employ some kind of loal, hill-limbingsearh. GSAT [53℄ was a pioneering solver in this ategory.In this dissertation we will only deal with omplete methods for solving SAT andASP problems. These omplete methods are usually based on the Davis-Putnam-Loveland-Logemann algorithm [10℄,[9℄. The algorithm assumes that the Boolean for-mula to be solved is expressed in onjuntive normal form, or CNF (De�nition 9).The DPLL algorithm may be desribed as a reursive proedure, as in Table 3.1.The proedure has three subroutines: BCP, Redue, and Heuristi. The BCP routineperforms Boolean Constraint Propagation, also known as Unit Propagation. It hekswhether any of the lauses in the formula are unit lauses. A unit lause is one thatonsists of only a single literal. If suh a lause exists, then the BCP routine adds theliteral to the urrent partial assignment and simpli�es the formula. This inferenerule is known as the unit lause rule or the unit literal rule. BCP repeatedly appliesthe unit lause rule until either a onit with the partial assignment is deteted, oruntil no unit lauses remain in the formula.The Redue subroutine is used by both the DPLL proedure and the BCP proe-dure to simplify a CNF formula by a single new assignment.It is assumed in the pseudoode of Table 3.1 that the negation of a negative literalis a positive literal. For instane, if literal = :a, then :literal = a.The remaining subroutine used by DPLL is Heuristi. The all Heuristi('0)selets an atom a appearing in '0 and returns either the positive or the negativeliteral mentioning a. This orresponds to the algorithm making a guess as to whether39

DPLL(', I)// ' is a Boolean CNF formula; I a partial interpretation.// Preondition: Atoms(') \Atoms(I) = ;.// This routine searhes for an assignment that extends I and satis�es '.// If suh an assignment is found, it outputs the assignment and returns true.// Otherwise, it returns false.f ('0; I 0; onflit) BCP('; I)if (onflit = true)return falseif ('0 ontains no lauses)output I 0 // I 0 is a satisfying assignmentreturn trueliteral Heuristi('0)if (DPLL(Redue('0; literal); I 0 [fliteralg) = true)return trueelse return DPLL(Redue('0; :literal); I 0 [f:literalg)gBCP(', I)// Boolean Constraint Propagation// Applies the unit lause inferene rule to '// until a onit is found or until no unit lauses remain.// Returns the resulting ' and I, as well as a ag// indiating whether a onit was found.f while (9 a unit lause C = fliteralg in ') doif :literal 2 Ireturn ('; I; true)I I [fliteralg' Redue('; literal)return ('; I; false)gRedue(', literal)// Returns ' simpli�ed by the assumption that literal = true.f Remove from ' all lauses ontaining literal.Remove :literal from any remaining lauses in whih it ours.Return the resulting '.g Table 3.1: Davis-Putnam-Loveland-Logemann algorithm for SAT40

a will be true or false in the satisfying assignment. We refer to a as a hoie atom,and the assignment that is made to a as a hoie assignment. DPLL then makesa reursive all to itself with a instantiated aording to the hoie assignment. Ifthat reursive all fails, then DPLL baktraks and makes another reursive all, thistime with the value of a reversed. The eÆieny of the DPLL algorithm depends toa signi�ant extent on the hoies made by the heuristi routine, and onsiderableresearh has gone into developing e�etive heuristi strategies for DPLL.The exeution of the DPLL algorithm may be portrayed as a binary tree whereeah node in the tree represents a reursive all to DPLL, and eah leaf node representseither a onit or a satisfying assignment.3.2 SmodelsThe Smodels algorithm follows the general outline of the DPLL proedure. How-ever, rather than representing its problem instane as a set of Boolean lauses, Smod-els uses the representation that it reeives from the grounding program Lparse. Smod-els aepts a grounded10, extended logi program. (We will assume for the momentthat the program inludes no minimize statements, but will address minimize state-ments in Setion 3.2.5). Reall that Lparse translates extended logi programs intoa set of normal rules, hoie rules, ardinality rules, and weight rules. The ounter-part to the BCP proedure in the DPLL routine is the Expand routine in Smodels.Pseudoode for the Smodels algorithm is given in Table 3.2.10i.e. propositional
41

Smodels(P , I)// P is an extended logi program.// I is a set of literals representing a partial interpretation.// This routine searhes for a total interpretation that extends I to an answer set for P .// If suh an interpretation is found, Smodels outputs it and returns true.// Otherwise, it returns false.f J Expand(P; I)if (Conit(J))return falseif (J overs Atoms(P))output J+ // J+ is an answer setreturn trueliteral; fored Heuristi(P; J)if (Smodels(P; J [fliteralg) = true)return trueif (fored)return falsereturn Smodels(P; J [f:literalg)gExpand(P , I)// P is an extended logi program.// I is a set of literals representing a partial interpretation.// This routine derives inferenes that are true in// any answer set of P extending I,// and adds the inferred literals to I.// Returns the resulting ' and I, as well as a ag// indiating whether a onit was found.f repeatI 0 II AtLeast(P; I)I I [fnot x jx 2 Unfounded(P;A)guntil I = I 0 or Conflit(I)return IgConit(I)f return I+ \ I� 6= ;g Table 3.2: Smodels algorithm42

The two main subroutines of Expand are the AtLeast and Unfounded11 routines,both of whih are used to obtain inferenes that will extend the urrent truth as-signment. In Setion 3.2.1 we desribe how these funtions operate on normal logiprograms. Then, in Setion 3.2.2 we look at how they apply to extended logi pro-grams.3.2.1 Smodels' Inferene Rules for Normal ProgramsReall from De�nition 4 that a normal rule is one of the formh a1; : : : ; ak; not b1; : : : ; not bmand that a normal logi program is a olletion of normal rules.AtLeast(P,I)AtLeast uses inferene rules that are valid under both the ompletion semantisand the answer set semantis. We summarize the four inferene rules used by AtLeastbelow:Modus Ponens: If all of the subgoals in a rulea b1; : : : ; bk; not 1; : : : ; not mare true in the urrent truth assignment, infer a. For example, suppose that theprogram ontains the rule w x; y; not z and that the urrent truth assignmentinludes x; y and :z. Then infer w.11In the Smodels soure ode, and in papers suh as [54℄ and [55℄, the routine that omputesunfounded sets is alled the AtMost proedure.
43

All Rules Canelled If every rule with head a has its body anelled by the urrenttruth assignment,12 infer :a. For example, suppose that the only rules with w intheir head are w x; not yw not x; not zand that the urrent truth assignment ontains :x and z. Then infer :w.Bakhain True: If atom a is true in the urrent truth assignment, and if everyrule with head a exept one has at least one subgoal that is false in the urrent truthassignment, infer all the subgoals of that remaining rule to be true. For example,suppose the only rules with a in their head area b; ; not da e; fa not g; hand that the urrent truth assignment ontains a; d;:e. Then infer :g; h.Bakhain False: If an atom a is false in the urrent truth assignment and somerule a b1; : : : ; bk; not 1; : : : ; not mhas every subgoal exept one true in the urrent truth assignment, infer the remainingsubgoal to be false. For example, suppose the rule is a b; ; not d and that :a; b; are in the truth assignment. Then infer d.The all AtLeast(P; I) takes the logi program P and urrent truth assignmentI, and applies the above four inferene rules until no further inferenes an be made,12A normal rule: h a1; : : : ; ak; not b1; : : : ; not bm has its body anelled by I i� :ai 2 I forsome 1 � i � k or bi 2 I for some 1 � i � m
44

or until a onit is reahed13, whihever omes �rst. The resulting truth assignmentis returned as the result of the all.Unfounded(P,I)Given a logi program P and a partial truth assignment I, it is immediate fromthe de�nition of an unfounded set (De�nition 12) that the union of a olletion ofunfounded sets is itself unfounded. Thus, the greatest unfounded set [20℄, GUS(P; I),with respet to P and I is the union of all of the sets that are unfounded with respetto P and I. The all Unfounded(P; I) returns the set GUS(P,I).A basi subroutine used by the Unfounded proedure is the MinimumModelalgorithm for omputing the minimum model of a Horn program (Setion 2.2). Reallthat Dowling and Gallier presented a version of this algorithm that runs in linear timein the size of the Horn program.One algorithm that ould be used to ompute GUS(P,I) is the following:1. Let P 0 be the set of rules in P minus all rules that have their body anelledby I.2. Let P 00 be the set of rules in P 0 but with all negative subgoals removed from allof the rule bodies. (Hene, P 00 is a Horn program.)3. Return GUS(P; I) = Atoms(P) nMinimumModel(P 00).However, the preeding algorithm is not as eÆient as one would like for use inSmodels: the routine reomputes MinimumModel(P 00) from srath every time thatthe Unfounded routine is alled. The Unfounded routine an be alled multiple timesfrom Expand eah time that Expand is alled by the Smodels algorithm.13i.e., for some atom x, both x and :x are in the truth assignment45

Note that the GUS operator is monotoni in the sense that, if I � I 0, thenGUS(P; I) � GUS(P; I 0). So if GUS(P; I) has already been omputed, and the setI 0 n I is not very large, one might hope to loalize the omputation of GUS(P; I 0) nGUS(P; I) to a relatively small fration of the rules in P . Smodels aomplishes thisthrough an optimization that uses soure pointers.For eah atom a 2 Atoms(P), a soure pointer a:soure is maintained whihpoints to the �rst rule that aused a to be exluded from GUS(P; I). During theexeution of the AtLeast routine, if it is deteted that a ruleR = a Bodyhas its body anelled by a new guessed or inferred assignment, and a:soure = R,then a is entered into a set U .Then the all Unfounded(P; I) works as follows:1. Close set U under the following operator: If atom h =2 U and the rule pointedto by h:soure has a positive subgoal b 2 U then U U [fhg.2. Remove elements from U as follows: If a 2 U and ruleR = a Bodyis suh that I does not anel R's body and PosSubgoals(R) \ U = ;, thenU U n fag. (Also, set a:soure = R.)3. Return GUS(P; I) = U .Step 2 of the above algorithm essentially loses the set U using the Dowling-Gallieralgorithm on P I. 46

3.2.2 Smodels' Inferene Rules for Extended ProgramsAs mentioned earlier, Lparse translates any extended logi program into a set ofnormal rules, hoie rules, ardinality rules, and weight rules. For eah of these ruletypes, Smodels implements the Modus Ponens, All Rules Canelled, Bakhain True,and Bakhain False inferene rules, as well as negation based on unfounded sets.In the preeding setion, we explained how these inferene rules are implementedfor normal logi programming rules. In this setion, we will explain how they areimplemented for the hoie, ardinality, and weight rules.Choie RulesReall from Setion 2.4 that a hoie rule is a rule of the formfh1; : : : ; hkg a1; : : : ; an; not b1; : : : ; not bm:Suh a rule is equivalent to having k rules of the formfhig a1; : : : ; an; not b1; : : : ; not bm (3.1)where 1 � i � k. The Bakhain True, All Rules Canelled, and Unfounded Setinferene rules treat a rule of the form (3.1) exatly as though it were a normal rulewith hi at the head. The Modus Ponens and Bakhain False inferene rules, however,do not apply to hoie rules.Cardinality RulesA ardinality rule is one of the formh k fa1; : : : ; an; not b1; : : : ; bmg: (3.2)47

With respet to implementing the Smodels inferene rules, the main di�erenes be-tween a ardinality rule and a normal rule are the onditions under whih the rule�res (i.e., when Modus Ponens applies) and the onditions under whih the rule isanelled. A normal rule h a1; : : : ; an; not b1; : : : ; not bm�res when n + m of its subgoals are satis�ed, and is anelled when any one of itssubgoals is ontradited. A rule of form (3.2) �res when any k of its subgoals aresatis�ed, and is anelled when any n +m� k + 1 of its subgoals are ontradited.The threshold for �ring a�ets when Modus Ponens and Bakhain False areapplied to the rule. For instane, suppose that h has been set to false and k � 1 ofthe subgoals in the rule body have been satis�ed. Then the Bakhain False inferenerule is applied to ensure that the remaining subgoals of the rule are ontradited.The threshold for rule anellation a�ets the appliation of the All Rules Can-elled and Bakhain True. For instane, if the head atom h from rule 3.2 has beenset to true, all other rules with h in their head have been anelled, and n+m� k ofthe subgoals of this rule have been ontradited, then the remaining k subgoals maybe inferred true.Both thresholds are involved in implementing the inferene rule for unfounded sets.The reason for this is evident from the algorithm given for the Unfounded proedureoutlined in Setion 3.2.1. The �rst phase of the proedure adds elements to the setU when supporting rules are (in a sense) \anelled". Then the seond phase of theproedure removes elements from U when new supporting rules are found through arule-�ring proess. 48

Weight RulesReall that a weight rule is a rule of the formh l � fa1 = wa1 ; : : : ; an = wan ; not b1 = wb1 ; : : : ; not bm = wbmg: (3.3)As with ardinality rules, a weight rule has two important thresholds: the �ringthreshold, l, and the anelling threshold w = Pni=1wai +Pmi=1 wbi � l. The rule isanelled only if the sum of the anelled subgoals is greater than w.The main di�erene in implementing weight rules, as opposed to ardinality rules,omes from fat that the weights mentioned in the body of the rule may di�er fromeah other. This presents no extra ompliation regarding the Modus Ponens, AllRules Canelled, and Unfounded Set inferene rules, but does somewhat ompliatethe implementation of the two bakhaining inferene rules.First, we will disuss how Smodels' Bakhain True inferene works for weightrules. Suppose that rule R is of the form shown in (3.3). Suppose that d is theombined weight of the anelled subgoals in the body of R. Suppose also that x isan uninstantiated subgoal of maximal weight from the body of R. Then the BakhainTrue inferene rule an be applied to R to infer that x is true if and only if (1) theatom h is true, (2) all of the rules other than R that have h in their heads have beenanelled, (3) d � w, and (4) d+wx > w (where w is the anelling threshold de�nedabove).One subgoal x has been inferred true by bakhaining, Smodels heks whetherthere are any more uninstantiated subgoals in the body of R. If so, then x is resetto refer to the uninstantiated subgoal of maximal weight, as before. If we againhave d + wx > w then the new x is also inferred to be true by the Bakhain True49

inferene rule. The rule is repeatedly applied to R until there is no subgoal x suhthat d+ wx > w.Next, we onsider how Smodels applies the Bakhain False inferene rule to ruleR. Suppose that s is the ombined weight of the satis�ed subgoals in the body of R.Suppose that x is an uninstantiated subgoal of maximal weight from the body of R.The Bakhain False inferene rule an be applied to R to infer that x is false if andonly if (1) h is false, (2) s < l, (3) s+ wx � l.As with the Bakhain True inferene rule, the Bakhain False inferene rulefor weight rules may make several inferenes by iterating through the uninstantiatedsubgoals in the body of the rule. The iteration goes through the subgoals in dereasingorder of their weights and sets eah subgoal to false until there is no uninstantiatedsubgoal x remaining in the rule suh that s+ wx � l.3.2.3 Lookahead-Based HeuristiSmodels' heuristi routine piks the hoie atom a, whih will be the next atominstantiated in the urrent truth assignment. It returns a if Smodels is to �rst in-stantiate a to true, and returns :a if the initial value of a is to be false.Perhaps the biggest drawbak of Smodels' heuristi routine is that it is often ratherexpensive to ompute. A signi�ant advantage of the routine is that it sometimesprovides new fored inferenes, rather than just guessed inferenes.The heuristi attempts to hoose a in suh a way that instantiating a will yielda large number of inferenes. Suppose that I is the urrent truth assignment beingapplied to logi program P . Then, for eah uninstantiated atom a 2 Atoms(P) de�nePosSore(a) = jExpand(P; I [fag)j50

NegSore(a) = jExpand(P; I [f:ag)j:Smodels' heuristi returns the atom a suh that min(PosSore(a); NegSore(a))is maximized. Ties are broken by hoosing a suh thatmax(PosSore(a); NegSore(a))is maximized. Ties that still remain are then broken randomly. The proess of allingthe Expand routine on I [fag and I [f:ag is alled a lookahead.Calling the Expand routine on every uninstantiated atom at every hoie pointin the searh may be very expensive. To partially alleviate this expense, Smodelsdoes not perform a lookahead on an atom b if, during the exeution of the same allto the heuristi, a lookahead was performed on some atom a suh that b or :b wasan element of Expand(P; I [a) or Expand(P; I [:a). The reason for omitting thelookahead for b in this ase is that if, for example, b 2 Expand(P; I [fag), then it isguaranteed that Expand(P; I [fbg) � Expand(P; I [fag):Therefore, one may regard it as somewhat likely (though not ertain) that a will sorebetter than b on Smodels' heuristi.One the atom a with the best heuristi sore has been seleted, then a is returnedas the hoie literal if PosSore(a) > NegSore(a). Otherwise, :a is returned.Obtaining fored inferenes from lookaheadsIf, for some literal x, Expand(P; I [fxg) is found to ontain a onit (i.e., botha and :a for some atom a), it is valid to infer that x is false in any answer set thatextends I. In suh a situation the heuristi routine an immediately return :x asa fored inferene. Obtaining these fored inferenes is potentially a very valuablebene�t that is earned from the (potentially quite expensive) lookahead proess.51

Pseudoode for Smodels' heuristi routine in given in Table 3.33.2.4 Computing Multiple Answer SetsThe default behavior of Smodels is that it seeks to �nd and display a single answerset for the given logi program. However, a ommand-line option exists that allowsthe user to request that all answer sets for a given logi program be omputed anddisplayed. The user an also request that Smodels ompute and display up to nanswer sets for the program, where n is a user-spei�ed, positive integer.Suppose the user has requested that Smodels ompute multiple answer sets. Then,whenever Smodels omputes a new answer set, it displays the answer set and hekswhether the desired number of answer sets has been met. If not, then it baktraksfrom the most reent assignment, and ontinues its searh.3.2.5 Implementing Minimize StatementsIn the ase where the program P ontains minimize statements, then Smodelsmust, at least impliitly, iterate through all of the answer sets of P and ompare theirsores relative to those statements. After all answer sets have been enumerated, theone with the best sore is returned as the solution.An optimization to this sheme that Smodels uses is to modify the Conit routineso that it ompares the sore of the urrent partial truth assignment to the sore ofthe best answer set found so far. (The sore of a partial truth assignment is thetotal weight of the subgoals satis�ed by the assignment. Thus it provides a lowerbound on the sore that an be ahieved by any assignment that extends the urrentassignment.) If the sore of the urrent partial assignment is already worse (i.e.52

Heuristi(P , I)// Returns the next literal that is to be set to true// by the searh routine.// Also, returns a Boolean value that indiates whether the literal// represents a fored inferene.f Avail Atoms(P) n Atoms(I)bestMin bestMax 0for a 2 AvailI 0 Expand(P; I [fag)if Conflit(I 0)return :a, trueAvail Avail n Atoms(I 0)posSore jI 0jI 0 Expand(P; I [f:ag)if Conflit(I 0)return a, trueAvail Avail n Atoms(I 0)negSore jI 0jmin min(posSore; negSore)max max(posSore; negSore)if (min > bestMin) or (min = bestMin and max > bestMax)bestMin minbestMax maxbestAtom abestPolarity (posSore > negSore)if (bestPolarity)return bestAtom, falseelse return :bestAtom, falseg Table 3.3: Smodels' lookahead-based heuristi
53

higher) than the sore of the best known answer set, then Conit returns true,indiating that there is no purpose in extending this assignment.

54

CHAPTER 4CONFLICT CLAUSES FOR SAT AND ASP
In this hapter we will disuss how SAT solvers generate onit lauses and howthey use these lauses to improve searh eÆieny. In parallel, we will disuss how wehave adapted these tehniques into our Answer Set Programming solver, Smodels(\Smodels with onit lauses").The algorithmi tehniques that are original to this dissertation are disussed inSetions 4.3.2-4.3.4 and 4.4.2, where we explain how Smodels diagnoses the auseof a onit in an answer set searh. (See also Appendies C and D, where we provethat the resulting Smodels searh algorithm is orret and omplete.)4.1 Overview of Conit ClausesA onit lause is a baktraking solver's diagnosis of why a onit ourred.The solver an use this diagnosis to prune the searh spae and to diret the searhheuristi.14 Any solver that is based upon the Davis-Putnam-Loveland-Logemannalgorithm an in priniple utilize onit lauses. This observation, ombined withthe suess of onit lause learning in improving the eÆieny of DPLL-based SAT14Conit lauses are sometimes referred to as \lemmas" beause they are intermediate resultsthat may be reused by the solver as it develops a solution to the original problem.55

solvers on industrial appliations, was our motivation for adapting onit lauses toASP searh.In this setion, we will motivate the general idea of onit lause learning by anabstrat example of DPLL-based searh. This example will be equally appliable toSAT searh or to ASP searh.Let us suppose that we have a DPLL-based solver that is searhing for the solutionto a problem. Suppose further that, before reahing the �rst onit in its searh,the solver has seleted atoms a1; a2; : : : ; a100, in this order, as its hoie atoms, andthat it has initially instantiated eah of these atoms to the value true. Assume alsothat immediately after instantiating a100 to true, it reahes a onit in the searh(i.e., these 100 assumptions have aused the searh engine to dedue that some otheratom x is both true and false). This situation is portrayed in Figure 4.1.After reahing this onit, the basi DPLL algorithm would baktrak the as-signment of a100 = true, set a100 = false, and ontinue the searh. (See Figure 4.2.)However, if our algorithm inorporates onit lauses, it would pause immediatelyafter the onit is deteted in Figure 4.1 in order to to analyze the \ause" of theonit. In solvers using the same onit lause strategy as Cha� and Smodels,the diagnosis returned will identify a subset of the assignments made that would, inthe ontext of the problem at hand, have been suÆient to result in the onit thatis being analyzed.For instane, suppose in our example that the onit analysis routine returns adiagnosis whih states that the assignments a2 = true, a3 = true, and a100 = true,taken together, were suÆient to ause the onit in Figure 4.1. (In Setions 4.3through 4.5, we will explain how this diagnosis is obtained.) From this diagnosis,56

a1

a2

a3

a4

a99

a100

Conflict

true

true

true

true

true

true

Figure 4.1: Reahing the �rst onit in a DPLL-based searh

57

a1

a2

a3

a4

a99

a100

true

true

true

true

true

true false

continue searchFigure 4.2: Baktraking from the �rst onit

58

we may infer that no solution of the problem at hand an set a2, a3, and a100 si-multaneously to true. This results in our solver inferring the lassial logi lause::a2 _ :a3 _ :a100.One this onit lause has been omputed, it may be used by the solver in threeways to improve the searh eÆieny: (i) to diret bakjumping, (ii) to serve as anadded onstraint, and (iii) to guide the searh heuristi.Bakjumping, also known in the SAT literature as \nonhronologial baktrak-ing" [44℄, potentially allows the solver to remove several levels of assumptions fromthe searh when baktraking from a single onit. As we saw in Figure 4.2, thebasi DPLL algorithm (whih uses \hronologial baktraking") removes only theassumption a100 = true from its stak, and sets a100 = false at the 99-th level of thesearh. (We de�ne the searh level of an inferene to be the number of hoie assign-ments that were in e�et when the inferene was made.) In ontrast, a solver utilizingthe onit lause/diagnosis :a2 _ :a3 _ :a100 an bakjump past the assumptionsof a99 = true, : : :, a4 = true sine none of these assumptions were required in orderto produe the onit. The solver then assigns a100 = false at level 3 of the searh,as shown in Figure 4.3. (In the �gure, the assignment a100 = false does not appear ina bubble beause it is a fored assignment in this irumstane.)The seond use of a onit lause is to serve as an added (\learned") onstraint.In our example, immediately after bakjumping, the solver would store the lause:a2 _ :a3 _ :a100 for later referene. Suppose, then, that later in the searh theurrent partial assignment inludes a2 = true and a100 = true. Then, based onthe stored onit lause, the solver ould immediately infer that a3 = false, therebyfurther pruning the searh spae. Moskewiz et al. [47℄ provide the following intuition59

a1

a2

a3

true

true

true
a100 = false

continue searchFigure 4.3: Situation after bakjumping based on :a2 _ :a3 _ :a100for using onit lauses in this way: If we interpret reahing a onit in the searhas the solver making a \mistake", then a onit lause an be seen as the solver'sattempt to diagnose the ause of the mistake, and to learn from it so that futureinstanes of the same mistake are not repeated.The third use of onit lauses is to guide the searh heuristi. Part of the roleof the searh heuristi in the DPLL algorithm is to determine, at eah hoie pointin the searh, whih atom to instantiate next. In our example, suppose that, as thesearh proeeds, the atom a3 appears in a relatively large number of onit lauses.This suggests that a3 is an important atom in pruning the searh spae. Therefore,a high weight an be assigned toward seleting a3 as the next hoie atom wheneverthat atom is uninstantiated.An additional role of the searh heuristi in DPLL is to determine whether toinitially instantiate the hoie atom to true or to false. In our example, suppose thata3 has appeared negatively in more onit lauses than it has appeared positively.Then our solver might prefer to instantiate a3 to false at this point in the searh, falsebeing the value that would agree with the greater number of onit lauses in whih60

a3 appears. A possible intuition as to why this is a good way to hoose a3's initialvalue is as follows: The fat that a3 appears negatively in most of its onit lausessuggests that assigning a3 a positive value has led to a large number of onits. Thisin turn suggests that it may be a good idea to initially instantiate a3 to false in thesearh for a solution.4.2 Relationship to Previous WorkWork on baktraking algorithms that diagnose the auses of their onits, anduse the results of the diagnoses to diret bakjumping and to prune the searh spae,date bak in the arti�ial intelligene literature at least to the work of Stallman andSussman in [57℄. Suessfully applying this idea to satis�ability searh seems, however,to be a relatively reent development. GRASP [44℄ and rel sat [3℄ seem to have beenamong the earliest SAT solvers to suessfully inorporate these ideas, both doingso via onit lause tehniques as disussed in this dissertation. Two of the moste�etive reent SAT solvers for industrial appliations, Cha� [47℄ and BerkMin [27℄,have re�ned some of the onit lause tehniques, and have also greatly inuenedthe design of Smodels.The program Smodels, whih we reated to inorporate onit lause learninginto answer set searh, is based on the algorithms and soure ode of the originalSmodels program. The primary reasons for basing our program on Smodels were (i)its wide usage, (ii) its reputation for high performane ompared to other answer setsolvers, and (iii) the fat that it is an open soure program. (The Smodels soureode is under the GNU Publi Liense, as is the Smodels ode.) The main areas inwhih we modify or add to Smodels pertain to the following:61

� Diagnosing the ause of eah onit in the searh,� Generating and storing the orresponding onit lause,� Changing the hronologial baktraking of Smodels to nonhronologial bak-traking based on the most reently generated onit lause,� Obtaining inferenes from the onit lauses via Boolean onstraint propaga-tion,� Modifying the searh heuristi to one based on onit lauses,� Deleting older onit lauses that are judged (based on some heuristi) to beless likely to be useful in the remaining searh, and� Periodially restarting the searh.Eah of the items listed above is a feature that was inorporated into GRASP,rel sat, Cha�, and BerkMin, although these four SAT solvers di�er in the spei�s ofhow they have inorporated these features. It is only the �rst feature, diagnosing theonit, whih is signi�antly di�erent in Smodels from the SAT solvers. The proessof adding onit diagnosis to Smodels is onsiderably more omplex than addingit to a DPLL-based SAT solver. This is beause of the more varied and omplexset of inferene rules present in Smodels. (Smodels' unfounded set inferene rule ispartiularly relevant in this regard, as we shall see.) Setions 4.3 through 4.5 belowdetail the proess of performing a onit diagnosis and generating the orrespondingonit lause, both in a SAT solver and in Smodels.
62

The tehniques that Smodels uses for implementing the remaining items in theabove list are based rather losely on tehniques used in GRASP, Cha�, and BerkMin,as we detail in Setion 4.6: \Using Conit Clauses in the Searh".4.3 Generating the Impliation GraphThe Impliation Graph (IG) is a direted graph that is onstruted during thesearh proess. Its role is to give an aount of the hain of reasoning that led to eahfored inferene that was made during the searh. In partiular, when a onit hasourred, the impliation graph is used to analyze the hain of inferenes leading tothe pair of oniting literals.Eah node in the impliation graph represents a literal that is assigned true bythe solver's urrent partial assignment. The edges oming into a node represent theset of assignments that aused that node's literal to be inferred by the searh engine.Eah literal that is represented in the impliation graph is represented by only onenode. (We will see example impliation graphs in the next setion.)4.3.1 Generating the Impliation Graph in a SAT SolverAs disussed in Setion 3.1, the great majority of DPLL-based SAT solvers use onlyone rule of inferene in their searh: the unit lause rule. This rule states that whena lause has all of its literals ontradited exept for one, then the remaining literalwill be inferred to be true. (Reall also that the proess of losing the urrent partialassignment under the unit lause rule is known as Boolean Constraint Propagation,or BCP.) Let lit be some literal that was inferred based on applying the unit literalrule to a lause C. Then the edges going into the IG node for lit will orrespond tothe assignments that falsi�ed the other literals in C. As an example, suppose that63

~w y ~z

~xFigure 4.4: Impliation graph for a single inferenethe SAT problem ontains the lause w _ :x _ :y _ z, and that the urrent partialassignment inludes w = false, y = true, and z = false. Then x = false would beinferred by the unit lause rule, and the nodes and edges shown in Figure 4.4 wouldappear in the impliation graph.If a literal is satis�ed in the urrent partial assignment by a hoie assignmentmade by the searh heuristi, then there will be no inoming edges for the orre-sponding node.Figure 4.5 shows a more extensive SAT-based impliation graph. In this example,we assume that a, :b, :, d, :e, and f were all inferred or assumed at earlier levelsin the searh. s was hosen as the hoie atom at the urrent searh level and wasinitially instantiated to true. t was inferred from the lause b _ :s _ t. The solverontinued the BCP proess until z was inferred from the lause :a _ x _ z, and :zwas inferred from the lause :w _ :y _ :z.The Conit NodeAfter :z has been inferred in this example, a onit exists in the urrent partialassignment. This onit is represented by the pair of oniting nodes z and :z. Atthis point, the searh engine would ease making new inferenes and would prepareto perform its onit diagnosis. In the GRASP solver, the node from the onitingpair that was inferred later is labeled the onit node, and a onit edge is added64

a ~b ~c d ~e f

s

t ~u

v

w

~x y

z ~z

assignments
before current
search level

current
search level

Figure 4.5: A SAT-based impliation graph with onitthat goes from the preeding element of the oniting pair to the onit node. Inour example, suppose that z had been inferred before :z. Then :z would be labeledby GRASP as the onit node, and an edge would be inluded from node z to node:z. Figure 4.6 gives the ompleted impliation graph for this example.A relatively naive onit lauseFrom the example graph that we have just onsidered, it is easy to see that theombination of assignments a = true, b = false, e = false, f = true, and s = trueled to the oniting pair of assignments involving z. From this we ould infer theonit lause :a _ b _ e _ :f _ :s. This diagnosis an be generated by traversingthe graph bakwards from the onit until nodes from earlier searh levels, or elsethe hoie node, are reahed. In Setions 4.4.2 and 4.5 we will see how to obtain ashorter, and probably more useful, onit lause from this graph.65

a ~b ~c d ~e f

s

t ~u

v

w

~x y

z ~z

assignments
before current
search level

Conflict nodeFigure 4.6: Adding a onit edgeRepresenting the SAT-based impliation graphBeause the unit lause rule is the only inferene rule in e�et in a DPLL-basedSAT solver, onstruting and representing the impliation graph is quite easy: It issuÆient that eah inferred literal maintains a referene to the lause that was usedto infer it.Properties of the SAT-based impliation graphIn our example, the oniting nodes z and :z both ourred at the last levelof the searh. In fat, this will always be the ase when a onit is reahed in aDPLL-based SAT searh engine using the unit lause rule as its only inferene rule.That is, it is impossible for suh a solver to infer a literal at one level of the searhand then to infer its negation at a later level. For instane, if z is set to true at somelevel of the searh, then the literal :z will be (e�etively) removed from all lauses in66

whih it appears before the searh engine goes on to reate a new hoie point. Thus,:z will not be present in any of the lauses at the later searh levels.A seond property of the SAT-based impliation graph is that it is always ayli.This is beause a literal is never inferred from the unit lause rule unless all of theother literals in the lause have already been ontradited by the urrent partialassignment.Finally, a third property of a SAT-based impliation graph is that it ontains atmost one pair of oniting nodes. This is beause the BCP proess is interrupted assoon as the �rst oniting pair of inferenes is made.In the next setion we will see that, due to the unfounded set inferene rule, eahof these three properties an be violated in the impliation graphs onstruted bySmodels.4.3.2 Generating the Impliation Graph in an ASP SolverAs mentioned above, urrent SAT solvers generally have only one data type forexpressing their onstraints (the lause) and usually apply only one rule of inferene(the unit lause rule). Smodels, however, works with a number of di�erent logiprogramming rule types, and also has a number of di�erent rules of inferene that itapplies. In this setion we will disuss how Smodels onstruts its impliation graphwhen searhing for a model for a normal logi program (i.e., a program with normalrules only). In Setion 4.3.3 we will onstrut an example impliation graph frompart of suh an answer set searh. In Setion 4.3.4, we will disuss how Smodelsonstruts an impliation graph when searhing for a model of an extended logiprogram. 67

So, let us assume that the logi program P is normal. We reall from Setion 2.2that this means that every rule in P is of the form a b1; : : : ; bk; not 1; : : : ; not m,where a; b1; : : : ; bk; 1; : : : ; m are all atoms. Setion 3.2.1 provided a desription ofeah of the �ve inferene rules that Smodels applies to normal rules. Below, wereview these inferene rules, and desribe how Smodels onstruts the orrespondingimpliation graph edges when eah of these rules is applied.Modus Ponens: If all of the subgoals in a rulea b1; : : : ; bk; not 1; : : : ; not mare true in the urrent truth assignment, infer a. Corresponding to this inferene,we add impliation graph edges from eah of the bi's and :j's to a.All Rules Canelled: If every rule with head a has at least one subgoal negated inthe urrent truth assignment, infer :a. For eah rule a b1; : : : ; bk; not 1; : : : ; not mwith head a, determine a anelling assignment, :bi or j that ourred before theurrent appliation of this inferene rule. Add an edge from that assignment to :ain the impliation graph.15Bakhain True: If atom a is true in the urrent truth assignment, and if everyrule with head a exept one has at least one subgoal that is false in the urrent truthassignment, infer all the subgoals of that remaining rule to be true. Eah subgoalinferred by the same appliation of this rule will have the same set of predeessors inthe impliation graph. One of the predeessors will be the literal a. The remaining15For a given anelled rule, there may be several anelling assignments from whih to hoose.From the available anelling assignments, Smodels always hooses the assignment that was made�rst. This is also the approah that it uses for seleting anelling assignments for the BakhainTrue and Unfounded Set inferene rules. However, for eah of these rules, the fat that Smodelshappens to hoose the �rst anelling assignment is not ritial to the orretness of the algorithm.68

predeessors will be the reasons that anelled the remaining rules with the samehead (one anelling assignment per rule). For example, suppose the only rules witha in their head are a b; ; not d; a e; f ; and a not g; h; and that the urrenttruth assignment ontains a; d;:e. Then :g; h will be inferred. Add edges from eahof a; d;:e to eah of :g; h into the impliation graph.Bakhain False: If an atom a is false in the urrent truth assignment and somerule a b1; : : : ; bk; not 1; : : : ; not mhas every subgoal exept one true in the urrent truth assignment, infer the remain-ing subgoal to be false. The predeessors of the inferred literal will be :a plus theassignments that set the other subgoals to true. For example, suppose the rule isa b; ; not d and that :a; b; are in the truth assignment. Infer d, and add edgesfrom eah of :a; b; to d.Unfounded Sets: Determine U , the greatest unfounded set of the program withrespet to the urrent truth assignment. Set eah of the atoms in U to false. SeeSetion 3.2.1 for a desription of how Smodels omputes U .The algorithm for determining the impliation graph edges for unfounded sets issimilar to the one for All Rules Canelled. Let I be the urrent partial assignment,inluding :a for every a 2 U . For eah rule R whose head atom a is in U , hoose aliteral x 2 I suh that x anels the body of R. Suh a literal x must exist sine U isan unfounded set (see De�nition 12 in Setion 2.3.4) and all of the atoms in U havejust been inferred false. Inlude an edge from x to :a in the impliation graph.
69

As an example where the unfounded set inferene rule is applied, suppose thatthe program P reads as follows: b not b0b0 not b not 00 not d1 bd1 d2d2 d3d3 d1; d4 d3Suppose that at the beginning of the searh for an answer set, Smodels performsa hoie assignment setting b = false. Then U = fd1; d2; d3; d4g is an unfounded set.Also, b0 will be inferred by modus ponens. The impliation graph that orresponds tothese inferenes is shown in Figure 4.7. Note that in this situation, the impliationgraph ontains a yle among some of the literals inferred from the unfounded settest.Compliations Introdued by the Unfounded Sets Inferene RuleThe �rst four of the inferene rules mentioned above orrespond to inferenesthat would be made by a SAT solver if it were run on Clark's ompletion of thelogi program (see Setion 2.3). In fat, this is exatly the approah taken by theCmodels-1 solver, whih we will disuss in Setion 5.1. So, it is not surprising that, ifwe were to restrit Smodels to these four inferene rules, then the impliation graphsthat it produes would have muh in ommon with the impliation graphs produed70

~b

b’

~d1

~d3 ~d2

~d4Figure 4.7: Impliation graph involving unfounded set inferenesby SAT solvers suh as GRASP, Cha�, and BerkMin. In partiular, the IG wouldalways be ayli. Also, (after rather slight and inonsequential modi�ations to theoriginal Smodels part of the ode) it would be the ase that whenever a onit isdeteted there would be exatly one pair of oniting nodes in the IG, and both ofthese nodes would appear at the urrent searh level.However, beause Smodels does utilize the Unfounded Set inferene rule fromSmodels, it is possible (1) for the IG to have yles, (2) for there to exist a onitingpair of nodes x and :x where x was inferred prior to the urrent searh level, and (3)for there to be multiple pairs of oniting literals appearing simultaneously.Situation (1) has already been demonstrated by our example in Figure 4.7. Theexample that we give in Setion 4.3.3 will present a ase where situations (1)-(3)all our simultaneously. In order to ensure orretness and ompleteness of theSmodels algorithm, it will be neessary to deal with these ompliations properly.
71

The Conit NodeAs is the ase with the DPLL-based SAT solvers, a onit is reahed in Smodelswhen some atom has been been assigned both the values true and false. Smodels,like GRASP, designates the node orresponding to the later of these two onitingassignments as the onit node, and adds a onit edge from the other node in theoniting pair to the onit node.We noted above that, beause of the Unfounded Set inferene rule, there may bemultiple oniting node pairs in the impliation graph onstruted by Smodels.Whih pair we selet, and therefore whih node we selet as our onit node, willa�et whih onit lause we generate. This may, in turn, a�et the performaneand ompleteness of our searh algorithm. For instane, it is theoretially possible forour algorithm to enter an in�nite loop if we are not areful about whih onit nodewe selet. To understand how the seletion of the onit node relates to performaneand ompleteness, we will need to look at how the seletion of an appropriate UniqueImpliation Point, or UIP, a�ets the algorithm. Therefore, we will postpone furtherdisussion of this issue until Setion 4.4.2.4.3.3 An ASP Impliation Graph ExampleIn this setion we will onstrut an example impliation graph orresponding toa onit in an answer set searh. Then, in Setions 4.4 and 4.5, we will use thisexample to demonstrate the steps involved in omputing the orresponding onitlause.Suppose that Smodels is searhing for an answer set to a normal logi program P .Assume that P ontains the following rules mentioning atoms a; b; ; d; e; f; u; v; w; x; y; z:72

u v w x ~y z
assignments
before current
search level

a
current choice
assignmentFigure 4.8: Impliation graph after hoosing a = true

b a; x w; x; not a h; not b y; zd not ; not ef h; not zf u; not hu v; wv dv not ev fw ; hw not d
Assume that the above rules are the only rules in P with ; f; u; v, or w in theirheads. Suppose also that the urrent partial assignment at this point in the searhinludes the literals u (i.e., u = true), v, w, x, :y (i.e., y = false), and z. Assumethat the urrent partial assignment has already been losed under Smodels's infer-ene rules, and that the searh heuristi has seleted a = true as the next hoieassignment. This situation is portrayed in Figure 4.8.73

u v w x ~y z

a

bFigure 4.9: Impliation graph after inferring b by Modus Ponens
u v w x ~y z

a

~c

b

Figure 4.10: Impliation graph after inferring : from All Rules CanelledBeause P ontains the rule b a; x, the searh engine an infer b by the ModusPonens rule. So it will add a node labeled b to the impliation graph and add edgesto b from eah of a and x, produing the graph in Figure 4.9.At this point, eah rule with in its head has at least one subgoal in its bodyanelled. So the searh engine may infer : based on All Rules Canelled, and addedges as shown in Figure 4.10.Sine w in is the head of only two rules, and one of those rules is now anelled,the body of the other rule must be satis�ed. Thus the searh engine an infer :dfrom the Bakhain True inferene rule, based on the values of w and (Figure 4.11).Sine and d are false, then, based on the program rule d not ; not e and theBakhain False inferene rule, e may be inferred true (Figure 4.12).74

u v w x ~y z

a

~c

b

~dFigure 4.11: Impliation graph after inferring :d from Bakhain True
u v w x ~y z

a

~c

b

~d eFigure 4.12: Impliation graph after inferring e from Bakhain False
75

u v w x ~y z

a

~c

b

~d e

~v

~u ~fConflict nodeFigure 4.13: Impliation graph after unfounded set detetionNext, we assumed that the following were the only rules in P with f , u, or v intheir heads: f h; not zf u; not hu v; wv dv not ev f
Therefore, sine :d, e, and z are in the urrent partial assignment, ff , u, vg isan unfounded set. So we may infer :f , :u, :v and add the impliation graph edgesshown in Figure 4.13: one edge for every rule with f , u, or v in its head.At this point there are two pairs of oniting nodes in the impliation graph:fu;:ug and fv;:vg. For this example, we will assume that Smodels �rst detetsthe onit between u and :u, and tentatively selets it as the pair of oniting nodes76

on whih it will base its onit diagnosis. As in GRASP, the element from this pairthat was inferred later is labeled the Conit Node, as shown in Figure 4.13. Aswe will see in Setion 4.4.2, Smodels may need to adjust its onit node seletionone the diagnosis proess begins. We postpone adding a onit edge until thisadjustment has been aomplished.By inspetion of this graph, it is easy to see that the ombination of assignmentsu = true, w = true, x = true, y = false, z = true, and a = true led to a onit. Fromthis we an infer the lause :u_:w _:x_ y _:z _:a. In Setions 4.4.2 and 4.5 wewill see how to obtain a shorter, and probably more useful, onit lause from thisgraph.4.3.4 Inorporating Extended RulesAs disussed in Setion 3.2.2, Lparse translates extended logi programs into pro-grams involving only (1) normal rules, (2) hoie rules, (3) ardinality rules, and (4)weight rules. We refer to the latter three types of rules as the basi extended rules.Setion 3.2.2 disussed how the Smodels inferene rules work on the basi extendedrules. In Setion 4.3.2 we disussed how Smodels onstruts the impliation graphedges based on inferenes made from normal rules. In the present setion, we will dothe same thing for the extended rules.Choie RulesReall that a hoie rule is one of the form:fa1; : : : ; ajg b1; : : : ; bk; not 1; : : : ; not m.The Modus Ponens and Bakhain False rules are not appliable to hoie rules. TheAll Rules Canelled, Bakhain True, and Unfounded Sets rules work exatly the same77

as for normal logi programming rules, and the orresponding impliation graph edgesare onstruted in the same way.Cardinality RulesA ardinality rule is one of the form:R = a n [b1; : : : ; bk; not 1; : : : ; not m℄where the lower bound n is a non-negative integer.When a is inferred from suh a rule by Modus Ponens, Smodels sans arossthe body of the rule in searh of exatly n subgoals that are satis�ed by the partialassignment that immediately preeded the new inferene. One these n subgoals havebeen found, an edge from eah of the satisfying literals to the literal a is added to theimpliation graph.The All Rules Canelled and Unfounded Set inferene rules work similarly forardinality rules as for normal rules exept as follows. A normal rule is anelledwhenever a single literal from its body is falsi�ed (or when a single positive atomfrom its body is rendered unfounded). On the other hand, as disussed previously inSetion 3.2.2, the above ardinality rule is anelled only after k+m�n+1 subgoalsfrom the body have been anelled (inluding positive subgoals mentioning atoms inunfounded sets). Thus, if a has been inferred false by either the All Rules Canelledor the Unfounded Set inferene rule, then if R is a rule of the form shown above, witha at its head, then k+m�n+1 impliation graph edges are added orresponding tothe anelling of this rule: one orresponding to eah of the k+m�n+1 assignmentsthat anelled subgoals from the body of R.78

The Bakhain True inferene rule is applied to R when all of the following threeonditions are satis�ed: (1) the atom a at the head of the rule is true, (2) all of therules other than R that have a in their heads have been anelled, and (3) k+m� nsubgoals from the body of the rule have been anelled. When these three onditionsare met, the remaining n subgoals from the body of the rule are all fored to be true.So to eah of the inferred literals, we add the following impliation graph edges: (1)an edge from the literal a, (2) for eah anelled rule R0 with a in its head, an edgefrom eah of the auses of the anellation of R0, and (3) an edge from eah of thek +m� n assignments anelling subgoals from the body of R.The Bakhain False inferene rule will be applied to R when (1) a is false, and (2)n�1 subgoals from the body of R have been satis�ed. In this ase, the uninstantiatedsubgoals from the body of R are set to false, and n inoming edges are added to eahnewly inferred literal: (1) one edge from :a, and (2) n�1 edges from the assignmentssatisfying subgoals in the body of R.Weight RulesA weight rule is a rule of the form:R = a n [b1 = wb1 ; : : : ; bk = wbk ; not 1 = w1; : : : ; not m = wm℄where n, as well as eah of the weights, is a non-negative integer.Weight rules urrently are not implemented in Smodels, due to some problemsthat Lparse seems to have in translating rules into this form. However, we desribehere an algorithm that ould be used when weight rules are added to the Smodelsimplementation. As with normal rules, hoie rules, and ardinality rules, the questionis how to onstrut the impliation graph edges orresponding to an appliation of an79

inferene rule. The approah desribed below is quite similar to the approah givenabove for ardinality rules.If a is about to be inferred from R by Modus Ponens, Smodels will san the bodyof the rule in searh of satis�ed subgoals whose ombined weight is at least n. Onethese subgoals have been found, an edge is added from eah of the orrespondingsatisfying assignments to the literal a.The remaining relevant rules of inferene usually also involve onsideration of whena rule is anelled. As disussed in the subsetion on weight rules in Setion 3.2.2, letw =Pki=1 wbi +Pmi=1 wi �n. Then w is the anelling threshold for R: if the sum ofthe weights of the anelled subgoals in the body of R exeed w, then R annot �re.The All Rules Canelled and Unfounded Set inferene rules work identially forweight rules as for ardinality rules exept for the above adjustment to the de�nitionof when a rule is anelled.Next, we review when the Bakhain True inferene rule is applied to a weightrule. Suppose that d is the ombined weight of the anelled subgoals from the bodyof R. Suppose also that x is an uninstantiated subgoal of maximal weight from thebody of R. Then the Bakhain True inferene rule an be applied to R to infer thatx is true if and only if (1) the atom a is true, (2) all of the rules other than R thathave a in their heads have been anelled, (3) d � w, and (4) d+ wx > w.In the event that suh an inferene is made, searh the body of R for a set Sof anelled subgoals whose ombined weight is greater than w � wx. Then, to theinferred literal x, add the following impliation graph edges: (1) an edge from theliteral a, (2) for eah anelled rule R0 with a in its head, an edge from eah of theauses of the anellation of R0, and (3) an edge from :y for eah element y 2 S.80

Next, we review how the Bakhain False inferene rule is applied to a weight rule.Suppose that d is the ombined weight of the satis�ed subgoals from the body of R.Suppose that x is an uninstantiated subgoal of maximal weight from the body of R.The Bakhain False inferene rule an be applied to R to infer :x if and only if (1)a is false, (2) d < n, and (3) d+ wx � n.In the event that suh an inferene is about to be made, searh the body of R fora set S of satis�ed subgoals whose ombined weight is at least n� wx. Then, to theinferred literal x, add the following impliation graph edges: (1) an edge from theliteral :a, and (2) an edge from y for eah element y 2 S.4.4 Unique Impliation PointsOne a onit has been found and an impliation graph has been onstruted,the next step in produing a onit lause is to identify Unique Impliation Points(UIPs) in the impliation graph. The notion of a UIP was de�ned by Marques-Silvaand Sakallah in their work on the GRASP SAT solver [44℄.Reall the idea of a hoie assignment introdued in Setion 3.1. A hoie assign-ment is a guessed assignment that was returned by the searh heuristi. If a nodein an impliation graph orresponds to a hoie assignment, then we all that nodea hoie node. Choie nodes are distinguished by the fat that they do not have anyinoming edges in the IG.The only level of the searh that would not have a hoie node is level 0, whihontains inferenes that did not involve a hoie assignment as a preondition. Foreah n > 0, there is exatly one hoie node Cn at level n, and for every node N atlevel n in the IG there is a path from Cn to N .81

De�nition 16 (Unique Impliation Point) Let G be an impliation graph on-taining a onit node X at the urrent level of the searh. Let C denote the hoienode at the urrent searh level. Then a node N at the urrent searh level is a UniqueImpliation Point relative to X if N 6= X and every path from C to X inludes N .Note that the hoie node C in De�nition 16 is always a UIP. (A hoie node maybe part of a onit pair, but it is never seleted as a onit node sine the onitnode is always the element from a onit pair that was inferred later, and a hoieassignment would never be seleted that onits with a urrent assignment.)We will desribe in Setion 4.5 a preise algorithm for generating a onit lauseone the relevant UIP(s) have been found. For now, however, we an get an idea ofthe usefulness of UIPs by looking at the SAT-based impliation graph example thatwe onstruted in Setion 4.3.1 (Figure 4.6). We display that impliation graph againhere in Figure 4.14.In that example, s is the hoie node at the urrent searh level. We observedthat no solution to the given SAT problem ould simultaneously set a = true, b =false, e = false, f = true, and s = true sine these assignments would lead tothe oniting inferenes z and :z. This onit diagnosis orresponds to making abakwards traversal in the impliation graph from the onit node :z. The traversalterminates at the hoie node s and at nodes that our at previous searh levels.The orresponding onit lause, :a _ b _ e _ :f _ :s, ontains �ve literals.However, there are two other UIPs in this partiular graph besides the hoie nodes: nodes v and w.16 Consider what would have happened if we had taken w = true asour hoie assignment at the urrent level of the searh. The inferenes that ourred16So unique impliation points are not atually \unique".82

a ~b ~c d ~e f

s

t ~u

v

w

~x y

z ~z

assignments
before current
search level

Conflict nodeFigure 4.14: SAT impliation graph example (Figure 4.6) revisitedbelow w in Figure 4.14 would still be in e�et, and so we would have obtained thesame onit, z and :z. However, the onit diagnosis that we would have obtainedfrom our bakwards traversal in this ase would have involved only three assignments:a = true, f = true, and w = true. From this diagnosis we would have obtained theshorter onit lause C2 = :a _ :f _ :w.The utilization of UIPs to reate the onit lauses represents one of the keydi�erenes between the rel sat and GRASP SAT solvers. In rel sat, whih was alsoone of the very earliest SAT solvers to suessfully inorporate onit lauses, exatlyone onit lause was produed for every onit and that lause always mentionedthe most reent hoie atom. From the impliation graph shown in Figure 4.5, rel satwould have produed only the onit lause C1 = :a _ b _ e _ :f _ :s.
83

4.4.1 UIP-based Clause Generation StrategiesMarques-Silva and Sakallah omment in [44℄ that GRASP may be on�gured touse a variety of lause generation strategies. However, it is typially on�gured sothat, from a single onit, it generates as many lauses as there are UIPs in theimpliation graph. From the IG in Figure 4.14, GRASP would normally generate thelause C2 = :a_:f _:w mentioned earlier. The lause results from the relationshipof the onit nodes z and :z to the losest UIP w. Typially, GRASP would alsogenerate the lause :v _ b_w, whih relates the UIP v to the UIP w, and the lause:s _ b _ e _ v, whih relates UIP s to UIP v.In [64℄, members of the Cha� projet performed extensive experiments on a num-ber of di�erent strategies for generating onit lauses in a SAT solver, inludingthe strategies inorporated by rel sat and GRASP. The strategy that they found tobe most e�etive overall (in terms of runtimes) is what they refer to as the 1-UIPstrategy. This strategy generates only one onit lause per onit in the searh:the onit lause that orresponds to the UIP that is losest to the deteted onit.In the example onsidered above, the 1-UIP strategy would generate only the onitlause C2 = :a _ :f _ :w.Beame, Kautz, and Sabharwal [4℄ report that GRASP generally has fewer hoiepoints in its searh tree than does Cha�. They suggest that this is due to the addi-tional lauses that GRASP learns from eah onit. However, they also state thatGRASP may run slower than Cha� beause of the extra time onsumed in learningthese additional lauses, and beause of the time involved in using these lauses inBoolean Constraint Propagation. 84

Based on the results of the study in [64℄, and Cha�'s exellent reputation as a ur-rent, high-performane SAT solver, we hose to use the 1-UIP strategy in Smodels.Therefore, given that Smodels has deteted a onit in the searh, it needs to beable to ompute the orresponding UIP that is \losest" in the impliation graph tothe onit.Before we give an algorithm to ompute the losest UIP, we give a preise de�nitionof what it is and prove that the de�nition is reasonable even in graphs with yles.De�nition 17 (Closest UIP) Let G be an impliation graph and X a onit nodeat the urrent searh level. Let C be the hoie node at the urrent searh level, andlet U be the set of UIPs relative to X. Let P be any ayli path from C to X. Thenthe losest UIP (CUIP) relative to X is the last element of U on this path.That at least one element of U will exist on the path P is lear beause the hoienode C is neessarily a UIP.Proposition 2 (CUIP Well-de�ned) The CUIP relative to X is well-de�ned byDe�nition 17. That is to say, regardless of whih ayli path P is hosen from C toX, the node that we obtain as the CUIP will be the same.Proof: From the de�nition of a UIP, it is immediate that every UIP is presenton every path from the hoie node to the onit node. So, to prove the result, itsuÆes to show that, given any two ayli paths P and P 0 from C to X, and U1 andU2 any two UIPs relative to X, then if U1 ours before U2 on P , then U1 also oursbefore U2 on P 0.Suppose not. Assume instead that U1 preedes U2 on path P , and U2 preedesU1 on path P 0. By spliing the part of path P that goes from the hoie node to U185

with the part of path P 0 that goes from U1 to X, we an then obtain a path thatgoes from the hoie node to X but whih exludes U2. (The new path exludes U2beause P and P 0 were assumed to be ayli.) This ontradits the assumption thatU2 is a UIP. �Note in De�nition 17 that the CUIP is de�ned relative to the onit node X.From Proposition 2, every onit node has a unique orresponding CUIP. However,we observe that distint onit nodes may have distint CUIPs. For instane, inFigure 4.13 there are two distint onit nodes: :v and :u. The CUIP orrespondingto :u is :v. The CUIP orresponding to :v is :.4.4.2 Finding UIPsPapers on GRASP [44℄ and Cha� [47℄ do not speify the algorithm(s) used toompute UIPs, other than to say that their programs an \identify UIPs in lineartime with one traversal of the impliation graph."[44℄ In Smodels our algorithm for�nding UIPs needs to work in graphs that may ontain yles, unlike the situationwith SAT solvers.Tarjan [60℄ gives an algorithm that an be used for �nding the losest UIP ofeah node that is reahable from the latest hoie point.17 So we ould use Tarjan'salgorithm here. However, sine we need to ompute the losest UIP only for theseleted onit node, it is simpler and more eÆient to use the algorithm that wegive below.1817Tarjan uses the term immediate dominator rather than the term \losest UIP".18Tarjan's paper solves a di�erent problem beause his motivating appliation domain, ode opti-mization, was di�erent from the one that this dissertation onsiders.
86

Indeed, we an solve this problem in linear time, even though our impliationgraphs may ontain yles. Spei�ally, our algorithm for �nding UIPs, and identi-fying the losest UIP, has a runtime that is linear in the number of edges that areinident to the nodes at the urrent level of the searh that in turn have paths to theonit node.The algorithm takes as its parameters an impliation graph G with a spei�edhoie node C and a spei�ed onit node X. It is assumed that all of the nodes inG are marked with their searh levels. It is also assumed that C and X are at theurrent level of the searh, and that there is a path from C to X onsisting only ofnodes from the urrent searh level. The steps of the algorithm are as follows:Step 1. Compute PathG. PathG is an arbitrary ayli path from C to X. Wedenote the length of PathG (i.e., the number of nodes in the path) by the expressionjPathGj. PathG an be omputed by performing a depth �rst searh.In our example ASP-based impliation graph, there are several possible pathsfrom the hoie node a to the onit node :u. Suppose that the path that our depth�rst searh returned is PathG = a, b, :, :d, :v, :u (see Figure 4.15).Step 2. Adjust onit node seletion. Determine the �rst node X 0 on PathGwhose assignment onits with an assignment that was made earlier in the searh.If X 0 di�ers from the initial onit node X, then make X 0 the new onit node,and trunate PathG so that it terminates at X 0.The reason that the issue of adjusting the onit node omes up is that the Un-founded Set inferene rule may introdue multiple onit nodes simultaneously. (Asnoted earlier, this will never our in a DPLL SAT solver.) To see why it is importantto make the adjustment in Step 2, onsider our ongoing example in Figure 4.15. If we87

u v w x ~y z

a

~c

b

~d e

~v

~u ~fConflict nodeFigure 4.15: A path from the hoie node to a onit nodebase our analysis on :u as our onit node, then (after adding a onit edge fromu to :u) we will have :v as our losest UIP. From this UIP, our onit diagnosis willbe that we annot simultaneously have u = true and v = false. From this diagnosis,we would generate the onit lause :u _ v. This is a sound lause in the sensethat any model of P must satisfy this lause. However, this onit diagnosis is notas useful as we would like: Beause this lause mentions v positively, it is atuallysatis�ed by the partial assignment that led up to the onit. Thus, by learning thislause, the solver has not learned anything that would have prevented the onitwhih is being diagnosed. Beause Smodels uses nonhronologial baktraking, itould atually go into an in�nite loop if it generated suh onit lauses: Potentially,it ould bakjump and then follow exatly the same searh path as before.However, by adjusting the onit node (and PathG) as desribed above, weremedy this problem: As a result of the adjustment, it is guaranteed that all of theliterals in the onit lause exept one will disagree with the partial assignment that88

u v w x ~y z

a

~c

b

~d e

~v

~u ~f

Adjusted
conflict node

Figure 4.16: Adjusting the onit node and orresponding pathwas in e�et immediately before the urrent searh level was reahed. The remainingliteral in the new onit lause will orrespond to the omplement of the losestUIP. Sine the CUIP is guaranteed to be on PathG, and is not a onit node, we areassured that the orresponding atom was not instantiated before the urrent searhlevel. Thus we know that, after bakjumping, the algorithm annot repeat the samesearh path (sequene of hoie assignments and inferenes) that led to the urrentonit.A formal proof that Smodels always terminates is given in Appendix D. Thefat that the CUIP is not a onit node is ruial to that proof.In our example (Figure 4.15), we will make :v the new onit node, and shortenPathG to a, b, :, :d, :v (see Figure 4.16).Step 3. Create an additional edge to the adjusted onit node. As in GRASP, weadd a onit edge that goes from the omplement of the onit node to the onitnode. In our example, this edge goes from v to :v (see Figure 4.17). In this partiular89

u v w x ~y z

a

~c

b

~d e

~v

~u ~fFigure 4.17: Adding a onit edge to the adjusted onit nodease, the onit node represents the fat that the ombination of assignments v, :d,and e result in a onit.We will now motivate Step 4 in our algorithm for �nding the CUIP. We denotethe �nal, adjusted onit node by X 0. Note that any UIP relative to X 0 must be anode preeding X 0 on PathG. Further note that any node M preeding X 0 on PathGis not a UIP if, and only if, there are nodes N and N 0, also belonging to PathG, suhthat N ours earlier in PathG than M , N 0 ours later in PathG than M , and thereis a path R from N to N 0 suh that no intermediate nodes in R appear in PathG.In this ase, we say that path R \skips" the node M . This brings us to our nextde�nition.De�nition 18 (Skip-to-depth) Suppose that G is an impliation graph, with hoienode C and onit node X 0 both at the urrent searh level. Suppose that PathG =[C = x1; : : : ; xn = X 0℄ is an ayli path in G from C to X 0. Then the skip-to-depth90

(relative to PathG) of a node N at the urrent searh level is the highest index i suhthat there exists a path R from N to xi where at most the �rst node and the last nodeof R may belong to PathG.We will denote the skip-to-depth of node N by StD(N). If there is no path fromN to any node in PathG, then StD(N) is unde�ned. In the following, we denote eahxi in PathG by PathG(i). We also denote the length of PathG, n, by jPathGj.Step 4. Compute skip-to-depths. We ompute the skip-to-depths by performingmultiple traversals bakwards along the graph. However, the total proess will runin linear time beause no edge in the graph is traversed more than one. Eahtraversal starts at a distint node PathG(i) with i = jPathGj downto 2. The traversalpropagates the value i as the skip-to-depth of eah node that it reahes, provided thatthat node has not already been assigned a (greater) skip-to-depth. The two routinesinvolved in omputing skip-to-depths are given in Table 4.1. They take as impliitparameters the impliation graph G, the path PathG, and the onit node X 0.Table 4.2 gives the skip-to-depths of the nodes in Figure 4.17, relative to theindiated PathG.Step 5. San PathG for UIPs. Now we an easily determine whih nodes in PathGare UIPs: The i-th node in PathG (i < jPathGj) is a UIP i� eah of the preedingnodes in PathG has a skip-to-depth less than or equal to i. The UIP that we want isthe CUIP, the UIP that has the highest path index and whih is therefore losest tothe onit node. The only two nodes that are UIPs (relative to :v) in our exampleare nodes a and :. : is the CUIP sine it has the higher index in PathG. Table 4.3gives pseudoode for �nding the CUIP. 91

ComputeSkipToDepths()f for eah node N at the urrent level of the searh doinitialize StD(N) 'Unomputed'StD(X 0) jPathGjfor i jPathGj downto 2 doN PathG(i)for M a predeessor of N doMarkSkipToDepthsFromNode(M , i)gMarkSkipToDepthsFromNode(Node M , int i)f if (M was inferred at the urrent searh leveland StD(M) = 'Unomputed') thenStD(M) iif (M is not a member of PathG) thenfor M 0 a predeessor of M doMarkSkipToDepthsFromNode(M 0, i)g Table 4.1: Computing skip-to-depths
node path index skip-to-depth Is UIP?a 1 3 Yb 2 3 N: 3 5 Y:d 4 5 N:v 5 5 Ne - 5 N:f - 5 N:u - 5 NTable 4.2: Skip-to-depths of nodes from example impliation graph92

SanForCUIP()f ClosestUIP PathG(1) // The �rst UIP in the path is// always the hoie nodemaxStD StD(PathG(1))for i 2 to jPathGj � 1 doif (maxStD � i) thenClosestUIP PathG(i)maxStD max(maxStD; StD(PathG(i)))return ClosestUIPg Table 4.3: Finding the losest UIP4.5 Generating the Conit ClauseOne the losest UIP has been found, Smodels onstruts the onit lause byusing the same method as GRASP's.De�nition 19 (Predeessor) We say that node u is a predeessor of node v in Gif the edge u! v exists in G.De�nition 20 (Choie Node) A hoie node is a node with no predeessors.De�nition 21 (Dominate) A set D dominates a node x in an impliation graph ifevery path from a hoie node to x inludes an element of D.In the above de�nition, a path onsisting of a single node is allowed. So, if Ddominates x and x is itself a hoie node, then we may onlude x 2 D.The algorithm for generating the onit lause omputes a set of nodes thatdominate the hosen pair of oniting nodes. (See Table 4.4.) This is aomplishedby traversing the impliation graph bakwards from the onit node. The terminal93

ComputeConitClause()f // Preondition: 8 node N 2 G, N:IsMarked = falseinitialize D ;ComputeDominatingSet(ConflitNode,D)ConflitClause f:x : x 2 DgRestore preonditionreturn ConflitClausegComputeDominatingSet(Node, D)// D is a set of nodes.// Adds to D a set of nodes suÆient to ensure that D dominates N .// The only node from the urrent deision level that may be// plaed in D is the losest UIP.f if Node:IsMarked thenreturnNode:IsMarked trueif Node:DeisionLevel < CurrentDeisionLevel or Node = ClosestUIP thenD D [fNodegelse for Node0 a predeessor of Node doComputeDominatingSet(Node0, D)g Table 4.4: Computing a onit lausenodes of this traversal are the losest UIP plus any nodes that are reahed that areat earlier searh levels. These terminal nodes onstitute a onit diagnosis D. Theomplements of the literals in D then onstitute the onit lause.For the impliation graph given in Table 4.17, the dominating setD is fv; w; z;:g.The orresponding onit lause is :v _ :w _ :z _ .A key observation used in the proof of orretness (Appendix C) of the Smodelsalgorithm is that the elements of D do in fat dominate the hosen pair of oniting94

nodes. An important fat used in the proof of ompleteness (Appendix D) is thatonly one node from the urrent searh level is ontained in D: all nodes in D otherthan the losest UIP ome from earlier searh levels.4.6 Using Conit Clauses in the SearhOne a onit lause has been generated, there are three ways in whih it is usedto inrease the performane of the searh engine: (1) to diret bakjumping, (2) toserve as an additional onstraint, and (3) to guide the searh heuristi. We adaptedtehniques from the GRASP, Cha�, and BerkMin satis�ability solvers to aomplishthese tasks in Smodels, as we detail in this setion.4.6.1 BakjumpingAs we saw from the example in Setion 4.1 (Figure 4.3), bakjumping (nonhrono-logial baktraking) involves potentially removing several searh levels from thesearh engine's stak when baktraking from a single onit. In the example giventhere, the searh level at whih the onit ourred was level 100, and the literalsappearing in the onit diagnosis were at levels 2, 3, and 100 of the searh. One fatthat was true about this diagnosis is also true about all of the diagnoses returned bythe 1-UIP onit lause generation sheme used by Cha� and by Smodels: exatlyone literal in the diagnosis omes from the highest searh level (i.e., the level at whihthe onit ourred). Under the 1-UIP sheme, this literal will be the one orre-sponding to the losest UIP. The remaining literals in the diagnosis will always omefrom earlier levels in the searh. The searh level to whih the solver will baktrakwill be the highest searh level, other than the urrent searh level, whih is involved95

in the onit diagnosis. After bakjumping to that level, the searh engine an thenimmediately infer the omplement of the UIP literal, based on the onit lause.4.6.2 Serving as Additional ConstraintsOne the onit lause has been generated, the searh engine an store it forfuture referene. One of the main uses of stored onit lauses is that they an serveas onstraints from whih new inferenes may be derived via the unit lause rule. Forinstane, suppose that we have stored the onit lause C = a_ b_:_ d_:e andthat later in the searh the urrent partial assignment inludes a = false, b = false, = true, and e = true. Then C has been redued to the unit literal d, and we mayinfer d = true. (Furthermore, edges from :a, :b, , and e to d will be added to theSmodels impliation graph.)Optimized BCPThe proess of obtaining inferenes from the unit lause rule is also known asBoolean Constraint Propagation (BCP). The BCP proess seems to be the most time-onsuming aspet of using onit lauses in Smodels. In order to make this proessas eÆient as possible, Smodels inorporates the \Optimized BCP" tehnique thatis used in Cha� and explained by Moskewiz et al. in [47℄. We outline this tehniquein the remainder of this setion.An obvious approah to implementing the unit lause rule/BCP for a set of lauseswould be to keep a ount, for eah lause C, of the number of literals in it that have notbeen ontradited. One this ount goes down to 1, then it would be time to set theremaining literal in the lause to true. However, this approah an be unneessarilytime onsuming beause it involves updating the ount at least N � 1 times before96

an inferene is obtained. Perhaps even worse, this tehnique requires that the valueof the ount is updated when the searh engine baktraks.A better situation would be if the engine only had to visit the lause when theount is updated from the value 2 to the value 1, beause that is the only time atwhih we potentially obtain an inferene from the lause. Cha�'s Optimized BCPproess attempts to approximate this ideal by hoosing two wathed literals from thelause. For instane, if the lause were C = a _ b _ : _ d _ :e as mentioned above,then the wathed literals might be a and :e. The wathed literals are hosen so thateither (1) one of the wathed literals is satis�ed, or (2) neither of the wathed literalsis ontradited. This state of a�airs is maintained as an invariant throughout the lifeof the lause.Whenever one of the two wathed literals (all it Wathed1) is ontradited, thenthe lause is visited. If the other wathed literal (Wathed2) is already satis�ed,then nothing needs to be done. If, however, the atom of the other wathed literal ismerely uninstantiated, then the lause is searhed for another non-ontradited literalto beome the new Wathed1. If the searh fails to �nd a andidate to be the newWathed1 then the lause is unit, and Wathed2 is fored to true by the unit lauserule.An advantage of Cha�'s Optimized BCP is that no lauses need to be visited orupdated when the searh engine uninstantiates atoms during baktraking.In [42℄, Lyne and Marques-Silva evaluated the performane of ten di�erent BCPshemes, inluding several of the most reent ones. They implemented eah of theshemes in their SAT solver (JQUEST) in order to normalize the results, and testedon a wide range of SAT benhmarks. Their empirial results showed Cha�'s optimized97

BCP proedure, with its wathed literals, to be among the fastest, perhaps the fastest,overall of all of the approahes that they tested. Based on these �ndings, we haveadopted Cha�'s approah as the BCP proedure in Smodels.4.6.3 Searh HeuristisSetion 3.2.3 disussed the lookahead-based searh heuristi of the original Smod-els program. The urrent searh heuristi of Smodels is modeled after that of theBerkMin SAT solver [27℄, whih itself extends and re�nes ideas from Cha� [47℄. Inthis setion we will review the searh heuristis of Cha� and BerkMin, and disusshow BerkMin's heuristi is adapted to Smodels.Cha�'s Searh HeuristiThe Cha� developers tried a number of previously published searh heuristis intheir solver. However, they reported that they obtained onsiderably better resultson their test ases with a new heuristi they designed alled the Variable State In-dependent Deaying Sum (VSIDS) heuristi [47℄. In order to ompute this heuristi,Cha� keeps a separate ounter for eah literal. That is, for eah atom in the prob-lem, a ounter is kept for the positive literal mentioning that atom, and also for thenegative literal. Prior to reading in the lauses that represent the problem, eah ofthese ounters is initialized to zero. When a new lause is stored (either a lause fromthe original problem representation or a onit lause), the ounter assoiated witheah literal mentioned in the lause is inremented by one. At eah hoie point inthe searh, the literal with the highest ount is hosen and that literal is fored totrue. Ties are broken randomly. Periodially, the ounters for eah of the literals isdivided by some small onstant greater than one.98

In order to speed up the omputation of the heuristi, Cha� does not omparethe ounts every time that its searh heuristi routine is alled. Instead, the searhheuristi periodially alls a sorting routine from the C++ Standard Template Libraryto sort the literals into an STL set, ordering the literals based on their ounts. Duringsubsequent alls to the searh heuristi routine, uninstantiated literals are hosen fromthis set, with higher soring literals being hosen �rst, until the next sorting operationis performed.DiÆult problems will generally result in a large number of onits during thesearh. Thus, on hard problems, Cha�'s heuristi is driven primarily by the onitlauses that have been generated. Periodially dividing the values of the ountersaims the heuristi towards satisfying the more urrent onit lauses, in partiular.BerkMin's Searh HeuristiIn their paper on BerkMin [27℄, Goldberg and Novikov ite Cha�'s aim of sat-isfying the most reent onit lauses as in important step in the right diretion.However, at least in their intended appliation domains (hiey hardware veri�a-tion), they advoate realizing this idea to an even greater degree. They argue thatthe searh heuristi should be very dynami. By this they mean that the weightsassigned to the atoms in the problem should be able to hange very quikly, beausehanging the value of even a single atom in the problem may greatly a�et the searhspae that is being examined. An example that they give is that hanging the valueof a single wire in a proessor from a 1 to a 0 may entirely hange whih part of theproessor will be involved in a omputation. They argue that it is important for thesearh heuristi to fous on the most reently reated onit lauses beause these99

lauses will be most relevant to the part of the searh spae that is urrently beingexplored.BerkMin's searh heuristi works as follows. The onit lauses generated byBerkMin are arranged hronologially, based on the order in whih they were reated.When a hoie point is reahed, BerkMin selets the most reently generated onitlause that is not satis�ed by the urrent partial assignment, if suh a lause exists.Call this lause C. (Shortly, we will disuss what BerkMin does when no suh lauseexists.) BerkMin selets as its hoie atom, a, the atom in C that has the highest\ativity ount".The ativity ount a(a) of an atom a is omputed as follows. At the start ofthe searh, a(a) is zero. Thereafter, whenever a is involved in ausing a onit,a(a) is inremented by one. \Causing a onit" means either being mentioned in aonit lause or else being mentioned in an impliation graph node that is stritlybetween a onit lause node19 and a onit node. For example, in the onitdepited in Figure 4.14, where node w is the losest UIP, the atoms that would havetheir a values inremented would be z, a, x, w, y, and f . Similar to Cha�, BerkMinperiodially divides by a small onstant greater than one the a ounts of all of theatoms in the problem. (This onstant is also hosen to be greater than the onstantthat Cha� uses for the same purpose.)Three of the more important di�erenes of BerkMin from Cha� are that (1) atomsare hosen only from onit lauses that are urrently not satis�ed, if suh lausesexist; (2) priority is given even more aggressively to the most reent onits; and19\Conit lause node" means a node from the dominating set D in the ComputeConitClauseproedure. Reall that the literals in a onit lause are the omplements of the literals mentionedin D. 100

(3) the ativity ount of an atom is inremented whenever that atom is involved ingenerating a onit, not only when it is mentioned in a onit lause.One BerkMin has hosen the hoie atom a, it must deide whether to instantiatea to true or to false. BerkMin determines this by heking whether a has appearedin more onit lauses positively or negatively. If a has appeared in more onitlauses as a positive literal, then a is instantiated to true. If it has appeared moreoften negatively, it is instantiated to false. In the ase of a tie, the value is hosenrandomly.If all of the onit lauses in the onit lause store are satis�ed by the urrentpartial assignment, then BerkMin selets the next hoie atom a so that the ativityount a(a) is maximized. In this ase, BerkMin also uses a di�erent method to deidewhether to instantiate a to true or to false. However, the tehnique that it uses tohoose this value is based entirely on the set of binary lauses20 that appear in theoriginal CNF representation of the problem. Sine the logi program presented toSmodels is not represented as a set of lauses, BerkMin's tehnique in this ase doesnot seem to be relevant to Smodels. (However, the interested reader may �nd thedetails of their approah in [27℄.)Smodels's Searh HeuristiSmodels uses the same searh heuristi strategy as BerkMin. The main di�erenefrom BerkMin is that, as noted above, in situations where all of the onit lauses areurrently satis�ed, Smodels does not treat binary lauses from the original problemspei�ation as speial. One Smodels has seleted a hoie atom a, the deision as20A lause is said to be binary if it has exatly two literals.101

to whether to instantiate a to true or to false is always based on whih of the twoliterals, a or :a, has appeared in more onit lauses.[27℄ does not speify how BerkMin selets its hoie atoms before its �rst searhonit. Before Smodels reahes its �rst onit, it selets hoie atoms randomly,and always assigns its hoie atoms the initial value false. For future work, it might beuseful to re�ne this aspet of Smodels. Smodels does perform lookaheads beforethe �rst hoie point, in order possibly to gain some initial inferenes. It wouldbe possible to initially sore the atoms in problems based on the results of theselookaheads, perhaps following a sheme suh as the one used by the original Smodelsprogram (see Setion 3.2.3).4.6.4 RestartsRestarting the searh an be done in a solver whether or not onit lausesare used, just as onit lauses an be inorporated whether or not restarts areused. However, from a performane perspetive restarts do seem to be very useful,partiularly in solvers that use onit lauses. Currently, it seems that the greatmajority of SAT solvers that inorporate onit lauses (inluding GRASP, Cha�,and BerkMin) also inorporate restarts.The idea of restarts is to periodially restart the DPLL searh from the root node,but to retain in the subsequent searh some of the results that were learned in thepreeding iterations. In partiular, in solvers inorporating onit lauses, someof the onit lauses resulting from the previous searh iterations would be heldover into the new searh. Literals that were learned in the previous iterations wouldalso be retained. In SAT solvers that inorporate onit lauses, this would inlude102

assignments learned from any onit lauses of size one, along with any assignmentsthat were inferred from these assignments through the BCP proess.The fat that learned information is arried over to the new searh generally foresthe new searh to be di�erent from the previous searh iterations. It also gives thesearh heuristis the opportunity to use the learned information to diret the earlydeisions in the new searh tree.Cha� and BerkMin eah perform their �rst restart after a ertain number of on-its N have been reahed. In the ase of Cha�, a small onstant, whih we willall C, is used to inrement the number of onits between restarts. For example,examination of the soure ode for the zCha� variant of Cha� (Version Z2001.2.17)revealed that it uses N = 40,000 and C = 100. This means that zCha� performsits �rst restart after the �rst 40,000 onits, its seond restart after the next 40,100onits, its third restart after the next 40,200 onits, et. The \Spelt3" version ofCha�2 (whih is roughly a ontemporary of the above version of zCha�, but main-tained by a di�erent individual) uses N = 2,000 and C = 200, or else N = 10,000and C = 1,000, depending on whih of the aompanying on�guration �les is used.It was reported in [47℄ that using a positive value for C does in fat seem to providesome performane bene�t.Aording to [27℄, BerkMin does a restart after every 550 onits (i.e., N = 550,C = 0).Smodels uses a restart frequeny that is more or less intermediate between thatof Cha� and and that of BerkMin. Spei�ally, the urrent version uses N = 500 andC = 50.
103

4.6.5 Clause DeletionIt is important that the searh engine is able to delete old onit lauses fromits store. This is so that the store of onit lauses does not exeed the supply ofavailable system memory and so that the time required to perform the BCP operation,whih derives new inferenes from the onit lauses, does not take an exessiveamount of time. The main riterion is to delete lauses that seem unlikely to beuseful for pruning the searh spae during future BCP operations.Clause Deletion in Cha�Cha� atually shedules in advane when a lause is available for deletion. At thetime that a lause is reated it is determined at what future point in the baktrakingsearh, if any, the lause should be marked as available for deletion. The riterion usedis that a lause should be so marked when it has at least N literals uninstantiated,where N is typially between 100 and 200 [47℄.Cha� periodially pauses its searh to mark as deleted all of the lauses that areurrently available for deletion. The onit lause store is then garbage olletedto free up the unused spae, and the remaining lauses are reompated. The re-ompation serves both to eliminate memory fragmentation problems, and to reatebetter data loality during subsequent BCP.Clause Deletion in BerkMinBerkMin also has a periodi deletion/garbage-olletion/reompation phase thatit performs on its store of onit lauses. BerkMin performs this phase always, andonly, at the beginning of a restart of the searh (see Setion 4.6.4).104

First, BerkMin removes all lauses that are satis�ed by assignments \learned"from the previous searh iterations.The remaining lauses that are removed by BerkMin are determined by a relativelyomplex heuristi that is explained in Setion 5 of [27℄. Basially, BerkMin keepsits store of onit lauses arranged in a queue, with older lauses sitting toward thequeue's front. When a restart is done, BerkMin removes from the front 1/16th of thequeue those lauses with more than 8 literals. From the remaining 15/16ths of thequeue, all lauses ontaining more than 42 literals are removed. However, BerkMinalways retains the most reently generated lause and \a fration" of the more ativelauses, regardless of the number of literals that they ontain. The \ativity ount"of a lause is the number of onits in whih it has been involved through theBCP proess. Early in the searh, lauses from the front 1/16th of the queue withativity ounts greater than 60 are regarded as \ative". Clauses from the remaining15/16ths of the queue with ativity ounts greater than 7 are also regarded as ative.The threshold for whether a lause from the front 1/16th of the queue is regarded asative is gradually inreased throughout the searh.During eah lause deletion phase, BerkMin tries to eliminate at least 1/16th ofthe onit lauses from the store. Towards this end, if a lause deletion phase everdeletes fewer than 1/16th of the onit lauses, then the threshold value of 8 literals,used to determine whih lauses from the front 1/16th of the queue are small enoughto save, may be deremented, though it is never deremented below a value of 4.In general, BerkMin will retain a signi�antly smaller store of onit lauses thanCha�. Indeed, one of the advantages of BerkMin over Cha� ited in [27℄ is that the
105

more aggressive lause deletion sheme makes BerkMin less likely to exeed systemmemory apaity.Clause Deletion in SmodelsThe lause deletion sheme used by Smodels is roughly as simple as the one inor-porated in Cha�. However, it utilizes BerkMin's idea of arranging the onit lausestore into a queue from whih larger lauses towards the head/front are deleted. Interms of how large it allows the lause store to grow, it is designed to be intermediatebetween Cha� and BerkMin.Smodels does not have a periodi deletion/garbage-olletion/reompation pro-ess. Instead, whenever a new onit lause is added, Smodels heks whether anylauses should be deleted. It does no reompation after lauses are deleted. Cur-rently, Smodels retains (1) all lauses reated sine the most reent restart, (2) allof the 5000 most reently generated lauses, and (3) all lauses with no more than 50literals. Any lause that does not meet at least one of these three riteria is deleted.This sheme is easy to implement eÆiently: A single pointer is maintained intothe hronologially ordered queue of lauses. The pointer moves from the head of thequeue (where the older lauses are) towards the tail. Eah lause is visited by thepointer exatly one time during the entire searh: that is, at the �rst moment whenthe lause no longer satis�es onditions (1) and (2) above. Then, if the lause hasmore than 50 literals, it is deleted. Otherwise, it is retained for the rest of the searh.Smodels's lause deletion sheme does allow the possibility of exeeding systemmemory onstraints. However, we would point out that this is less likely with thissheme than with Cha�'s sheme. Indeed, in our experiments so far, we have never106

seen Smodels abort due to lak of memory. However, this does not rule out thepossibility of inorporating a more sophistiated sheme in the future.Adopting a periodi deletion/garbage-olletion/reompation proess, as in Cha�or BerkMin, probably would be a useful hange in order to improve data loality.Also, Smodels does not automatially delete lauses that are satis�ed by learnedassignments, as BerkMin does. This would also be a reasonable optimization toinorporate.4.7 Computing Multiple Answer SetsBeause the original Smodels uses hronologial baktraking, its approah toomputing multiple answer sets is rather straightforward, as desribed in Setion 3.2.4.The nonhronologial baktraking in Smodels presents a ompliation in thisregard: when the searh engine bakjumps from a newly omputed answer set, weneed to ensure that it does not subsequently reompute the same answer set. Weaomplish this by ausing Smodels to reate a new lause whih eliminates thatanswer set from the searh spae.So suppose that Smodels has omputed a new answer set M . In order to ensurethat M is never reomputed it would be suÆient to reate and store the lauseCM = Wf:x : x is a literal satis�ed by Mg.CM mentions every atom ontained in the original searh problem. It would bebene�ial to reate a smaller lause than this, sine a smaller lause would tend toprovide higher bakjumping and would be more useful in the BCP proess. However,we want to be sure that the new lause does not eliminate any valid answer sets thathave not yet been omputed. 107

Consider the set of literalsS = fx : x was a hoie assignment in e�et when M was foundg.Let ' = VS. Also, let be the onjuntion of the literals that Smodels hasinferred at level zero of the searh. Due to the soundness of Smodels's onitlauses and inferene rules (see Appendix C), it is lear that the only answer set ofP that satis�es ' ^ is M . The inferenes ontained in are never removed bySmodels. Thus, adding the onstraint :' removes from the searh spae no answersets other than M . Note that :' may be expressed as a single lause (all it C�M)that subsumes CM . Thus by adding C�M as a new onstraint, we eliminate M , andonly M , as a possible solution.Unlike onit lauses, whih are sometimes deleted from the lause store (Se-tion 4.6.5), lauses like C�M , whih orrespond to solutions, are never deleted.4.7.1 Minimize statementsWe do not yet have a fully working implementation of minimize statements inSmodels. One approah that ould be used to implement them is to follow ourapproah above for omputing multiple answer sets. That is, when a new optimum isfound, add a lause orresponding to the omplements of all of the hoie assignmentsurrently in e�et. This will fore Smodels to never reompute that answer set.When a onit is found due to a partial assignment's weight exeeding the urrentminimum, the same type of lause ould be added to ensure that the urrent partialassignment is never repeated. Or, smaller lauses than this ould be obtained byperforming a more detailed analysis of the onit. We leave this for possible futurework. 108

CHAPTER 5ANSWER SET SOLVERS THAT CALL SAT SOLVERSDIRECTLY
In this hapter we look at three reent answer set solvers, eah of whih alls aSAT solver to do most of the work involved in an answer set searh. Our desriptionof these solvers in this hapter sets the stage for Chapter 6, where we ompare theirperformane to that of Smodels.Like Smodels, these solvers inorporate reent SAT tehnology in order to im-prove the eÆieny of answer set searh. However, whereas Smodels adapts SATtehniques to an existing ASP solver, eah of these three solvers translate answerset problems into a onjuntive normal form representation and use a SAT solver toperform the atual searh.In Setion 2.3.5 we disussed various translations from ASP to SAT. We alsoremarked on diÆulties with eah kind of translation with respet to obtaining aneÆient method for �nding answer sets. Beause of these diÆulties, none of thefollowing three solvers simply performs a diret \many-one" translation of ASP toSAT that preserves the answer set semantis in all ases. Instead, the Cmodels-1solver is restrited to working on so-alled tight21 logi programs only. The ASSAT21De�nition 25 in Setion A.2 states what it means for a logi program to be tight.109

and Cmodels-2 solvers are able to work on tight and non-tight programs. ASSAT andCmodels-2 start by alling a SAT searh engine to �nd a model of the ompletion ofthe logi program. If the model returned by the SAT solver is not an answer set, thenthey iteratively add loop formulas to the ompletion to deal with unfounded sets, andall the SAT solver again. This proess is repeated until the SAT solver returns agenuine answer set or until it is determined that no answer set exists.5.1 Cmodels-1For tight logi programs, the answer set semantis and the ompletion semantisagree exatly regarding what onstitutes a valid model. The Cmodels-1 solver [37℄ isdesigned to �nd answer sets of tight programs. First it transforms and simpli�es thegiven program and veri�es that the result is tight. (In some ases, but not in general,the transformation and simpli�ation proess may transform a non-tight program toa tight one. See [37℄ for details.) It runs a SAT solver on a CNF version of theprogram ompletion, Comp(P) (De�nition 10). If the transformed program is nottight, then Cmodels-1 does not attempt to �nd an answer set.Cmodels-1 does work with the hoie, ardinality, and weight rules supportedby Lparse and Smodels. The translation that deals with these extended rule typesinvolves logi programs with \nested expressions" and is explained in [19℄. This mayinvolve introduing new atoms to deal with the ardinality and weight rules.In this dissertation, we are primarily onerned with solvers that will work onboth tight and non-tight programs, so we will not disuss Cmodels-1 further.
110

5.2 ASSATThe ASSAT program by Lin and Zhao [40℄ extends the Cmodels-1 approah tonon-tight programs by utilizing loop formulas (De�nition 24 in Setion A.2). Given anormal logi program P , ASSAT �rst reates the program ompletion, onverts therepresentation to CNF, and alls a SAT solver on this formula. If the SAT solver�nds that Comp(P) has no lassial Boolean logi models, then ASSAT reports thatP has no answer sets. Otherwise, the SAT solver returns a lassial model M forComp(P) and ASSAT heks whether M onstitutes an answer set for P . It doesthis by heking whether there is an unfounded set (De�nition 12) H with respet toP and M suh that M assigns some of the atoms in H the value true. If there is nosuh unfounded set, then M is an answer set of P . Otherwise, some of these atoms inH are ontained in a loop L in P , suh thatM does not satisfy L's loop formula.22 SoASSAT translates L's loop formula to CNF, adds the resulting lauses to the urrentCNF formula (whih inludes Comp(P)), and alls the SAT solver on this new set oflauses. This proess is repeated until the SAT solver returns an atual answer setfor P or until it �nds that the formula that it was asked to solve is unsatis�able. TheASSAT algorithm is summarized in Table 5.1.ASSAT does not support any of Lparse's extended rule types (hoie, ardinality,or weight rules).ASSAT supports plugging in a variety of di�erent SAT solvers of di�erent types.The default SAT solver for ASSAT is a version of Cha�, but it an also use GRASP,22The de�nitions and important results onerning loops and loop formulas are given in Se-tion A.2. Loop formulas serve the role of enforing that all atoms in unfounded sets are assignedthe value false. The reason that ASSAT does not simply add all possible loop formulas to Comp(P)before the �rst all to the SAT solver is that there may be exponentially many loop formulas.111

ASSAT(NormalProgram P)f Construt Comp(P)Convert Comp(P) to a set of lauses Cloopresult SAT-solver(C)if (result = \Unsatis�able")return \No answer set"if (result is an answer set of P)return resultLet � be a loop-formula not satis�ed by resultLet C 0 represent � as a set of lausesC C [C 0end-loopg Table 5.1: ASSAT algorithmSATO, satz, and Walksat. Cha�, GRASP, and satz use omplete searh methods23and utilize onit lauses. satz is a omplete solver that does not use onit lauses,but whih uses lookaheads similar to what was desribed for Smodels in Setion 3.2.3.Walksat is an inomplete SAT solver, related to the GSAT solver, whih uses a loal,hill-limbing searh [53℄.5.3 Cmodels-2Cmodels-2 [36℄,[24℄ uses the basi algorithm and loop formula de�nition providedby ASSAT for normal programs. Cmodels-2 is able to handle Lparse's extended rulesby using Cmodels-1's translation, whih produes a nested expression logi programfrom an extended program. It then inorporates the loop formulas de�ned by Leeand Lifshitz [33℄ for nested expression programs. Cmodels-2 supports using a version23Reall that omplete means that the algorithm, in theory, always returns a result about whetheror not the input formula is satis�able. Inomplete SAT methods are, in general, not able to provethat a formula is unsatis�able. 112

of Cha� as one of its possible SAT searh engines. It also supports using the SIMOsolver, whih was implemented by Maro Maratea, who is also one of the implementersof Cmodels-2.When Cmodels-2 uses SIMO as its SAT solver, a loser integration is in plae thatsubstantially improves searh eÆieny on non-tight programs. The advantage thatis enjoyed in this irumstane onerns SIMO's onit lauses. When SIMO �ndsa satisfying assignment to the problem it has been given from Cmodels-2, the SIMOproess is merely paused while Cmodels-2 heks whether the assignment atuallyonstitutes an answer set. If the assignment is not an answer set, then Cmodels-2adds loop formula lauses to the previous SAT problem that it passed to SIMO, butSIMO retains the onit lauses that it possessed when it was paused. Thus, manyof the onit lauses that SIMO generated in solving the previous SAT instane areimmediately available to use in solving the new instane.In our experiments on the non-tight Hamiltonian yle problem instanes (Se-tion 6.3), we found that if we used Cha� with both ASSAT and Cmodels-2, then thesolution times of the two solvers were very lose. However, using the SIMO solver,Cmodels-2 did dramatially better on these problems. This is in spite of the fat thatGiunhiglia, Lierler, and Maratea report in [24℄ that SIMO is modeled after Cha�with respet to its algorithms and heuristis, but is \within a fator of 3 slower"beause it laks some of Cha�'s low level optimizations.5.4 Comparison with SmodelsThe main advantage of ASSAT and Cmodels over Smodels is their ability toinorporate a variety of reent, highly optimized SAT solvers with relatively little113

additional programming e�ort. Beause of this, we expet Smodels to be somewhatslower than ASSAT and Cmodels on tight programs.Implementing Smodels is relatively omplex beause of the variety of inferenerules involved in Smodels. Also, Smodels implements its own version of most ofthe major proesses involved in a DPLL-based SAT solver that uses lause learning,suh as Boolean Constraint Propagation, onit lause reation and management,and omputation of heuristis based on onit lauses. Thus, adding new SATtehnologies to Smodels is likely to be rather laborious.The main advantage of Smodels is on non-tight problems where a signi�antnumber of unfounded sets are produed during the searh. Smodels inherits fromSmodels a test for unfounded sets that is exeuted potentially at every node in thesearh tree. ASSAT and Cmodels-2 test for unfounded sets only after the SAT solverreturns a prospetive answer set, beause SAT solvers do not have tests for unfoundedsets built into their inferene rules. Thus, the proess used by ASSAT and Cmodels-2may waste time by exploring a path that ould have been pruned away if an unfoundedset test were exeuted more frequently.

114

CHAPTER 6EXPERIMENTAL RESULTS
This hapter summarizes experiments that we performed to ompare the perfor-mane of Smodels (version 2.26), ASSAT (version 1.50), Cmodels-2 (version 1.04),and Smodels (version 1.07). Eah test was performed on a 1.533 GHz Athlon XPproessor with 1 GB of main memory, running Linux.In eah of the tables below (exept for the DLX and bounded model hekingbenhmarks) the values reported represent the median and maximum number of se-onds taken to solve eah of eleven (11) randomly generated problem instanes. We ob-tained these runtimes by reording the user time reported by the Linux \/usr/bin/time"ommand. The runtimes inlude the time to exeute Lparse (version 1.0.13), the de-fault grounder for Smodels, ASSAT, Cmodels-2, and Smodels. It also inludes thetime required by the solver to read in the grounded input and to write the resultingoutput. Eah solver proess was aborted (\timed out") if it required more than 3600seonds to omplete.Eah of the solvers aepts ertain ommand line options that an a�et perfor-mane. Also, ASSAT and Cmodels-2 aept a variety of SAT solvers that an be\plugged in" to perform the ore of their searh. The results that we report for115

ASSAT were obtained with the \-s 2" setting. This instruts ASSAT to do extra pre-proessing work to simplify the problem, and seems to give marginally better resultsthan the default or \-s 1" settings in our tests. The SAT solver used by ASSAT inour experiments was Cha�2 (version spelt3) [46℄, whih is ASSAT's default solver.For Cmodels-2, we varied the ommand line settings in order to obtain the bestperformane. For the tests involving tight logi programs (spei�ally, Boolean sat-is�ability and graph oloring) we used the default setting, whih inorporates thezCha� (version 2003.7.1) SAT solver. This setting gave the best performane in thesedomains. For the tests on non-tight logi programs, we found that Cmodels-2 per-formed muh better with the \-si" option. This setting aused Cmodels-2 to use theSIMO satis�ability solver (version 3.0) [26℄,[25℄. (See Setion 5.3 for an explanationof why this improves Cmodels-2's performane on non-tight programs.)We note that Cha� and SIMO both generate onit lauses during their searh,and use these heavily in guiding their searh heuristis. Thus, in these tests, ASSATand Cmodels-2 are both (indiretly) inorporating onit lauses in their searh.The Smodels setting that a�ets searh performane is the \-nolookahead" om-mand line option, whih instruts Smodels not to use lookaheads. With \-nolookahead"in e�et, Smodels makes essentially a random seletion of the next atom to instanti-ate at eah hoie point. Furthermore, under that setting, it always instantiates thehoie atom to false. Without the \-nolookahead" option in e�et, Smodels uses itsdefault, lookahead-based searh heuristi as disussed in Setion 3.2.3. The possibleadvantage of using the \-nolookahead" option is that the solver saves the time thatwould be used to perform the lookaheads, whih an be very expensive. Thus, on
116

rather easy problems with a large number of atoms, the \-nolookahead" option maygive better performane.Smodels aepts the same set of ommand line options as Smodels. When the\-nolookahead" option is in e�et, Smodels uses a searh heuristi based on that ofthe BerkMin SAT solver, as disussed in Setion 4.6.3. Without the \-nolookahead"option in e�et, Smodels performs lookaheads as Smodels does and uses the samelookahead-based heuristi as Smodels. However, in that ase, Smodels still uses itsonit lauses for bakjumping and for Boolean onstraint propagation.Whether or not the \-nolookahead" option is in e�et, Smodels always useslookahead at the root node of the �rst iteration of the searh. Lookahead is repeatedat that node until no inferenes an be obtained (i.e., until no lookahead on any atomprodues a onit). When the original Smodels uses the \-nolookahead" option, itperforms no lookaheads whatsoever.In Appendix F we ompare the results of using Smodels and Smodels with andwithout the \-nolookahead" option. In nearly every test Smodels performed betterwith lookaheads and Smodels performed better without them. Therefore, all ofthe results that we report in the present hapter have Smodels using lookaheads andSmodels not using them (exept at Smodels's �rst root node, as mentioned above).We ran experiments in four problem domains: Boolean satis�ability testing, graph3-oloring, omputing Hamiltonian yles, and bounded model heking. In the aseof satis�ability testing and graph oloring, the redutions that we use are tight. There-fore, we expet that ASSAT and Cmodels-2 will have an advantage over Smodelsin these domains, as disussed in Setion 5.4. However, on the tight problems, weare interested in seeing whether Smodels an perform better than Smodels. We are117

also interested in whether Smodels's performane will be reasonably lose to thatof ASSAT and Cmodels-2.On the other hand, the Hamiltonian yle and bounded model heking tests thatwe run generally inorporate non-tight programs. It is in these domains that we expetSmodels to have an advantage over ASSAT and Cmodels-2 beause Smodels, likeSmodels, heks for unfounded sets at every node in its searh tree.Some of our tests involved extended logi programs, as we will note below. SineASSAT does not run on suh programs, it was not inluded in those tests.6.1 Boolean Satis�abilityOur tests in this domain inlude randomly generated 3-SAT problems and iruitveri�ation problems. In eah ase, the problem is originally provided as a CNF-SATproblem, whih we have onverted to an answer set program. The redution fromSAT to ASP that we used for these tests is the one given in Setion 2.3.1.Evidene that we gathered before running these tests indiated that we might ex-pet the original Smodels, whih employs lookaheads and whih laks onit lauses,to perform better on the random 3-SAT tests than the other ASP solvers (whih em-ploy onit lauses). But we also expeted that Smodels might perform signi�antlyworse than the others on the hardware veri�ation benhmarks.Part of the evidene suggesting that the original Smodels would be the best per-former on the random 3-SAT problems ame from Simons' dotoral dissertation [54℄.There, he reported his tests of Smodels' performane versus that of the ASP solverDLV [13℄, and the SAT solvers tableau (or ntab) [8℄, SATO [63℄, and satz [35℄ on
118

random 3-SAT problems. The order of these solvers, from best to worst, in terms oftheir performane on these tests was:1. satz2. tableau3. Smodels4. DLV5. SATOThe relevant point here is that the �rst four solvers in the list used lookaheads,but not onit lauses, in their searh. The worst performer on the tests, SATO,used onit lauses but not lookaheads.Those results parallel the results in the SAT2002 ompetition at the Fifth Inter-national Symposium on Theory and Appliation of Satis�ability Testing, in Cinin-nati.24 The solver that won the ontest on \random k-SAT" problems was OKSolverby Oliver Kullmann [31℄,[32℄, whih utilized lookaheads but not onit lauses.However, on the \industrial benhmarks" portion of the SAT2002 ontest, thetop solvers were zCha�, limmat [6℄, BerkMin, 2lseq [1℄, and SIMO, all of whih useonit lauses but not lookaheads.Our program for generating random 3-SAT problems did not allow dupliate oromplementary literals in the same lause. Dupliate lauses were allowed (but wereunlikely to our given our problem parameters). We hose the lauses-to-variablesratios so that they were near the threshold where roughly 50% of randomly generated3-SAT problems are satis�able. Problems generated near this threshold tend to bemuh harder than randomly generated 3-SAT problems with other lause-to-variableratios [45℄.24A report on the ontest is available at http://iteseer.ist.psu.edu/simon02sat.html.
119

Median and maximum seonds on 11 random 3-SAT problemsData Set Smodels Smodels ASSAT Cmodels-2 #ASvars lauses med max med max med max med max250 1025 16.5 112.2 36.5 934.5 3.3 552.2 2.5 746.0 10250 1050 86.1 207.2 657.5 2221.5 334.3 2321.1 777.5 1761.2 6250 1075 133.4 376.6 641.7 1 abort 801.1 2 abort 883.9 1 abort 3250 1100 74.4 169.8 343.7 2197.6 329.9 1 abort 360.0 2216.0 1Median and maximum seonds on 8 DLX benhmark problemsData Set Smodels Smodels ASSAT Cmodels-2 #ASmed max med max med max med max8 satis�able >3600 8 abort 9.9 22.6 2.6 4.4 2.9 10.8 88 unsatis�able >3600 7 abort 15.2 45.2 6.8 18.2 8.6 14.4 0Table 6.1: Boolean satis�ability runtimesIn our tables, the olumn under the \#AS" heading indiates the number ofinstanes that had answer sets.In order to verify the e�etiveness of onit lauses on non-uniform, \real world"data, we tested the four answer set solvers on 16 of the \DLX" iruit veri�ationbenhmarks from Miroslav Velev [61℄.25As antiipated, Smodels had the best performane of the group on the random3-SAT problems. However, the solvers that utilized onit lauses did dramatiallybetter than Smodels on the the DLX benhmarks. The performane of Smodels wasreasonably lose to that of ASSAT and Cmodels-2 on the satis�ability problems as awhole.25The benhmarks that we used were from the Supersalar Suite 1.0 (SSS.1.0), avail-able at http://www.ee.mu.edu/~mvelev. The eight satis�able instanes that we tested weredlx2 bug01.nf, ..., dlx2 bug08.nf. The eight unsatis�able instanes were dlx1 .nf,dlx2 aa.nf, dlx2 a.nf, dlx2 .nf, dlx2 l.nf, dlx2 s.nf, dlx2 la.nf, and dlx2 sa.nf.
120

6.2 Graph ColoringGraph k-oloring was used as an ASP benhmark in [49℄ and [40℄. Also, it om-monly appears online at sites that ontain ASP benhmark problems or ASP problemgenerators. As is the ase with the Boolean satis�ability problems, the resulting logiprograms are tight, so the unfounded set test is not required. Thus we expet ASSATand Cmodels-2 to ompare well with respet to Smodels on these tests.We �rst generated 3-oloring problems on uniform, random graphs with 400 to 500nodes eah. \Uniform" in this ontext means that eah possible edge had an equallikelihood of being inluded in the graph. Similar to our random 3-SAT experiments,we hose the number of edges for our graphs to be near the threshold where thegraphs hange from likely 3-olorable to likely non-3-olorable.Next, we generated \lumpy" 3-oloring problems, where eah graph onsisted of100 \lumps" of 100 nodes eah (for a total of 10,000 nodes per graph). For the �rstset of lumpy graphs we set our density parameter d = 150, whih means that werandomly plaed 150 edges in eah lump and 150 edges between lumps. This gaveus graphs with a total of 100� 150 + 150 = 15,150 edges eah. We then inreased dto 170 and 190, obtaining graphs with 17,170 and 19,190 edges, respetively.The redution was based on the following normal intentional database (IDB):26ol(X,r) :- vtx(X), not ol(X,g), not ol(X,b).ol(X,g) :- vtx(X), not ol(X,r), not ol(X,b).ol(X,b) :- vtx(X), not ol(X,r), not ol(X,g).:- edge(X,Y), ol(X,C), ol(Y,C), isolor(C).isolor(r).isolor(g).isolor(b).26Note that in pratie the expression \:-" is used to express the symbol. In the following, wewrite our logi programs exatly as they appeared in our data�les.121

Median and max ses on 11 random 3-oloring problems,uniform distribution of edgesData Set Smodels Smodels ASSAT Cmodels-2 #ASverties edges med max med max med max med max400 900 3.4 163.0 2.9 181.1 0.3 88.3 0.3 88.2 10400 950 99.5 511.8 94.9 1463.4 58.3 837.7 24.6 837.6 2400 1000 20.7 134.3 16.4 53.8 3.7 14.3 4.0 13.1 0500 1100 0.8 4.2 1.7 3.9 0.2 2.4 0.3 2.2 11500 1150 196.0 356.6 66.1 1 abort 44.4 2 abort 188.3 2 abort 10500 1200 2753.9 5 abort >3600 8 abort >3600 8 abort >3600 8 abort 0-5Median and max ses on 11 random 3-oloring problems,lumpy distribution of edgesData Set Smodels Smodels ASSAT Cmodels-2 #ASverties edges med max med max med max med max10000 15150 256.1 1 abort 21.4 45.2 8.0 9.7 8.4 10.1 1010000 17170 201.6 3 abort 19.7 21.0 8.5 11.4 10.1 11.8 710000 19190 >3600 8 abort 8.0 222.6 3.2 12.9 4.2 11.7 2Table 6.2: Coloring runtimesWe enfored the restrition in all of our extensional databases that no graph nodeshad \self-edges", and that there were no dupliate edges.Our results for the four programs on oloring problems parallel our results on theSAT problems: The original Smodels program with lookahead had the best overallperformane on the problems reated with a uniform distribution (although the resultsare somewhat mixed). But the three programs that inorporated onit lauses hadsubstantially better performane on the problems with a non-uniform distribution ofedges.
122

6.3 Hamiltonian CylesThis seems to be the most popular domain for benhmarking ASP searh engines.For instane, timings on Hamiltonian yle problems have been reported in [54, 49, 16,40, 39, 24℄. Perhaps the priniple reason for its popularity is that the more natural andonise redutions for Hamiltonian yle problems produe non-tight programs wherethe answer set semantis di�ers from the ompletion semantis. Thus, some form ofunfounded set test is needed in order to ensure that the searh engine returns a validanswer set. Beause lassial Boolean logi laks the onept of negation as failureembodied in the negation of unfounded sets, it seems to be diÆult to �nd a onise,pratial redution of the Hamiltonian yle problem to the Boolean satis�abilityproblem. Thus, this is a domain where ASP solvers would seem to have an advantageover SAT solvers. This seems to be evidened in the empirial results reported bySimons [54℄. He tested the performane of the SAT solvers SATO and satz on twodi�erent redutions of the Hamiltonian yle problem to Boolean satis�ability. TheSAT problem enodings were muh larger (and more omplex) than the ASP enoding.The time required to solve the problems was orders of magnitude higher for the SATsolvers than for Smodels, whih Simons suggested was due to the enoding size issue.We used direted graphs for our Hamiltonian yle tests. We experimented with�ve di�erent redutions. The �rst four redued the problem instanes to normallogi programs. The �fth redution resulted in extended programs. Appendix Elists eah of the �ve redutions and provides results that we obtained omparing theperformane obtained with these redutions using Smodels, Smodels, ASSAT, andCmodels-2. The best redution to normal logi programs is labeled NNT3 in theappendix. The best redution overall was the redution labeled Extended, whih uses123

extended rules. Sine ASSAT does not work with extended rules, and beause theresults with NNT3 were not muh worse than those with Extended, we used NNT3for most of the tables below. Our last table with Hamiltonian Cyle results uses theExtended redution, as noted below.Uniform Random GraphsOne set of Hamiltonian yle tests involved generating random direted graphsusing a uniform distribution of edges. The results from these tests are given in Ta-ble 6.3. Smodels without lookahead had by far the best performane on these tests.In fat, using the NNT3 redution and this distribution of edges, we did not generateany problems that were hard for Smodels to solve, even though we reated graphsthat were quite large. (Our 6000 node problems resulted in ground instantiationsfrom Lparse that were approximately 12MB in size. These groundings were too largeto run through ASSAT.) Unsatis�able instanes taken from this distribution weregenerally solved by eah of the solvers with no baktraks.On these problems, the runtimes for Smodels are muh better than the runtimesfor the original Smodels program. This was somewhat of a surprise sine the problemswere generated using a uniform distribution, so we thought that Smodels mightbe the slower of the two solvers on these problems. An examination of some ofthe searh statistis explained why the original Smodels was slower on this problemset: the time used by Smodels to perform its lookaheads is quite great on suhlarge problem instanes. It turns out that on the problems instanes that did haveHamiltonian yles, Smodels almost never baktraked. However, eah 6000 nodeproblem instane mentioned between 100,000 and 150,000 atoms in the groundedlogi program. Furthermore, solving the problem ould involve several thousand124

Median and max ses on 11 Hamiltonian yle problems,uniform distribution of edgesData Set Smodels Smodels ASSAT Cmodels-2 #ASverties edges med max med max med max med max1000 4000 1.0 1.1 1.0 1.0 0.9 1.1 1.0 1.1 01000 4500 1.2 132.0 1.2 4.7 1.1 971.3 1.3 308.0 41000 5000 172.7 201.0 3.5 4.2 52.6 1064.1 6.8 438.4 61000 5500 244.6 269.5 4.6 5.5 275.5 1440.6 141.1 175.7 106000 30000 8.4 3 abort 8.0 51.0 : : : : : : 8.3 2 abort 36000 33000 >3600 9 abort 55.9 64.2 : : : : : : >3600 9 abort 96000 36000 >3600 7 abort 61.5 73.7 : : : : : : 1963.4 3 abort 76000 39000 >3600 10 abort 72.7 97.0 : : : : : : >3600 7 abort 10Table 6.3: Runtimes on uniform Hamiltonian yle problemshoie points, even if no baktraks were involved. The time required to perform allof the resulting lookaheads resulted in Smodels exeeding the 3600 seond time limit.An obvious solution to try with the original Smodels program, then, is to run itwith no lookaheads. However, as we see in Appendix F, this results in only somewhatbetter results on these problems. In this ase, the Smodels searh heuristi is running\blind" (i.e., hoie atoms are seleted at random, and always initially assigned thevalue false), and usually requires hundreds of thousands or millions of baktraks inorder to solve the problem. With Smodels the ost of lookaheads is avoided (exeptfor the lookaheads performed before the �rst hoie point), and the program usuallyrequires no more than a few hundred baktraks, even on the 6000 node probleminstanes.Clumpy Random GraphsWe sought to produe some hard Hamiltonian yle problems that were of reason-able size and had a less uniform (more \lumpy") distribution of edges. We designed125

these experiments so that eah problem instane would have some, but relatively few,Hamiltonian yles.For this purpose we generated eah randommn-node \lumpy" graphG as follows:Let n be the number of lumps in the graph and let m be the number of nodes ineah lump. First generate an n-node graph A as the \master graph," speifying howthe lumps are to be onneted; eah vertex of A will orrespond to a lump in the�nal graph. Add random edges to A until A has a Hamiltonian yle.Now generate the lump C orresponding to a vertex v of A. Let x = indegree(v)and y = outdegree(v). C has m nodes; selet x nodes to be \in-nodes" and y di�erentnodes to be \out-nodes"; inrease C to x+ y nodes if x+ y > m. Add random edgesto lump C until there is a Hamiltonian path from eah in-node of C to eah out-nodeof C. (Thus C will have at least xy Hamiltonian paths.)Finally, for every edge (vi; vj) in the master graph A, insert an edge from anout-node of Ci to an in-node of Cj. Every in-node in every lump is to have exatlyone inoming edge from another lump. Likewise, every out-node in every lumpis to have exatly one outgoing edge to another lump. G will have at least oneHamiltonian yle.The results obtained on these problems are shown in Table 6.4. Here again, weused redution NNT3, whih involves normal logi programming rules only. Smodelshad the strongest performane of all of the solvers.Beause Smodels and Cmodels-2 were learly the two best performers on thelumpy graph Hamiltonian yle tests, beause both of these solvers support extendedlogi programs, and beause the Extended redution from Appendix E gave somewhatbetter results than the normal logi program redutions, we reran the above tests using126

Median and max ses on 11 Hamiltonian yle problems,lumpy distribution of edges.n = number of lumps; m = verties per lumpData Set Smodels Smodels ASSAT Cmodels-2 #ASn m med max med max med max med max10 10 0.4 1 abort 0.4 0.9 0.8 1.4 0.5 0.9 1112 12 620.9 4 abort 0.7 1.3 2.6 10.8 2.6 4.5 1114 14 >3600 10 abort 1.8 10.4 108.8 194.1 11.4 83.4 1116 16 >3600 9 abort 8.8 19.2 263.0 608.8 24.8 100.6 1118 18 >3600 11 abort 21.3 156.0 >3600 6 abort 133.7 2063.5 1120 20 >3600 11 abort 102.4 264.4 >3600 8 abort 206.0 1 abort 11Table 6.4: Runtimes on lumpy Hamiltonian yle problemsthe Extended redution. The results are shown in Table 6.5. Smodels maintained asigni�ant performane advantage in these tests.6.4 Bounded Model ChekingIn [28℄, Heljanko and Niemel�a disuss bounded model heking of asynhronousonurrent systems as an appliation area for answer set programming. They presenttranslations of problems of bounded reahability, deadlok detetion, and linear tem-poral logi model heking to answer set programming problems. They also reporta number of experiments where they show the performane of the Smodels solver onthese problems. They have provided for download27 most of the logi programs usedin their experiments (spei�ally, all of the problems from Table 1 of their paper). Wetested Smodels, Smodels, and Cmodels-2 on this problem set. The logi programsfrom this olletion employed extended rules, so we were unable to inlude ASSAT27http://www.ts.hut.�/~kepa/experiments/boundsmodels/
127

Median and max ses on 11 Hamiltonian yle problems,lumpy distribution of edges, Extended redutionData Set Smodels Cmodels-2 #AS# of verties /lumps lump med max med max10 10 0.3 0.4 0.3 0.5 1112 12 0.4 1.0 1.6 6.7 1114 14 1.8 11.2 6.4 73.8 1116 16 4.7 21.0 16.2 31.5 1118 18 42.5 278.4 145.0 1 abort 1120 20 83.8 364.0 190.5 3 abort 11Table 6.5: Runtimes on lumpy Hamiltonian yle problems, Extended redutionin these tests. Most of the programs were non-tight, and Smodels's unfounded settest was often used to derive inferenes during its searh.Tables 6.6 and 6.7 report the runtimes that we obtained on these problems. Wehave separated the results into two tables: one for problem instanes generated un-der the \step" semantis, and one for problems generated under the \interleaving"semantis. (See the Heljanko and Niemel�a paper for a desription of the step and in-terleaving semantis.) Smodels had the best overall performane on these problems.

128

Bounded model heking runtimes in ses(Deadlok heking under \step" semantis)Problem Smodels Smodels Cmodels-2 AS?dp-6.s-O2-b1 0.00 0.00 0.00 Yesdp-8.s-O2-b1 0.01 0.00 0.01 Yesdp-10.s-O2-b1 0.00 0.00 0.00 Yesdp-12.s-O2-b1 0.00 0.00 0.00 Yeskey-2.s-O2-b25 489.58 6.18 73.45 Nommgt-3.s-O2-b7 3.01 0.34 0.21 Yesmmgt-4.s-O2-b8 163.71 2.38 42.99 Yesq-1.s-O2-b9 0.06 0.08 0.10 Yesdartes-1.s-O2-b32 0.69 0.96 6.01 Yeselev-1.s-O2-b4 0.03 0.02 0.02 Yeselev-2.s-O2-b6 0.14 0.11 0.06 Yeselev-3.s-O2-b8 1.49 1.05 0.42 Yeselev-4.s-O2-b10 44.67 16.61 5.82 Yeshart-25.s-O2-b1 0.01 0.01 0.01 Yeshart-50.s-O2-b1 0.01 0.01 0.01 Yeshart-75.s-O2-b1 0.02 0.01 0.02 Yeshart-100.s-O2-b1 0.02 0.03 0.02 YesTotal 703.45 27.79 129.15Table 6.6: Bounded model heking runtimes - step semantis

129

Bounded model heking runtimes in ses(Deadlok heking under \interleaving" semantis)Problem Smodels Smodels Cmodels-2 AS?dp-6.i-O2-b6 0.03 0.04 0.09 Yesdp-8.i-O2-b8 0.09 0.18 4.07 Yesdp-10.i-O2-b10 0.93 208.51 231.15 Yesdp-12.i-O2-b12 150.77 3.71 >3600.00 Yeskey-2.i-O2-b26 16.11 9.13 89.65 Nommgt-3.i-O2-b10 23.81 3.24 80.05 Yesmmgt-4.i-O2-b11 518.54 685.95 >3600.00 Noq-1.i-O2-b17 731.58 116.74 2597.67 Nodartes-1.i-O2-b32 0.47 0.76 3.39 Yeselev-1.i-O2-b9 0.20 0.39 0.60 Yeselev-2.i-O2-b12 2.10 5.33 37.72 Yeselev-3.i-O2-b15 90.83 27.50 705.44 Yeselev-4.i-O2-b13 593.83 53.72 373.00 Nohart-25.i-O2-b5 0.23 0.08 0.05 Nohart-50.i-O2-b5 1.12 0.25 0.13 Nohart-75.i-O2-b5 3.51 0.54 0.24 Nohart-100.i-O2-b5 7.82 0.97 0.35 NoTotal 2141.97 1117.04 >11323.60Table 6.7: Bounded model heking runtimes - interleaving semantis

130

CHAPTER 7CONCLUSIONS AND FUTURE WORK
7.1 SummaryWe have shown how to inorporate lause learning tehniques diretly into a solverwhose rules of inferene are spei�ally oriented towards reasoning under the answerset semantis. Of speial signi�ane in this regard is that our algorithm produesonit lauses from reasoning that inludes negative inferenes drawn from the de-tetion of unfounded sets. Issues that needed to be addressed in order to aomplishthis inluded:� How does one generate an impliation graph from appliations of Smodels-styleinferene rules, inluding searh involving normal logi programming rules (ad-dressed in Setion 4.3.2) and extended rules (addressed in Setion 4.3.4)?� How does one analyze an impliation graph involving yles (Setion 4.4.2)?� Smodels' negation based on unfounded sets may introdue several onits si-multaneously. Does it matter on whih onit we base our analysis? (Theanswer is yes, as disussed in Setion 4.4.2. It is important for performane andompleteness of the algorithm on non-tight problems.)131

Corretness and ompleteness of the Smodels algorithm is proven in Appen-dies C and D.7.2 Conlusions1. Adding onit lause learning to Smodels substantially speeds up Smodels onmany problem domains, inluding both of the industrial benhmark domains wetried (hardware veri�ation and bounded model heking). The most popularbenhmarking domain for answer set solvers is the Hamiltonian yle problem.On our tests in this domain, Smodels was orders of magnitude faster than theoriginal Smodels solver.2. The approah of Smodels is substantially faster on non-tight programs thanthe approah of ASSAT and Cmodels-2. Smodels adds onit lause learningdiretly to Smodels. Therefore, it preserves Smodels' unfounded set test, whihis exeuted potentially at every node in the branhing searh. ASSAT andCmodels-2 iteratively all SAT solvers (whih themselves usually inorporateonit lause learning), and test for unfounded sets only after the SAT solversreturn their results. The fat that the unfounded set test is exeuted morefrequently in Smodels gives Smodels greater pruning of the searh spae onnon-tight problems.7.3 Future workOne possible diretion for future work is to investigate how to inorporate lauselearning tehniques into disjuntive logi programming systems suh as DLV [13℄ andGnT [30℄. 132

Another possibility is to investigate alling a SAT solver on the program omple-tion, as done by ASSAT and Cmodels-2, but inluding an Smodels-type unfounded sethek in the SAT solver's searh. Suh a system might provide many of the strengthsof both the ASSAT/Cmodels-2 approah and the approah of Smodels.

133

APPENDIX AREDUCTIONS OF ASP TO SAT
In this appendix we present translations that redue the problem of whether anormal logi program has an answer set to the problem of whether a Boolean formulain onjuntive normal form has a satisfying assignment.As mentioned in Setion 2.3.5, we divide these redutions into two lasses: (1)those redutions that operate in polynomial time, but signi�antly inrease the num-ber of atoms in the problem representation, and (2) those that do not inrease thenumber of atoms, but exponentially inrease the representation size.A.1 Redutions that Inrease the Number of AtomsThe redutions in this ategory seem to follow an idea that goes bak to a 1955paper by Spetor [56℄. The following redution is based on his idea.Let P be a normal logi program, and let N = jAtoms(P)j.Reall thatM � Atoms(P) is an answer set of P if and only ifM is the dedutivelosure of PM . The idea of this redution is to regardM as being the union of severalstages that are indexed from 0 to N . No atoms will belong to stage 0. An atomh 2 Atoms(P) will be onsidered part of stage i > 0 if and only if (1) h belongs tostage i� 1, or (2) there is a rule of the form h a1; : : : ; an; not b1; : : : ; not bm, where134

:b1; : : : ;:bm =2 M and a1; : : : ; an all belong to stage i � 1. Then h is in stage N ifand only if it is in the dedutive losure of PM .For eah h 2 Atoms(P) we introdue new atoms h0; h1; : : : ; hN to indiate in whihstages h belongs. For eah rule R = h a1; : : : ; an; not b1; : : : ; not bm and for eah1 � i � N we de�ne the propositional formula 'iR = ai�11 ^: : :^ai�1n ^:b1^: : :^:bm.Intuitively, 'iR states whether rule R is ready to �re at stage i of the onstrution ofthe dedutive losure of PM . Also, for eah h 2 Atoms(P), we de�ne the followingpropositional formulas:1. '0h = :h02. For 1 � i � N , 'ih = (hi � (hi�1 _ Wf'iR : R 2 P is a rule with h in itshead))gWe then de�ne 'h = ((h � hN) ^ Vf'ih : 0 � i � Ng). We also de�ne 'P =Vf'h : h 2 Atoms(P)g.We assert without proof that an interpretationM is an answer set of P if and onlyifM satis�es 'P . From the point of view of solving problems eÆiently, the drawbaksof the above translation are (1) the new representation is of size �(N � jP j), and (2)the number of new atoms introdued is �(N2).Ben-Eliyahu and Dehter [5℄ gave a translation of \head-yle free disjuntive logiprograms" to SAT, extending the idea shown above. The lass of logi programs thatthey onsidered inludes normal logi programs as a speial ase.Reently, Janhunen [29℄ presented another translation based on this idea, di-reted at translating normal programs only. Janhunen's translation involves a rel-atively intriate binary enoding of the stage numbers. Through this enoding, he135

was able to shrink the size of the resulting propositional logi formula to �(jP j �log2(jAtoms(P)j)) and the number of new atoms that are introdued to �(jAtoms(P)j�log2(jAtoms(P)j)), although rather large onstants of proportionality seem to be in-volved in both the formula size and the number of new atoms. Janhunen's resultis theoretially interesting. However, it remains to be seen whether this redutionwill yield an eÆient method of �nding answer sets. Suppose, for instane, thatwe translate ASP searh problems to SAT using Janhunen's translation, and all aSAT solver on the result. Beause eah stage number is represented in binary, it isnot lear that partial interpretations that lead to unfounded sets will ause the SATsearh engine to immediately infer that the atoms in the unfounded set are false. Animportant advantage of the Smodels solver, whih is an advantage inherited by oursolver Smodels, is that a test for unfounded set is built into the searh engine. SATsolvers do not have a unfounded set test built into them. If the representation doesnot fore the SAT solver to make unfounded set-related inferenes as soon as possiblein the searh, then a great deal of eÆieny may be lost. (This is one of the mainonlusions we draw from our experimental results in Setions 6.3 and 6.4.)A.2 An Exponential Spae Redution that Does Not Inreasethe Number of AtomsThe two preeminent, urrent answer set solvers that translate answer set problemsto a propositional logi form and use SAT solvers for the bulk of the searh areASSAT [40℄ and Cmodels-2 [24℄. In Chapter 5 we disuss how these solvers operate,and in Chapter 6 ompare their performane to that of Smodels and Smodels. In theurrent setion, we will present the translation from ASP to SAT on whih ASSAT136

and Cmodels-2 are based. This translation was presented by Lin and Zhao [40℄ intheir paper on ASSAT.An advantage of this translation is that it does not introdue new atoms into theproblem. The main drawbak is that the number of lauses in the formula an beexponential in the size of the logi program. The redution is based on the programompletion (De�nition 10) and so-alled loop formulas.De�nition 22 (Positive Dependeny Graph) Let P be a normal logi program.The positive dependeny graph of P is a direted graph whose nodes are the atomsmentioned in P . An edge exists from node p to node q in the graph i� there is a rulein P suh that p is the head of R and q appears as a positive subgoal in R.A direted graph is said to be strongly onneted if, between any ordered pair ofnodes < p; q >, there is a path from p to q. Given a direted graph, a set of nodesS is a strongly onneted omponent if for any ordered pair of nodes <p; q >, wherep; q 2 S, there is a path from p to q.De�nition 23 (Loop) [40℄ A set L of atoms is alled a loop of a logi program ifL is a strongly onneted omponent of the program's positive dependeny graph.Given a rule R we will denote the set of positive subgoals of R by PSG(R), andthe head of R by head(R). For eah loop L in a logi program, Lin and Zhao assoiatetwo sets of rules with it:R+(L) = fR 2 P j head(R) 2 L; PSG(R) \ L 6= ;gR�(L) = fR 2 P j head(R) 2 L; PSG(R) \ L = ;g
137

Example 9 Let P be the logi program from Setion 2.3.3 that enodes the instane ofthe Hamiltonian yle problem displayed in Figure 2.1. Then L = fr(5); r(6); r(7); r(8)gis a loop of P . Furthermore,R+(L) = 8>><>>: r(6) h(5; 6); edge(5; 6); r(5)r(7) h(6; 7); edge(6; 7); r(6)r(8) h(7; 8); edge(5; 6); r(7)r(5) h(8; 5); edge(5; 6); r(8) 9>>=>>;and R�(L) = � r(6) h(4; 6); edge(4; 6); r(4) 	Lin and Zhao motivate their idea of loop formulas as follows: \For any given logiprogram P and any loop L in P , one an observe that ; is the only answer set ofR+(L). Therefore an atom in the loop annot be in any answer set unless it is derivedusing some other rules, i.e. those from R�."De�nition 24 (Loop Formula) [40℄ Let P be a logi program, and L a loop in it.Suppose that we enumerate the rules in R�(L) as follows:p1 Body11; : : : ; p1 Body1k1;...pn Bodyn1; : : : ; pn Bodynkn;then the loop formula assoiated with L is the following impliation::(Body11 _ � � � _ Body1k1 _ � � � _Bodyn1 _ � � � _Bodynkn) � p̂2L:p:In the above de�nition, the not operators used in negative subgoals are, naturally,translated to the lassial negation operator :, and the ommas in rule bodies aretreated as the onjuntion operator ^.Example 10 Consider the loop given in Example 9. The orresponding loop formulais: :(h(4; 6) ^ edge(4; 6) ^ r(4)) � (:r(5) ^ :r(6) ^ :r(7) ^ :r(8))138

Note that the ompletion semantis model given in Table 2.2 violates this loopformula, but the answer set given in Table 2.1 satis�es it.Proposition 3 (Lin and Zhao [40℄) Let P be a logi program, Comp(P) its om-pletion, and LF the set of loop formulas assoiated with the loops of P . Then aninterpretation is an answer set of P i� it is a model of Comp(P) [LF .De�nition 25 (Tight Program) A normal logi program is said to be tight if itspositive dependeny graph ontains no loops.Fages [18℄ showed in 1994 that if a program is tight, then its answer sets are exatlyit models under the ompletion semantis. This, of ourse, follows as an immediateorollary from Proposition 3, whih was stated by Lin and Zhao in 2002.We an see that a logi program may have exponentially many loops by oneagain onsidering the IDB given in Setion 2.3.3 for expressing the Hamiltonian yleproblem on direted graphs. If G is a omplete direted graph on n verties, then forany set S of verties in V , fr(s) j s 2 Sg is a loop of the orresponding grounded logiprogram. Hene, that program will have 2n loops.Beause there may be so many loop formulas for a given problem, ASSAT andCmodels-2 do not diretly translate logi programs into the formula given in Proposi-tion 3. We disuss their approah in Chapter 5, and also ompare it to our approahwith Smodels. The main point in this appendix is that it seems to be diÆultto translate the ASP problem diretly to SAT in a way that will yield an eÆientimplementation for �nding answer sets.
139

APPENDIX BWEIGHT CONSTRAINT RULES: SEMANTICS ANDTRANSLATIONS
With the exeption of minimize statements, all of the rule types supported byLparse and Smodels an be de�ned in terms of weight onstraint rules. Simons,Niemel�a, and Soininen introdued weight onstraint rules in [55℄ and implementedthem in Lparse and Smodels. In Setion B.1 below, we list their formal de�nitionsonerning the answer set semantis of weight onstraint rule programs. Then, inSetion B.2, we give their translation of weight onstraint rule programs to programsonsisting of weight rules and hoie rules only.Muh of this appendix quotes diretly from [55℄.B.1 Formal SemantisReall the following de�nitions from Setion 2.4:A weight onstraint is an expression of the forml � fa1 = wa1 ; : : : ; an = wan ; not b1 = wb1; : : : ; not bm = wbmg � u (B.1)A weight onstraint rule is an expression of the formC0 C1; : : : ; Cn140

where eah Ci is a weight onstraint. A weight onstraint rule program is a programonsisting of weight onstraint rules.Let M be a total interpretation of Atoms(P), where P is a weight onstraint ruleprogram. As usual, we identify M with the set of atoms that are true in M .De�nition 26 A set of atoms M satis�es a weight onstraint C of the form (B.1),denoted by M j= C, i� l � w(C;M) � u, wherew(C;M) = Xai2M wai + Xbi =2M wbiis the sum of the weights of the literals in C satis�ed by M .A rule C0 C1; : : : ; Cn is satis�ed by M (M j= C0 C1; : : : ; Cn) i� M satis�esC0 whenever it satis�es eah of C1; : : : ; Cn. A program P is satis�ed by M (M j= P)if eah rule in P is satis�ed by M .In de�ning the answer set semantis for weight onstraint rule programs, Simons,et al. assume that eah weight onstraint has only non-negative weights. They providea method of translating weight onstraints with negative weights to weight onstraintswith non-negative weights. We refer the reader to their paper for this translation.De�nition 27 (Redut of a weight onstraint) The redut CM of a weight on-straint C of the form (B.1) with respet to a set of atoms M is the onstraintl0 � fa1 = wa1 ; : : : ; an = wangwith the lower bound l0 = l �Xbi =2M wbi :141

Thus the redut of a weight onstraint ontains no referene to the not operator.If C is a weight onstraint, then we let PSG(C) signify the positive subgoals inC.De�nition 28 (Redut of a weight onstraint rule program) Let P be a weightonstraint rule program and M a set of atoms. The redut PM of P with respet toM is de�ned byPM = fp CM1 ; : : : ; CMn j C0 C1; : : : ; Cn 2 P; p 2 PSG(C0) \Mand w(Ci;M) � u for all Ci of the form (B.1)where i = 1; : : : ; ngDe�nition 29 (Answer set of a weight onstraint rule program) [55℄ Let Pbe a weight onstraint rule program with non-negative weights. Then M � Atoms(P)is an answer set of P i� the following two onditions hold:(i) M j= P ,(ii) M = DedutiveClosure(PM).B.2 Translation to Basi RulesSimons, Niemel�a, and Soininen refer to weight rules and hoie rules as basi rules.The following is their tehnique for translating an arbitrary weight onstraint rule toa set of basi rules.Let C0 C1; : : : ; Cr be an arbitrary weight onstraint rule. For eah i = 0; : : : ; r,a onstraint Ci of the forml � fa1 = wa1 ; : : : ; an = wan ; not b1 = wb1 ; : : : ; not bm = wbmg � uis mapped into two rules. The �rst of these two rules enodes whether the lower boundof Ci is satis�ed. The later rule enodes whether the upper bound is not satis�ed.li l � fa1 = wa1 ; : : : ; not bm = wbmg142

ui u < fa1 = wa1 ; : : : ; not bm = wbmgwhere li and ui are new atoms.28 Then the following hoie rule and integrity on-straint rules are added:fa1; : : : ; ang l1; not u1 ; : : : ; lr; not ur not l0; l1; not u1 ; : : : ; lr; not ur u0 ; l1; not u1 ; : : : ; lr; not urwhere a1; : : : ; an are the positive subgoals mentioned in the head onstraint C0.

28If, as in Smodels, only integer weights are allowed, then the latter rule an be expressed byinreasing u by one and hanging the \<" to \�". Otherwise, the syntax and semantis are extendedto deal with the < operator. 143

APPENDIX CSMODELSCC PROOF OF CORRECTNESS
The inferene rules used by Smodels are the inferene rules of Smodels plusthe unit lause rule applied to the onit lauses produed by Smodels.29 Sineeah of these inferene rules is known to be sound, the remaining issue is to ensurethat the onit lauses produed by Smodels are sound. This is what we showin the following proposition. We restrit our attention in this proof to normal logiprograms.Proposition 4 (Smodels orretness) Let P be a normal logi program. Thenevery onit lause C generated by Smodels during the searh for an answer set forP is satis�ed by every answer set of P .Before we proeed with the proof of Proposition 4 we will prove Lemma 5 below.De�nition 30 (Classial Model of a Normal Logi Program) Let P be a nor-mal logi program, and let I be a total interpretation of the atoms in P (i.e., I :Atoms(P)! ftrue; falseg). Then I is a lassial model of M if, for every ruleR = h 1; : : : ; m; not d1; : : : ; not dn29Reall that the proess of applying the unit lause rule is alled Boolean Constraint Propagation(BCP). 144

in P , I satis�es the Boolean logi formula(1 ^ : : : ^ m ^ :d1 ^ : : : ^ :dn)! h:The following lemma is an immediate onsequene of Theorem 1 in the paperby Gelfond and Lifshitz [22℄ that originally de�ned the stable model/answer setsemantis.Lemma 5 SupposeM is an answer set of a normal logi program P . ThenM viewedas a total interpretation is a lassial model of P .Proof of Lemma 5: LetR = h 1; : : : ; m; not d1; : : : ; not dnbe a rule in P . Suppose M satis�es1 ^ : : : ^ m ^ :d1 ^ : : : ^ :dnThen, 1; : : : ; m 2M and d1; : : : ; dn =2M . Sine d1; : : : ; dn =2M ,RM = h 1; : : : ; mis a rule in PM . Sine 1; : : : ; m 2 M , and M is an answer set of P , 1; : : : ; m 2DedutiveClosure(PM). Thus, h 2 DedutiveClosure(PM) = M , and M satis�esh. �Proof of Proposition 4: Indut on the sequene of onit lauses generated bySmodels during the searh. So assume that every answer set of P satis�es everyonit lause generated before the latest onit lause. (Call this Indution Hy-pothesis 1.) Let G be the impliation graph orresponding to the latest onit in145

the searh. Let x be the onit node in G and let :x be x's omplement node. Wewill assume that the onit edge has not yet been added to G. (So, if there is anedge from :x to x, it is only beause :x was used in the inferene rule appliationthat derived x.)Reall De�nitions 19-21 from Setion 4.5: A predeessor of a node v is a nodewith an edge to v. A hoie node is a node with no predeessors. A set of nodes Ddominates a node s if every path from any hoie node of G to s inludes an elementof D.As is usual, we allow paths onsisting of a single node. So every node has a pathto itself. Therefore, an immediate onsequene of the above de�nitions is that if Ddominates a hoie node s0, then neessarily s0 2 D.Another immediate onsequene is that, if D dominates s, then either (i) s 2 D,or (ii) D dominates every predeessor of s.Reall also from Setion 4.5 that Smodels generates its onit lause by om-puting a set of nodes D = fx1; : : : ; xng that dominates the oniting pair of nodesx and :x. To omplete our indutive proof of Proposition 4, then, it suÆes to provethe following laim:Claim 1 If D is a set of nodes in G that dominates node s, then every answer setof P that satis�es D satis�es s.That Claim 1 is suÆient to omplete our proof of Proposition 4 follows from thefat that no answer set of P simultaneously satis�es x and :x. From Claim 1, thisimplies that no answer set of P simultaneously satis�es x1; : : : ; xn, sine these nodesdominate x and :x. Hene, the onit lause :x1_ : : :_:xn generated by Smodelsis satis�ed by any answer set of P . 146

Proof of Claim 1: An impliation graph G orresponds to a derivation D =[S1;S2; : : : ;Sm℄ where eah Si is a set of nodes in G onsisting of either1. a singleton node fsg with no predeessor in G (i.e., s is a hoie node),2. a singleton node fsg derived from the unit lause rule,3. a singleton node fsg derived from the modus ponens inferene rule,4. a singleton node fsg derived from the bakhain true inferene rule,5. a singleton node fsg derived from the bakhain false inferene rule,6. a singleton node fsg derived from the all rules anelled inferene rule,7. a set of negative nodes f:a : a 2 Ug inferred by the unfounded set infer-ene rule, where U is the entire unfounded set deteted by Smodels for thatinferene.Note: A single appliation of the bakhain true inferene rule an also infer severalliterals, but we will onsider eah suh literal as a separate Si. The reason that wetreat the unfounded set inferene rule di�erently in this regard is that we want it tobe the ase that eah edge in G goes from a node in Sj to a node in Sk where j � k.Sine some of the nodes inferred from a single appliation of the unfounded set rulemay form a yle, we onsider inferenes obtained from the entire unfounded set tobe a single Si.We prove Claim 1 by indution on the length m of the derivation D. So, we takeas Indution Hypothesis 2 that if D0 dominates node s0 2 Sm�1i=1 Si then every answerset of P that satis�es D0 also satis�es s0. Now suppose D dominates node s 2 Sm.147

Also, suppose that M is an answer set of P that satis�es D. We will show that Msatis�es s.Case 1: Sm = fsg, where s has no predeessors in G. Then, sine D dominates s,we have s 2 D. Thus M satis�es s.Case 2: Sm = fsg where s was inferred via the unit lause rule from a previouslygenerated onit lause C 0. If s 2 D we are done. Otherwise, eah predeessor ofs in G is dominated by D. Eah predeessor of s is a member of some Si, wherei < m. Then, by Indution Hypothesis 2, eah predeessor of s is true in M . ByIndution Hypothesis 1, M satis�es C 0. Thus, by the soundness of the unit lauserule, M satis�es s.Case 3: Sm = fsg where s was inferred via the modus ponens inferene rule froma rule s b1; : : : ; bj; not 1; : : : ; not kin P . If s 2 D we are done. Otherwise, eah predeessor of s in G is dominated byD. By Indution Hypothesis 2, eah predeessor of s is true in M . I.e., M satis�esb1; : : : ; bj;:1; : : : ;:k. Thus, by the soundness of the modus ponens inferene rule,M satis�es s.Case 4: Sm = fsg was inferred from the bakhain true inferene rule.Case 5: Sm = fsg was inferred from the bakhain false inferene rule.Case 6: Sm = fsg was inferred from the all rules anelled inferene rule.The proofs in Cases 4-6, above, are similar to Case 3.Case 7: Sm = f:a : a 2 Ug where U was an unfounded set deteted by Smodels.Let C = fatoms a : :a is dominated by Dg. Sine s is dominated by D ands 2 Sm, we have s = :a for some a 2 U \ C.148

Claim 2 U \ C is unfounded with respet to P and M .Proof of Claim 2: LetR = h 1; : : : ; j; not d1; : : : ; not dkbe any rule in P with head h 2 U \C. We will show that R satis�es at least oneof onditions 1 - 3 given in the de�nition of an unfounded set (De�nition 12).First, suppose :h 2 D. Sine M agrees with D, then h =2 M . Sine M is ananswer set of P , M is a lassial model of P (Lemma 5). Therefore, either i =2M forsome 1 � i � j, or di 2 M for some 1 � i � k. Thus, R satis�es either ondition 2or ondition 1, respetively, in the statement of De�nition 12.Otherwise, we have :h =2 D. Sine h 2 C, then :h is dominated by D. Soevery predeessor of :h in the impliation graph is dominated by D. By Smodels'sonstrution of the impliation graph for the unfounded set ase, there is a subgoalt in the body of R suh that t anels R and t has an edge to :h. We break thissituation down into three possible ases:Case 7.1: t = di for some 1 � i � k. In this ase, t is a positive literal, so t =2 Sm.(Reall that we are in Case 7 in the indutive proof of Claim 1, and Sm ontainsonly negative literals in that ase.) So t ours in D before Sm. Sine D dominatest = di, then by Indution Hypothesis 2, M satis�es di. Then R satis�es ondition 1in De�nition 12.Case 7.2: t = :i for some 1 � i � j, where i =2 U \ C. Sine D dominatest = :i, i 2 C. Therefore, i =2 U . So t ours in D before Sm. Sine D dominatest = :i, then by Indution Hypothesis 2, M satis�es :i. Thus i =2 M , and Rsatis�es ondition 2 in De�nition 12. 149

Case 7.3: t = :i for some 1 � i � j, where i 2 U \ C. Then R satis�esondition 3 in De�nition 12.Thus U \ C is unfounded with respet to P and M . This ompletes the proof ofClaim 2.Returning to Case 7 of our proof of Claim 1, by Proposition 1, every element ofU \ C is false in M . Sine s = :a for some a 2 U \ C, s is true in M .This ompletes our indutive proof of Claim 1, and therefore our proof of Propo-sition 4. �

150

APPENDIX DSMODELSCC PROOF OF COMPLETENESSCorretness of Smodels was proven in Appendix C. Therefore, the Smodelsalgorithm is omplete if, on any problem instane, given suÆient spae resoures,the algorithm will eventually terminate with a result. That result may, of ourse,either be positive (\answer set found") or negative (\no answer set for this programexists").The original Smodels program searhes for an answer set via an adaptation ofthe Davis-Putnam-Loveland-Logemann (DPLL) proedure, using hronologial bak-traking and no restarts. The algorithm's searh may be portrayed as a binary treethat the algorithm traverses until either a solution is found or until every leaf nodein the tree represents a onit. Therefore, it is not hard to see that the originalSmodels algorithm always terminates.Smodels utilizes non-hronologial baktraking and restarts. Either of these twotehniques ould ause a DPLL-based searh algorithm to go into an in�nite loop,depending on how these tehniques are inorporated. However, Smodels will alwaysterminate beause of the following reasons:� The interval between restarts in Smodels is progressively inreased as thesearh proeeds. Spei�ally, based on the parameters disussed in Setion 4.6.4,151

the algorithm will wait for 50n + 500 onits to our after the n-th restartbefore it will perform the (n+ 1)-st restart.� One onit lause is generated for eah onit in the searh.� Smodels does not delete from its onit lause ahe any onit lause thathas been generated after the most reent restart. (This aspet of the algorithmwas mentioned in Setion 4.6.5.)� For any logi program, there is a limited, �nite set of onit lauses that anpossibly be generated. This is lear beause eah onit lause orrespondsone-to-one with a partiular set of literals, and the number of literals availableto be used in any lause is at most 2m, where m is the number of atomsappearing in the grounded version of the program, whih itself is �nite.� Smodels will not regenerate a onit lause C if that lause is urrently on-tained in the onit lause ahe.The �nal item in the above list warrants a proof. We will perform a proof byontradition. So suppose that lause C is already present in the onit lause ahewhen Smodels reahes its next onit, and that Smodels rederives C from thisonit. The new derivation of C will be based on a set of nodes D that dominate thehosen pair of oniting nodes (as disussed in Setion 4.5). Exatly one element ofD (spei�ally, the losest UIP) omes from the urrent searh level. All other nodesin D represent assignments that were made at earlier levels in the searh. Supposethat y is the losest UIP. Sine C was ontained in the onit lause ahe when theurrent onit was deteted, we know that C was in the ahe immediately before152

the urrent searh level started. The only way that Smodels would derive C from theset D is if C = Wf:y : y 2 Dg. But in that ase we have all of the literals of C, exept:y, rendered false by the partial assignment that was in e�et immediately beforethe urrent searh level started. Hene, :y would have been inferred via BooleanConstraint Propagation on lause C before the urrent searh level. Therefore, y isitself a onit node. However, Smodels adjusts its hoie of onit node spei�allyto avoid the possibility of the orresponding CUIP being a onit node. (See \Step2: Adjust onit node seletion" in the UIP omputation algorithm in Setion 4.4.2.)Thus, it is impossible for Smodels to rederive a lause that is urrently in theonit lause ahe, proving the �nal item stated in the above list.Now, suppose that the Smodels algorithm goes into a searh that never termi-nates on some �nite, grounded program P . Let N be the maximum number of distintlauses that an be expressed using the atoms from P . Eventually, after some restart,Smodels will generate N 0 > N distint onit lauses using only atoms from P .This is an obvious ontradition (pigeon-hole priniple). Thus, Smodels will nees-sarily terminate. This �nishes the proof of ompleteness.

153

APPENDIX ECOMPARISON OF HAMILTONIAN CYCLEREDUCTIONS
The two redutions that we use in Chapter 6 do not seem to appear in the litera-ture. In this appendix we justify their use by showing that they produe better solverperformane than the redutions that we have tested whih ame from previous work.Our Hamiltonian yle tests were done on direted graphs. All of our logi pro-grams for expressing these problems spei�ed a single vertex as the initial vertex andlisted the verties and edges in the graph. Thus the extensional database for one ofthese problems ould read as follows:initialvertex(1).vertex(1).vertex(2).vertex(3).vertex(4).vertex(5).edge(1,2).edge(1,4).edge(2,4).edge(2,5).edge(3,1).edge(3,2).edge(4,1).edge(4,3).edge(5,4). 154

The �rst redution that we tested was one given by Niemel�a in [49℄. We labelthis redution NNT1 in our tables (for \Normal Non-Tight 1"). The IDB for thisredution is as follows:% Redution ``NNT1''h(X,Y) :- edge(X,Y), not otherroute(X,Y).otherroute(X,Y) :- edge(X,Y), h(X,Z), Y != Z.otherroute(X,Y) :- edge(X,Y), h(Z,Y), X != Z.r(Y) :- h(X,Y), r(X).r(Y) :- h(X,Y), initialvertex(X).noniruit :- vertex(X), not r(X).f :- not f, noniruit.The statement otherroute(X,Y) here means that there is a route in the y-le from node X to node Y that does not involve the edge from X to Y . Thus,otherroute(X,Y) is true if and only if h(X,Y) is false.The seond redution is one presented by Lin and J. Zhao [39℄ for testing withASSAT. This redution is normal. It is also \tight on its models", whih impliesthat there is no need for ASSAT to add loop formulas during the searh. It is onlyneessary for ASSAT (or Cmodels) to all its SAT solver one on suh a problem. Wenamed this redution Tight in our tables. The IDB is:% Redution ``Tight''outgoing(V) :- edge(V,U), h(V,U).inoming(U) :- edge(V,U), h(V,U).:- vertex(V), not outgoing(V).:- vertex(V), not inoming(V).h(V,U) :- edge(V,U), not otherroute(V,U).otherroute(V,U) :- edge(V,U), edge(V,W), h(V,W), U != W.otherroute(V,U) :- edge(V,U), edge(W,U), h(W,U), V != W.reahed(V,U) :- edge(V,U), h(V,U), not initialvertex(V).reahed(V,U) :- edge(W,U), h(W,U), vertex(V), not initialvertex(W), reahed(V,W).:- vertex(V), reahed(V,V).
155

The third redution that we tested (labeled NNT2) is similar to NNT1 but sepa-rates the rules allowing edge seletion and the rules that onstrain how many inomingand outgoing edges a single vertex an have.% Redution ``NNT2''% Selet edges for the yleh(X,Y) :- not not_h(X,Y), edge(X,Y).not_h(X,Y) :- not h(X,Y), edge(X,Y).% Eah vertex has at most one inoming edge in a yle:- h(X1,Y), h(X2,Y), edge(X1,Y), edge(X2,Y), vertex(Y), X1 != X2.% Eah vertex has at most one outgoing edge in a yle:- h(X,Y1), h(X,Y2), edge(X,Y1), edge(X,Y2), vertex(X), Y1 != Y2.% Every vertex must be reahable from the initial vertex% through the hosen h edges.:- vertex(X), not r(X).r(Y) :- h(X,Y), edge(X,Y), initialvertex(X).r(Y) :- h(X,Y), edge(X,Y), r(X), not initialvertex(X).The fourth redution is the same as NNT2 but adds two lines to the IDB whihstate that, in order for a set of edges to onstitute a Hamiltonian yle, every nodein the graph must have an outgoing edge inluded in that set. This fat is impliit inredutions NNT1 and NNT2. However, stating it expliitly helps the solvers to prunetheir searh spaes. We note that these two lines were inluded in redution Tight.% Redution ``NNT3''% The first seven rules are opied from NNT2.h(X,Y) :- not not_h(X,Y), edge(X,Y).not_h(X,Y) :- not h(X,Y), edge(X,Y).:- h(X1,Y), h(X2,Y), edge(X1,Y), edge(X2,Y), vertex(Y), X1 != X2.:- h(X,Y1), h(X,Y2), edge(X,Y1), edge(X,Y2), vertex(X), Y1 != Y2.:- vertex(X), not r(X).r(Y) :- h(X,Y), edge(X,Y), initialvertex(X).r(Y) :- h(X,Y), edge(X,Y), r(X), not initialvertex(X).% Rules in NNT3 but not in NNT2:% In the hosen yle, every vertex has% an outgoing edge. 156

outgoing(V) :- edge(V,U), h(V,U).:- vertex(V), not outgoing(V).The �nal redution that we tested in this problem domain uses extended rules inthe IDB. This redution is non-tight. It is also similar to NNT3 in that it expliitlystates that eah vertex must have an outgoing edge inluded in the yle.% Redution ``Extended''% Eah vertex has exatly one inoming edge in a yle.1 {h(X,Y):edge(X,Y)} 1 :- vertex(Y).% Eah vertex has exatly one outgoing edge in a yle.1 {h(X,Y):edge(X,Y)} 1 :- vertex(X).% Every vertex must be reahable from the initial vertex% through the hosen h edges.:- vertex(X), not r(X).r(Y) :- h(X,Y), edge(X,Y), initialvertex(X).r(Y) :- h(X,Y), edge(X,Y), r(X), not initialvertex(X).Table E.1 ompares the runtimes that we obtained on eleven randomly generatedHamiltonian yle problems. Eah problem had 120 verties and 470 edges. Exatlyeight of these graphs ontained Hamiltonian yles. The best runtimes were obtainedwith the Extended redution. The seond best redution in this regard was NNT3.We ould not use ASSAT with the Extended redution beause ASSAT does not workwith extended logi programs. It is somewhat mysterious that Cmodels-2 performedonsiderably worse than ASSAT on the NNT1 and NNT2 redutions.Besides runtime performane, another issue is that di�erent redutions may pro-due di�erent sized groundings. Table E.2 ompares the average size of the groundingprodued by Lparse on the above mentioned Hamiltonian problem instanes undereah of the aforementioned redutions. Also reported is the average number of atomsmentioned in eah grounding. Here again, the Extended redution produed the best157

Median and max ses on 11 uniform HC problemswith 120 verties, 470 edgesSmodels SmodelsRedution lookahead no lookahead ASSAT Cmodels-2med max med max med max med maxNNT1 0.32 2 abort 1.23 2 abort 45.15 2 abort >3600 8 abortNNT2 0.37 2 abort 0.96 2 abort 35.69 2 abort >3600 7 abortTight 168.83 220.32 23.22 48.07 2.74 3.12 3.86 4.40NNT3 0.33 0.44 0.17 0.21 0.48 0.74 0.34 0.65Extended 0.14 0.19 0.11 0.14 na na 0.19 0.26Table E.1: Runtime omparison of di�erent Hamiltonian Cyle redutionsGroundings produed by Lparse120 node, 470 edge HC problemsRedution Size (KB) AtomsNNT1 114 1653NNT2 128 1652Tight 1795 16172NNT3 140 1772Extended 63 1662Table E.2: Grounding omparison for di�erent HC redutionsresults. It was followed losely by the other non-tight redutions. The Tight redutionhad the worst results in this regard. Table E.3 shows the grounding sizes produedwith the various redutions on a single randomly generated problem with 1000 nodesand 3500 edges. In this ase, the Tight redution resulted in a grounding that wastoo large to feed in to any of the solvers. However, with the NNT3 redution theproblem was easily solved by eah of the solvers.As a result of these tests, in Setion 6.3 we use redution NNT3 in omparisonsthat involve ASSAT and Extended in omparisons that do not involve ASSAT.158

Lparse groundingson a 1000 node, 3500 edgeHC problemRedution Size (KB)NNT1 885NNT2 986Tight 122966NNT3 1086Extended 543Table E.3: Grounding omparison for a larger HC problem

159

APPENDIX FEXPERIMENTAL RESULTS WITH LOOKAHEADOPTIONS IN SMODELS AND SMODELSCCIn this appendix we ompare the performane of Smodels, with and without looka-heads, to Smodels, also with and without lookaheads. Eah of these tables orre-sponds to a table given in Chapter 6. The problem sets were explained more fully inthat hapter.In nearly every one of these test domains, it turned out that the original Smodelsprogram performed better with lookaheads enabled, while Smodels performed bet-ter with lookaheads disabled. The one exeption to this was the Hamiltonian yleproblems with a uniform distribution of edges (Table F.3). In this domain, Smodelsperformed better without lookaheads.Part of the reason for reporting these results is to show that, on those tests inChapter 6 where Smodels showed better performane than the original Smodels,the performane inrease was not due merely to the fat that Smodels was avoidingthe expense of using lookaheads. That is, the use of onit lauses was integral toobtaining those speedups.All logi programs used in these tests were normal, exept the bounded modelheking problems. 160

Median and maximum seonds on 11 random 3-SAT problemsSmodels Smodels Smodels SmodelsData Set lookahead no lookahead lookahead no lookahead #ASvars lauses median max median max median max median max250 1025 16.5 112.2 >3600 11 abort 88.0 1 abort 36.5 934.5 10250 1050 86.1 207.2 >3600 11 abort >3600 6 abort 657.5 2221.5 6250 1075 133.4 376.6 576.4 1 abort >3600 6 abort 641.7 1 abort 3250 1100 74.4 169.8 432.8 2110.8 >3600 6 abort 343.7 2197.6 1Median and maximum seonds on 8 DLX benhmark problemsSmodels Smodels Smodels SmodelsData Set lookahead no lookahead lookahead no lookahead #ASmedian max median max median max median max8 satis�able >3600 8 abort >3600 8 abort >3600 8 abort 9.9 22.6 88 unsatis�able >3600 7 abort >3600 8 abort 2064.8 3330.5 15.2 45.2 0Table F.1: Lookahead results on satis�ability problemsMedian and max ses on 11 random 3-oloring problems,uniform distribution of edgesSmodels Smodels Smodels SmodelsData Set lookahead no lookahead lookahead no lookahead #ASverties edges median max median max median max median max400 900 3.4 163.0 >3600 11 abort 21.6 2743.0 2.9 181.1 10400 950 99.5 511.8 >3600 11 abort 1122.0 3 abort 94.9 1463.4 2400 1000 20.7 134.3 >3600 11 abort 144.1 493.0 16.4 53.8 0500 1100 0.8 4.2 >3600 11 abort 4.0 42.6 1.7 3.9 11500 1150 196.0 356.6 >3600 11 abort 1565.8 5 abort 66.1 1 abort 10500 1200 2753.9 5 abort >3600 11 abort >3600 11 abort >3600 8 abort 0-5Median and max ses on 11 random 3-oloring problems,lumpy distribution of edgesSmodels Smodels Smodels SmodelsData Set lookahead no lookahead lookahead no lookahead #ASverties edges median max median max median max median max10000 15150 256.1 1 abort 560.2 5 abort 726.5 825.8 21.4 45.2 1010000 17170 201.6 3 abort >3600 6 abort 577.6 628.3 19.7 21.0 710000 19190 >3600 8 abort >3600 9 abort 308.3 2978.4 8.0 222.6 2Table F.2: Lookahead results on oloring problems161

Median and max ses on 11 random Hamiltonian yle problems,uniform distribution of edgesSmodels Smodels Smodels SmodelsData Set lookahead no lookahead lookahead no lookahead #ASverties edges median max median max median max median max1000 4000 1.0 1.1 0.9 0.9 1.0 1.0 1.0 1.0 01000 4500 1.2 132.0 1.1 828.5 1.2 289.4 1.2 4.7 41000 5000 172.7 201.0 1.6 29.1 384.6 439.6 3.5 4.2 61000 5500 244.6 269.5 2.7 30.6 577.3 591.8 4.6 5.5 106000 30000 8.4 3 abort 7.6 2 abort 8.0 3 abort 8.0 51.0 36000 33000 >3600 9 abort 525.8 5 abort >3600 9 abort 55.9 64.2 96000 36000 >3600 7 abort 19.8 4 abort >3600 7 abort 61.5 73.7 76000 39000 >3600 10 abort 1128.4 4 abort >3600 10 abort 72.7 97.0 10Table F.3: Lookahead results on uniform Hamiltonian yle problems
Median and max ses on 11 Hamiltonian yle problems,lumpy distribution of edgesSmodels Smodels Smodels SmodelsData Set lookahead no lookahead lookahead no lookahead #AS# of verties /lumps lump median max median max median max median max10 10 0.4 1 abort 4.8 1 abort 1.7 7.3 0.4 0.9 1112 12 620.9 4 abort 315.9 5 abort 5.0 38.1 0.7 1.3 1114 14 >3600 10 abort >3600 8 abort 90.0 437.0 1.8 10.4 1116 16 >3600 9 abort >3600 11 abort 741.8 3 abort 8.8 19.2 1118 18 >3600 11 abort >3600 11 abort >3600 7 abort 21.3 156.0 1120 20 >3600 11 abort >3600 11 abort >3600 6 abort 102.4 264.4 11Table F.4: Lookahead results on lumpy Hamiltonian yle problems

162

Bounded model heking runtimes in ses(Deadlok heking under \step" semantis)Smodels Smodels Smodels SmodelsProblem lookahead no lookahead lookahead no lookahead AS?dp-6.s-O2-b1 0.00 0.00 0.01 0.00 Yesdp-8.s-O2-b1 0.01 0.01 0.01 0.00 Yesdp-10.s-O2-b1 0.00 0.00 0.00 0.00 Yesdp-12.s-O2-b1 0.00 0.01 0.00 0.00 Yeskey-2.s-O2-b25 489.58 >3600.00 20.18 6.18 Nommgt-3.s-O2-b7 3.01 51.78 2.07 0.34 Yesmmgt-4.s-O2-b8 163.71 >3600.00 14.92 2.38 Yesq-1.s-O2-b9 0.06 90.26 0.12 0.08 Yesdartes-1.s-O2-b32 0.69 0.53 0.99 0.96 Yeselev-1.s-O2-b4 0.03 0.02 0.03 0.02 Yeselev-2.s-O2-b6 0.14 0.19 0.18 0.11 Yeselev-3.s-O2-b8 1.49 18.17 2.50 1.05 Yeselev-4.s-O2-b10 44.67 649.42 38.88 16.61 Yeshart-25.s-O2-b1 0.01 0.00 0.01 0.01 Yeshart-50.s-O2-b1 0.01 0.01 0.01 0.01 Yeshart-75.s-O2-b1 0.02 0.02 0.02 0.01 Yeshart-100.s-O2-b1 0.02 0.02 0.02 0.03 YesTotal 703.45 >8010.44 79.95 27.79Table F.5: Lookahead results on Bounded Model Cheking - step semantis

163

Bounded model heking runtimes in ses(Deadlok heking under \interleaving" semantis)Smodels Smodels Smodels SmodelsProblem lookahead no lookahead lookahead no lookahead AS?dp-6.i-O2-b6 0.03 0.05 0.07 0.04 Yesdp-8.i-O2-b8 0.09 1.52 0.22 0.18 Yesdp-10.i-O2-b10 0.93 191.13 7.67 208.51 Yesdp-12.i-O2-b12 150.77 >3600.00 1336.33 3.71 Yeskey-2.i-O2-b26 16.11 >3600.00 20.52 9.13 Nommgt-3.i-O2-b10 23.81 91.15 103.98 3.24 Yesmmgt-4.i-O2-b11 518.54 >3600.00 >3600.00 685.95 Noq-1.i-O2-b17 731.58 >3600.00 1094.29 116.74 Nodartes-1.i-O2-b32 0.47 0.42 0.75 0.76 Yeselev-1.i-O2-b9 0.20 0.76 0.64 0.39 Yeselev-2.i-O2-b12 2.10 1416.73 10.81 5.33 Yeselev-3.i-O2-b15 90.83 >3600.00 635.40 27.50 Yeselev-4.i-O2-b13 593.83 >3600.00 275.33 53.72 Nohart-25.i-O2-b5 0.23 0.12 0.32 0.08 Nohart-50.i-O2-b5 1.12 1.46 2.15 0.25 Nohart-75.i-O2-b5 3.51 9.37 4.26 0.54 Nohart-100.i-O2-b5 7.82 10.91 8.02 0.97 NoTotal 2141.97 >23323.61 >7100.76 1117.04Table F.6: Lookahead results on Bounded Model Cheking - interleaving semantis

164

BIBLIOGRAPHY
[1℄ Fahiem Bahus. Enhaning Davis Putnam with extended binary lause reason-ing. In Eighteenth national onferene on Arti�ial intelligene, pages 613{619.Amerian Assoiation for Arti�ial Intelligene, 2002.[2℄ Marello Balduini, Mihael Gelfond, Rihard Watson, and Monia Nogueira.The USA-Advisor: A ase study in answer set planning. In Eiter et al. [14℄,pages 439 { 442.[3℄ Roberto J. Bayardo Jr. and Robert C. Shrag. Using CSP look-bak tehniquesto solve real-world SAT instanes. In Proeedings of the Fourteenth National Con-ferene on Arti�ial Intelligene (AAAI'97), pages 203{208, Providene, RhodeIsland, 1997.[4℄ Paul Beame, Henry Kautz, and Ashish Sabharwal. Understanding the power oflause learning. In Proeedings of the Eighteenth International Joint Confereneon Arti�ial Intelligene (IJCAI), Aapulo, Mexio, August 2003.[5℄ Rahel Ben-Eliyahu and Rina Dehter. Propositional semantis for disjuntivelogi programs. Annals of Mathematis and Arti�ial Intelligene, 12:53{87,1996.[6℄ Armin Biere. Soure ode and notes on limmat are available athttp://www2.inf.ethz.h/personal/biere/projets/limmat/.[7℄ Keith L. Clark. Negation as failure. In Herve Gallaire, Jak Minker, and Jean M.Niolas, editors, Logi and Data Bases, pages 293{322. Plenum Press, 1978.[8℄ James M. Crawford and Larry D. Auton. Experimental results on the rossoverpoint in random 3-SAT. Arti�ial Intelligene, 81(1-2):31{57, 1996.[9℄ Martin Davis, George Logemann, and Donald Loveland. A mahine program fortheorem proving. Communiations of the ACM, 5(7):394{397, 1962.[10℄ Martin Davis and Hilary Putnam. A omputing proedure for quanti�ationtheory. Journal of the ACM, 7(3):201{215, 1960.165

[11℄ Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Enoding planningproblems in nonmonotoni logi programs. In Proeedings of the Fourth EuropeanConferene on Planning, pages 169 { 181. Springer{Verlag, 1997.[12℄ WilliamDowling and Jean Gallier. Linear time algorithms for testing the satis�a-bility of propositional Horn formulae. Journal of Logi Programming, 3:267{284,1984.[13℄ Thomas Eiter, Wolfgang Faber, Niola Leone, and Gerald Pfeifer. Delarativeproblem-solving using the DLV system. In Logi-Based Arti�ial Intelligene,pages 79{103. Kluwer Aademi Publishers, 2000.[14℄ Thomas Eiter, Wolfgang Faber, and Miroslaw Truszzynski, editors. Proeed-ings of 6th International Conferene on Logi Programming and NonmonotoniReasoning (LPNMR), Vienna, Austria, September 2001.[15℄ Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjuntive Datalog. ACMTransations on Database Systems, 22(3):364{418, 1997.[16℄ Wolfgang Faber, Niola Leone, and Gerald Pfeifer. Experimenting with heuristisfor answer set programming. In Nebel [48℄, pages 635 { 640.[17℄ Wolfgang Faber, Niola Leone, and Gerald Pfeifer. Optimizing the omputationof heuristis for answer set programming systems. In Eiter et al. [14℄, pages 295{ 308.[18℄ Fran�ois Fages. Consisteny of Clark's ompletion and existene of stable models.Journal of Methods of Logi in Computer Siene, 1:51{60, 1994.[19℄ Paolo Ferraris and Vladimir Lifshitz. Weight onstraints as nested expressions.Theory and Pratie of Logi Programming. To appear.[20℄ Allen Van Gelder, Kenneth Ross, and John S. Shlipf. Unfounded sets and well-founded semantis for general logi programs. Journal of the ACM, 38(3):620{650, 1991.[21℄ Mihael Gelfond, Marello Balduini, and Joel Galloway. Diagnosing physialsystems in A{Prolog. In Eiter et al. [14℄, pages 213 { 225.[22℄ Mihael Gelfond and Vladimir Lifshitz. The stable model semantis for logiprogramming. In Proeedings of the 5th International Conferene on Logi Pro-gramming, pages 1070 { 1080, 1988.[23℄ Mihael Gelfond and Vladimir Lifshitz. Classial negation in logi programsand dedutive databases. New Generation Computing, 9:365 { 385, 1991.166

[24℄ Enrio Giunhiglia, Yuliya Lierler, and Maro Maratea. SAT-based answer setprogramming. In Proeedings of the Nineteenth National Conferene on Arti�ialIntelligene (AAAI2004), pages 61{66, San Jose, California, July 2004.[25℄ Enrio Giunhiglia, Maro Maratea, and Armando Tahella.SIMO ode is available with the Cmodels-2 distribution, or fromhttp://www.mrg.dist.unige.it/~sim/simo/.[26℄ Enrio Giunhiglia, Maro Maratea, and Armando Tahella. (In)E�etivenessof look-ahead tehniques in a modern SAT solver. In Proeedings of the NinthInternational Conferene on Priniples and Pratie of Constraint Programming,2003.[27℄ Evgueni Goldberg and Yakov Novikov. BerkMin: a fast and robust Sat{solver.In Design Automation and Test in Europe (DATE), pages 142{149, 2002.[28℄ Keijo Heljanko and Ilkka Niemel�a. Bounded LTL model heking with stablemodels. Theory and Pratie of Logi Programming, 3(4-5):519{550, 2003.[29℄ Tomi Janhunen. A ounter-based approah to translating normal logi programsinto sets of lauses. In Proeedings of ASP'03 Workshop, pages 166{180, 2003.[30℄ Tomi Janhunen, Ilkka Niemel�a, Patrik Simons, and Jia-Huai You. Unfoldingpartiality and disjuntions in stable model semantis. In Priniples of KnowledgeRepresentation and Reasoning: Proeedings of the 7th International Conferene,pages 411{419, Brekenridge, Colorado, 2000.[31℄ Oliver Kullmann. Code and doumentation for OKSolver is available fromhttp://www.s.swan.a.uk/~soliver/OKsolver.html.[32℄ Oliver Kullmann. On the use of autarkies for satis�ability deision. In HenryKautz and Bart Selman, editors, Eletroni Notes in Disrete Mathematis, vol-ume 9. Elsevier Siene Publishers, 2001.[33℄ Joohyung Lee and Vladimir Lifshitz. Loop formulas for disjuntive logi pro-grams. In Catusia Palamidessi, editor, ICLP, volume 2916 of Leture Notes inComputer Siene, pages 451{465. Springer, 2003.[34℄ Niola Leone, Riardo Rosati, and Franeso Sarello. Enhaning answer setplanning. In Proeedings of the IJCAI'01 Workshop on Planning under Uner-tainty and Inomplete Information, 2001.[35℄ Chu Min Li and Anbulagan. Look-ahead versus look-bak for satis�ability prob-lems. In Priniples and Pratie of Constraint Programming - CP97, Linz, Aus-tria, pages 341{355, Linz, Austria, Otober/November 1997.167

[36℄ Yuliya Lierler and Maro Maratea. Cmodels-2: SAT-based answer set solverenhaned to non-tight programs. In Lifshitz and Niemel�a [38℄, pages 346{350.System desription.[37℄ Yuliya (Babovih) Lierler. Doumentation and ode for Cmodels-1 is availablefrom http://www.s.utexas.edu/users/tag/models.html.[38℄ Vladimir Lifshitz and Ilkka Niemel�a, editors. Logi Programming and Non-monotoni Reasoning, 7th International Conferene (LPNMR), Fort Lauderdale,Florida, January 2004. Springer.[39℄ Fangzhen Lin and Jiheng Zhao. On tight logi programs and yet anothertranslation from normal logi programs to propositional logi. In Proeedingsof the Eighteenth International Joint Conferene on Arti�ial Intelligene (IJ-CAI), Aapulo, Mexio, August 2003.[40℄ Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logiprogram by SAT solvers. In Proeedings of the Eighteenth National Confereneon Arti�ial Intelligene (AAAI-2002), pages 112{117. Amerian Assoiation forArti�ial Intelligene, 2002.[41℄ Thomas Linke. Graph theoretial haraterization and omputation of answersets. In Nebel [48℄, pages 641 { 646.[42℄ Inês Lyne and Joao Marques-Silva. EÆient data strutures for baktrak searhSAT solvers. In 5th International Symposium on the Theory and Appliations ofSatis�ability Testing (SAT'02), May 2002.[43℄ Wiktor Marek and Miroslaw Truszzynski. Autoepistemi logi. Journal of theACM, 38(3):588 { 619, 1991.[44℄ Joao P. Marques-Silva and Karem A. Sakallah. GRASP: A searh algorithm forpropositional satis�ability. IEEE Transations on Computers, 48(5):506{521,May 1999.[45℄ David G. Mithell, Bart Selman, and Hetor J. Levesque. Hard and easy dis-tributions for SAT problems. In Paul Rosenbloom and Peter Szolovits, editors,Proeedings of the Tenth National Conferene on Arti�ial Intelligene, pages459{465, Menlo Park, California, 1992. AAAI Press.[46℄ Matthew W. Moskewiz, Conor F. Madigan, Ying Zhao, Lintao Zhang,and Sharad Malik. Cha� soure ode and doumentation is available fromhttp://www.prineton.edu/~ha�. 168

[47℄ Matthew W. Moskewiz, Conor F. Madigan, Ying Zhao, Lintao Zhang, andSharad Malik. Cha�: Engineering an eÆient SAT solver. In Proeedings of the38th Conferene on Design Automation, pages 530{535. ACM Press, 2001.[48℄ Bernhard Nebel, editor. Proeedings of the Seventeenth International Joint Con-ferene on Arti�ial Intelligene (IJCAI), 2001.[49℄ Ilkka Niemel�a. Logi programming with stable model semantis as a onstraintprogramming paradigm. Annals of Mathematis and Arti�ial Intelligene, 25(3{4):241{273, 1999.[50℄ Ilkka Niemel�a. Logi programs with stable model semantis as a onstraintprogramming paradigm. Annals of Mathematis and Arti�ial Intelligene,25(3,4):241 { 273, 1999.[51℄ Ilkka Niemel�a, Patrik Simons, and Tommi Syrj�anen. Smodels: a system foranswer set programming. In Proeedings of the Eighth International Workshopon Non-Monotoni Reasoning, 2000.[52℄ Monia Nogueira, Marello Balduini, Mihael Gelfond, Rihard Watson, andMatthew Barry. An A-Prolog deision support system for the spae shuttle. InI. V. Ramakrishnan, editor, PADL, volume 1990 of Leture Notes in ComputerSiene, pages 169 { 183. Springer{Verlag, 2001.[53℄ Bart Selman, Henry Kautz, and Bram Cohen. Loal searh strategies for satis�-ability testing. DIMACS Series in Disrete Mathematis and Theoretial Com-puter Siene, 26, 1996.[54℄ Patrik Simons. Extending and Implementing the Stable Model Semantis. PhDthesis, Helsinki University of Tehnology, 2000.[55℄ Patrik Simons, Ilkka Niemel�a, and Timo Soininen. Extending and implementingthe stable model semantis. Arti�ial Intelligene, 138(1-2):181{234, 2002.[56℄ Cli�ord Spetor. Reursive well-orderings. Journal of Symboli Logi, 20(2):151{163, 1955.[57℄ Rihard M. Stallman and Gerald J. Sussman. Forward reasoning anddependeny-direted baktraking in a system for omputer-aided iruit analy-sis. Arti�ial Intelligene, 9:135{196, 1977.[58℄ Tommi Syrj�anen. Lparse 1.0 user's manual. Available fromhttp://www.ts.hut.�/Software/smodels/lparse.ps.gz.
169

[59℄ Tommi Syrj�anen. Omega-restrited logi programs. In Proeedings of the 6thInternational Conferene on Logi Programming and Nonmonotoni Reasoning,Vienna, Austria, September 2001. Springer-Verlag.[60℄ Robert Tarjan. Finding dominators in direted graphs. SIAM Journal of Com-puting, 3(1):62{89, 1974.[61℄ Miroslav Velev and Randy Bryant. Supersalar proessor veri�ation usingeÆient redutions of the logi of equality with uninterpreted funtions topropositional logi. In Corret Hardware Design and Veri�ation Methods(CHARME'99), 1999.[62℄ Je�rey Ward and John S. Shlipf. Answer set programming with lause learning.In Lifshitz and Niemel�a [38℄, pages 302{313.[63℄ Hantao Zhang. SATO: An eÆient propositional prover. In Proeedings of the In-ternational Conferene on Automated Dedution (CADE), pages 272{275, 1997.[64℄ Lintao Zhang, Conor F. Madigan, Matthew H. Moskewiz, and Sharad Malik.EÆient onit driven learning in a Boolean satis�ability solver. In Proeedingsof the 2001 IEEE/ACM International Conferene on Computer-aided Design,pages 279{285. IEEE Press, 2001.

170

