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Abstract. Lossy channel systems (LCS’s) are systems of finite state au-
tomata that communicate via unreliable unbounded fifo channels. Sev-
eral probabilistic versions of these systems have been proposed in recent
years, with the two aims of modeling more faithfully the losses of mes-
sages, and circumventing undecidabilities by some kind of randomization.
We survey these proposals and the verification techniques they support.

1 Introduction

Channel systems are systems of finite state automata that communicate via
asynchronous unbounded fifo channels. An example, Sexmp, is depicted in Fig. 1.
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Fig. 1. Sexmp: a channel system with two component automata and two channels

They are a natural model for asynchronous communication protocols and,
indeed, they form the semantical basis of protocol specification languages such
as SDL and Estelle.

The behaviour of a system like Sexmp is as expected: component A1 may
move from q1 to q2 by sending a b message to channel c1 where it will be
enqueued (channels are fifo buffers). Then A1 may move from q2 to q3 if it can
read a c from channel c2, which is only possible if the channel is not empty
and the first available message is a c, in which case the message is dequeued
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(consumed). The two components, A1 and A2, evolve asynchronously.

That channel systems are a bona fide model of computation, indeed a Turing-
powerful one, was pointed out by Brand and Zafiropulo [BZ83]. This is easy to
see: the channels are unbounded and one channel can simulate the work-tape
of a Turing machine. One does not have a real scanning and overwriting head
that moves back and forth along this “work-tape”, but this can be simulated
by rotating the contents of the channel to position oneself on any required cell
(one keeps track of where the reading head is currently sitting by means of some
extra marking symbols).

As an immediate corollary, a Rice Theorem can be stated: “all nontrivial be-
havioral properties are undecidable for channel systems”. Hence fully algorithmic
verification (model checking) of arbitrary channel systems cannot be achieved.
One is left with investigating restricted methods (that only deal with subclasses
of the general model, e.g. systems with a bound on the size of the channels) or
approximate methods (that admit false negatives) or semi-algorithmic methods
(that may fail to terminate).

Lossy channels. A few years ago Finkel [Fin94] and, independently, Abdulla and
Jonsson [AJ96b], introduced lossy channel systems (LCS’s), a very interesting
class of channel systems. In lossy systems, messages can be lost while they are
in transit, without any notification. These lossy systems are the natural model
for fault-tolerant protocols where the communication channels are not supposed
to be reliable.

Surprisingly, several verification problems become decidable when one as-
sumes channels are lossy: termination, reachability, safety properties over traces,
inevitability properties over states, and several variant problems are decidable
for lossy channel systems [Fin94,AK95,CFP96,AJ96b,MS02].

This does not mean that lossy channel systems are an artificial model where,
since no communication can be fully enforced, everything becomes trivial. To
begin with, many important problems are undecidable: recurrent reachability
properties are undecidable, so that model checking of liveness properties is un-
decidable too [AJ96a]. Furthermore, boundedness is undecidable [May00], as well
as all behavioral equivalences [Sch01]. Finally, none of the decidable problems
listed in the previous paragraph can be solved in primitive recursive time [Sch02]!

Probabilistic lossy channel systems. It is natural to see message losses as some
kind of faults having a probabilistic behaviour. This idea, due to Purushothaman
Iyer and Narasimha, led to the introduction of the first Markov chain model for
lossy channel systems [PN97].

There are two different benefits one can expect from investigating probabilis-
tic versions of lossy channel systems: (1) they are a more realistic model, where
quantitative information on faults is present, or (2) they are a more tractable
model, where randomisation effectively rules out some malicious behaviours.
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The verification of probabilistic lossy channel systems is a challenging prob-
lem because the underlying objects are countably infinite Markov chains (or
Markovian decision processes). Furthermore, these infinite Markov chains are
not bounded : probabilities of individual transitions can be arbitrarily close to
zero.

Below we survey the main existing results on the verification of probabilis-
tic lossy channel systems. The literature we review is still scarce, consisting
of [PN97,BE99,ABPJ00,BS03,AR03,BS04]. We try to abstract from specific no-
tational or definitional details and present the above works uniformly. As far
as verification is concerned, we also try to abstract from specific algorithmic
details 1 and extract the main ideas, in the hope that they can be applied to
other infinite-state probabilistic verification problems. A recurrent theme is that
decidability results rely on the existence of finite attractors.

Plan of this chapter. In section 2, we recall the main definitions and results on
classical (non-probabilistic) lossy channel systems. The Markovian models for
probabilistic lossy channel systems are given in section 3. We describe qualitative
verification in section 4 and quantitative verification in section 5. Finally, in
section 6, we present a Markovian decision process model and some results on
adversarial verification.

2 Lossy channel systems

2.1 Perfect channel systems

The simplest way to present lossy channel systems is to start with perfect, i.e.
not lossy, channel systems.

Definition 2.1 (Channel system). A channel system (with m channels) is a
tuple S = 〈Q,C,Σ,∆, σ0〉 where
– Q = {r, s, . . .} is a finite set of control locations (or control states),
– C = {c1, . . . , cm} is a finite set of m channels,
– Σ = {a, b, . . .} is a finite alphabet of messages,
– ∆ ⊆ Q × C × {?, !} × Σ × Q is a finite set of rules.

A rule δ ∈ ∆ of the form (s, c, ?, a, r) or (s, c, !, a, r) is written “s
c?a
−→ r” (resp.

“s
c!a
−→ r”) and means that S can move from control location s to r by reading a

from (resp. writing a to) channel c. Reading a is only possible if c is not empty
and its first available message is a.

Remark 2.2. Def. 2.1 assumes there is only one component automaton in a chan-
nel system. This is no loss of generality since several components can be combined
into a single one via a classical asynchronous product of automata. ut

1 The papers we survey are mostly theoretical and the algorithms they propose have
not yet been implemented and tested on actual examples.
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Remark 2.3. Def. 2.1 further assumes that all rules either consume or produce
one message. Again, this is no loss of generality and internal rules (no message
involved), or rules consuming and producing several messages, or rules testing
for emptiness of a channel, etc., could be accounted for. ut

The operational semantics of S is given via a transition system Tperf(S) =
〈Conf ,−→perf〉 where Conf = Q × Σ∗C is the set of configurations (with typical
elements σ, θ, . . .), and −→perf ⊆ Conf ×Conf is the unlabelled transition relation.

A configuration of S is a pair σ = 〈r, U〉 where r ∈ Q is a control location
and U ∈ Σ∗C is a channel contents, i.e. a C-indexed vector of Σ-words: for any
c ∈ C, U(c) = u means that c contains u. The void channel contents, where
every channel contains the empty word ε, is also denoted ε. The configuration
of Sexmp in Fig. 1 has channel contents U = {c1 7→ abaab; c2 7→ ca}.

The possible transitions between configurations are given by the rules of S.
Formally, for σ, σ′ ∈ Conf , we have σ−→perfσ

′ iff either

reads: σ is some 〈s, U〉, there is a rule s
c?a
−→ r in ∆, U(c) is some a.u′, and

σ′ = 〈r, U{c 7→ u′}〉 (using the standard notation U{ 7→ } for variants).

writes: σ is some 〈s, U〉, there is a rule s
c!a
−→ r in ∆, U(c) is some u ∈ Σ∗, and

σ′ = 〈r, U{c 7→ u.a}〉.

We write σ
δ
−→perfσ

′ when we want to explicit that rule δ ∈ ∆ allows the step

between σ and σ′, and let En(σ) denote the set {δ ∈ ∆ | σ
δ
−→perf} of rules that

are enabled in configuration σ.

2.2 Lossy channel systems

Lossy channel systems are channel systems where messages can be lost while
they are in transit. A first formal definition was proposed by Finkel (who named
them completely specified protocols) [Fin94]. Finkel defined them as the subclass
of channel systems where it is required that for any control state s ∈ Q, any

channel c ∈ C and any message a ∈ Σ, there is a rule s
c?a
−→ s. These rules

implement the losses by always allowing the removal, without any modification
of the current control state, of whatever message is at the front of any buffer.

Later Abdulla and Jonsson proposed a different definition where, rather than
requiring special rules implementing the message losses, we have an altered oper-
ational semantics [AJ96b]. While this provides for essentially the same behaviour,
their definition is much more tractable mathematically (see Remark 2.4) and this
is the one we adopt below.

Formally, given two channel contents U and U ′, we write U v U ′ when U can
be obtained from U ′ by removing an arbitrary number of messages at arbitrary
places in U ′. Thus U v U ′ iff for all c ∈ C, U(c) is a subword of U ′(c). This
extends into a relation between configurations:

〈s, U〉 v 〈s′, U ′〉
def
⇔ s = s′ ∧ U v U ′. (1)
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Observe that U v U for all U (by removing no message), and that v is a
partial ordering between channel contents and between configurations. Higman’s
lemma [Hig52] states it is a well-quasi-ordering (a wqo). Thus sets of configura-
tions have a finite number of minimal elements.

It is now possible to define lossy steps, written σ
δ
−→lossσ

′, with

σ
δ
−→lossσ

′ def
⇔ σ w θ

δ
−→perfθ

′ w σ′ for some θ, θ′ ∈ Conf . (2)

Thus a lossy step is a perfect step possibly preceded and followed by an arbitrary
number of message losses.

The lossy semantics of a channel system S is the transition system Tloss(S) =
〈Conf ,−→loss〉.

Below we omit the “loss” subscript since we consider the lossy semantics by

default (we never omit the “perf” subscript). As usual,
+
−→ and

∗
−→ will denote

the transitive and (resp.) reflexive-transitive closures of the one-step −→ relation.

Remark 2.4. What is mathematically nice in Abdulla and Jonsson’s definition
is that it induces the following monotonicity property: if θ −→ θ′ and σ w θ, then
σ −→ θ′. Similarly, if θ′ w σ′, then θ −→ σ′. Thus sets of predecessors are upward-
closed and sets of successors are downward-closed w.r.t. v. Systems exhibiting
such a monotonicity property are said to be well-structured, and enjoy general
decidability results [AČJT00,FS01]. ut

2.3 Verification of lossy channel systems

Several verification problems are decidable for lossy channel systems. In this sur-
vey, we only need the decidability of reachability and of control state reachability.
These problems ask:

Reachability:
Given: a LCS S and two configurations σ0 and σf ,

Question: does σ0
∗
−→ σf?

Control state reachability:
Given: a LCS S, a configuration σ0, and a control state s ∈ Q,
Question: does σ0

∗
−→ 〈s, U〉 for some U?

These two problems are equivalent (inter-reducible). Their decidability is shown
in [CFP96,AJ96b]. They cannot be solved in primitive recursive time and
are thus highly intractable from a worst-case complexity viewpoint [Sch02].
However, there exist clever symbolic methods that can answer reachability
questions in many cases [AAB99].

Some other verification problems are undecidable for lossy channel systems.
Most notably Büchi acceptance and control state loop, where one asks:
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Büchi acceptance:
Given: a LCS S, a configuration σ0, and a control state s ∈ Q,
Question: is it possible, starting from σ0, to visit s infinitely many times,

i.e. does σ0
∗
−→ 〈s, U1〉

+
−→ 〈s, U2〉

+
−→ . . . for an infinite sequence U1, U2, . . .?

Control state loop:
Given: a LCS S, a configuration σ0, and a control state s ∈ Q,

Question: does σ0
∗
−→ 〈s, U〉

+
−→ 〈s, U〉 for some U?

These two problems are equivalent (inter-reducible). Their undecidability is
proved in [AJ96a]. A corollary is that model checking of liveness properties is
undecidable for LCS’s.

3 Probabilistic lossy channel systems

Purushothaman Iyer and Narasimha were the first to consider probabilistic vari-
ants of LCS’s [PN97].

Investigating such variants is rather natural since just saying that “any mes-
sage can be lost at any time” leads to very pessimistic conclusions about the
behaviour of channel systems. In reality, many protocols dealing with unreliable
channels are designed with the idea that message losses are usually unlikely, so
that a bounded number of retries is a sufficient solution in most situations 2.
Capturing these ideas requires models where notions such as “message losses
are unlikely” and “most situations” are supported. Hence the introduction of
PLCS’s, i.e. LCS’s where message losses follow some kind of probabilistic distri-
bution.

Definition 3.1. [PN97] A probabilistic lossy channel system (PLCS) is a tuple
S = 〈Q,C,Σ,∆, σ0, ploss, D〉 where
– 〈Q,C,Σ,∆, σ0〉 is some underlying channel system,
– ploss ∈ (0, 1) is a loss probability, and
- D : ∆ 7→ (0,∞) is a weight function of the rules.

3.1 The global-fault model

The semantics of a PLCS S is given in terms of a Markov chain Mg(S) =
〈Conf , pg〉 where Conf is the same set of configurations that appears in Tloss(S)
and pg : Conf × Conf → [0, 1] is the transition probability (the g subscript
stands for “global”, as explained in section 3.2).

Here pg assigns probabilities to the transitions of Tloss(S) in accordance with
the following principles:

1. A step in Mg(S) is either a perfect step, or the loss of one message.

2 The Alternating Bit Protocol is not so optimistic. As a result, it is not efficient
enough for networks where transmission delays are long (e.g., the Internet).
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2. In any given configuration, there is a fixed probability ploss that the next
step will be the loss of a message. If there are several messages in σ, each of
these messages can be lost with equal probability, so that when σ′ v σ can
be obtained by removing one message from σ, we would expect something
like

pg(σ, σ′) =
ploss

|σ|
, (3)

assuming |〈s, U〉| denotes |U |, i.e. the number
∑

c∈C |U(c)| of messages in U .
3. In any given configuration, there is a fixed probability 1 − ploss that the

next step will be a perfect step. The probability that δ ∈ ∆ will account for
the next step is given by its weight D(δ) after some normalisation against

the other enabled rules. If σ
δ
−→perfσ

′ is a step in Tperf(S), we would expect
something like

pg(σ, σ′) = (1 − ploss) ×
D(δ)∑

δ′∈En(σ)

D(δ′)
. (4)

Turning these principles into a rigorous definition is a tedious and boring task,
that we will not repeat here, leaving it to the reader’s imagination. Note that
several special cases have to be taken into account 3 or simplified away. Most of
what we explain below does not depend on these details. For clarity, we assume
there is at least one enabled rule in any configuration σ, so that

∑
δ∈En(σ) D(δ)

is nonzero.

Remark 3.2. Strictly speaking, the transition system underlying Mg(S) differs
from T (S): a step in T (S) combines several steps from Mg(S) (one per message
loss plus one for the perfect step), but this is just an unimportant question of
granularity, and essentially the same behaviour is exhibited in both cases. ut

We call Mg(S) the global-fault model because it assumes ploss is the prob-
ability that the next step is a fault (a message loss) as opposed to a perfect
step. A consequence of this assumption is that the fixed fault probability has
to be distributed over all messages currently in transit: the more messages are
currently in transit, the less likely it is that any single message will be lost in
the next step, so that message losses are not independent events.

3.2 The local-fault model

It can be argued that a more realistic model would have ploss applying to any
single message, independently of the other messages. This prompted Bertrand

3 What about losses when U is empty, and perfect steps when En(σ) is empty? What
about situations where different message losses account for a same σ −→ σ′? Or when
the reading of a message has the same effect as a loss?
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and Schnoebelen [BS03] and, independently, Abdulla and Rabinovich [AR03], to
introduce a new model, here called the local-fault model, and denoted Ml(S).

More precisely, Ml(S) = 〈Conf , pl〉 is defined in accordance with the follow-
ing principles

1. A step in Ml(S) is a perfect step followed by any given number of message
losses (possibly zero).

2. In any given configuration, the perfect step is chosen probabilistically, by
normalising the weights of the enabled rules.

3. Then, any message is lost with probability ploss (and kept with probability
1 − ploss).

4. Thus, if σ
δ
−→perfσ

′ w σ′′, we would expect something like

pl(σ, σ′′) =
D(δ)∑

δ′∈En(σ)

D(δ′)
× (ploss)

|σ′|−|σ′′| × (1 − ploss)
|σ′′|. (5)

Here too the actual formal definition is more complex because there usually are
several ways to reach a same σ′′ from a given σ.4

3.3 Other models

It is of course possible to define many other Markov chain models for probabilistic
channel systems, e.g. with channel-dependent loss probabilities, etc. The two
proposals we just discussed strive for minimality.

In the literature, two other models can be found:

1. The undecidability proof in [ABPJ00] assumes that messages can only be
lost while they are being enqueued in the channel and not later. (We leave
it to the reader to write the definition of the associated Markov chain.)
This choice mainly aims at simplifying the technical development of the
aforementioned paper. However, it underlines the fact that our two earlier
models see losses as occurring inside the channels when other possibilities
are of course possible.

2. Abdulla and Rabinovich [AR03] consider different kind of faulty behaviours
(not just losses). They allow insertion errors, duplication errors, and corrup-
tions of messages. Such errors were considered in [CFP96] but Abdulla and
Rabinovich propose a probabilistic definition of these transmission faults and
analyse when decidability is preserved.

4 Qualitative verification of PLCS’s

A Markov chain like Mg(S) or Ml(S) comes with a standard probability mea-
sure on its set of runs (see e.g. [Pan01]). We let Pσ0

(♦σ) denote the measure

4 However, compared to the global-fault model, the number of special cases is reduced
since losses do not clash with perfect steps and since Eq. (5) tolerates |σ| = 0.
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of the set of runs that start from σ0 and eventually visit σ. More generally, let
Pσ0

(ϕ) denote the measure of the set of runs from σ0 that verify some linear-time
property ϕ.

For verification purposes, proving that M has Pσ0
(ϕ) = 1 is almost as

good as proving T , σ0 |= ϕ in the classical (non probabilistic) setting, since it
shows that the set of runs where ϕ does not hold is “negligible”. However, such
negligible sets can make the difference between a decidable and an undecidable
problem. Indeed, qualitative verification of PLCS’s was investigated as a way to
circumvent the undecidability of model checking for LCS’s.

Formally, the problems we are interested in here are:

Almost-sure inevitability:
Given: a PLCS S, a configuration σ0, and some set W ⊆ Conf of
configurations,
Question: does Pσ0

(♦W ) = 1?

Almost-sure model checking:
Given: a PLCS S, a configuration σ0, and some LTL−X formula ϕ,
Question: does Pσ0

(ϕ) = 1?

In almost-sure inevitability, we usually only consider sets W given in some finite
way, e.g. a finite W , or a W given by specifying the possible control states but
putting no restriction on the channel contents. Similarly, we assume that the
propositions used in temporal formula ϕ are simply individual configurations or
control states, so that no special extra labelling of M(S) is required.

Remark 4.1. [PN97] and [BE99] consider formulae in LTL−X, the fragment of
LTL that is insensitive to stuttering. This is because Mg(S) and Tloss(S) do
not have the same granularity (see Remark 3.2), so that properties sensitive to
stuttering may evaluate differently in the two models. ut

Here we follow [Var99] and assume properties are given under the form of a
deterministic Streett automaton Aϕ. Checking whether Mg(S) satisfies ϕ almost
surely reduces to checking whether the accepting runs in the product Mg(S)⊗Aϕ

have measure 1. When ϕ is insensitive to stuttering, we have Mg(S) ⊗ Aϕ ≡
Mg(S ⊗ Aϕ) [BE99], and this also holds for Ml(S). Finally, writing S′ for
S ⊗ Aϕ, we are left with verifying that a Streett acceptance property, of the
form α =

∧n
i=1(�♦Ai ⇒ �♦A′

i), holds almost surely on Mg(S
′).

4.1 The decidability results

Baier and Engelen [BE99] show that almost-sure model checking is decidable
for Mg(S) when ploss ≥ 1

2
5. Bertrand and Schnoebelen [BS03], and Abdulla

5 It is believed that this threshold cannot be improved: using a slightly modified model
(see section 3.3), Abdulla et al. were able to show that the problem is undecidable
when ploss < 1

2
[ABPJ00].
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and Rabinovich [AR03], show that almost-sure model checking is decidable for
Ml(S) for any ploss ∈ (0, 1). These results apply to almost-sure inevitability
since it is a special case of almost-sure model checking.

The techniques underlying all these decidability results are similar and rely on
the existence of finite attractors (see below). Furthermore, in all cases, whether
M(S) almost surely satisfies ϕ does not depend on the precise value of the fault
probability ploss

6, of the weights D, and of the choice of a local vs. global fault
model! This is one benefit of qualitative verification: one does not have to worry
too much about whether the numerical constants used in the PLCS are realistic
or not.

We argued in section 3 that the local-fault model is more realistic than the
global-fault model. This is especially true for quantitative properties (dealt with
in next section). For qualitative properties, the real superiority of this model is
that the existence of finite attractors (entailing decidability) is guaranteed and
does not require ploss ≥

1
2 .

4.2 The algorithmic ideas

Verifying that a finite Markov chain almost surely satisfies a Streett property is
decidable [CY95,Var99]. However, the techniques involved do not always extend
to infinite chains, in particular to chains that are not bounded.

It turns out it is possible to adapt these techniques to countable Markov
chains where a finite attractor exists. We now develop these ideas, basically
by simply streamlining the techniques of [BE99]. As is customary, rather than
answering the question whether P(ϕ) = 1, we deal with the dual question of
whether P(¬ϕ) > 0, which allows a simpler technical exposition. More details
and full proofs are available in [BS03].

Below we assume a given Markov chain M = 〈Conf , p〉 with underlying
transition system T = 〈Conf ,−→〉.

We say a non-empty set Wa ⊆ Conf of configurations is an attractor when

Pσ(♦Wa) = 1 for all σ ∈ Conf . (6)

Note that (6) implies Pσ(�♦Wa) = 1 for all σ ∈ Conf . The attractor is finite
when Wa is.

Observe that an attractor is not the same thing as a set of recurrent
configurations (however, an attractor must contain at least one configuration
from each recurrent class).

Assume Wa ⊆ Conf is a finite attractor. We define G(Wa) as the finite
directed graph 〈Wa,−→〉 where the vertices are the configurations from Wa, and
where there is an edge from σ to σ′ iff σ′ is reachable from σ by some nonempty
path in T . Observe that the edges in G(Wa) are transitive (but not reflexive in
general).

6 Assuming it is ≥ 1

2
in the global-fault model.
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In G(Wa), we have the usual graph-theoretic notion of (maximal) strongly
connected components (SCC’s), denoted B,B ′, . . . These SCC’s are ordered by
reachability and a minimal SCC (i.e. an SCC B that cannot reach any other
SCC) is a bottom SCC (a BSCC). A trivial SCC is a singleton without the
self-loop. Observe that, in G(Wa), a BSCC B cannot be trivial: since Wa is an
attractor, one of its configurations must be reachable from B.

Assume a given Streett property α =
∧n

i=1(�♦Ai ⇒ �♦A′
i). We say a BSSC

B of G(Wa) is correct for α if, for all i = 1, ..., n, either Ai is not reachable from
B (in T ), or A′

i is. Write B1, . . . , Bk for the set of correct BSCC’s.

Lemma 4.2. [Rab03] Pσ(α) = Pσ(♦(B1 ∪ · · · ∪ Bk)).

Proof (Idea). Since Wa is a finite attractor, almost all paths eventually visit a
BSSC B of G(Wa). These paths almost surely visit B infinitely often, so that
they almost surely visit infinitely often any configuration reachable from B and
not any other configuration. Thus these paths satisfy α almost surely iff B is
correct for α. ut

The key result for our purposes is a reduction of the probabilistic verification of
Streett properties of M to reachability questions on the finite G(Wa).

Corollary 4.3. Pσ(
∧n

i=1(�♦Ai ⇒ �♦A′
i)) > 0 iff B1 ∪ · · · ∪ Bk is reachable

from σ.

Remark 4.4. Corollary 4.3 reduces the question Pσ(
∧n

i=1(�♦Ai ⇒ �♦A′
i)) > 0?

to graph-theoretic notions on G(Wa) where the transition probability p of M
does not appear. Similarly, p has no role in the definition of G(Wa). Where p

does appear is in making Wa an attractor! ut

Corollary 4.3 applies if we can find finite attractors in our Markov chains:

Let S be a PLCS and let W0
def
= {〈q, ε〉 | q ∈ Q} be the set of all configurations

where the channels are empty.

Lemma 4.5. W0 is a (finite) attractor in Ml(S).
Furthermore, if ploss ≥

1
2 , W0 is an attractor in Mg(S).

Proof (Idea). The computations proving this are a bit tedious but the idea is easy
to understand when one has some familiarity with random walks. We consider

Ml(S) first. Assume |σ| = m. When m >
log(2)

− log(1−ploss)
, and thanks to Eq. (5),

it is more probable to see steps σ −→ σ′ where σ′ exhibits a decrease rather
an increase of size (relative to σ). Furthermore increases are at most single
increments. Thus the “small” configurations are an attractor, and since W0 is
reachable from any set (thanks to lossiness), W0 itself is an attractor.

In Mg(S), the same kind of reasoning explains why the same set W0 is an
attractor when ploss ≥ 1

2 : losses become so likely that the system cannot avoid
being attracted to empty configurations. ut
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We now have all the necessary ingredients for the proof that almost-sure
reachability and almost-sure model checking are decidable for PLCS’s: since
reachability is decidable in the underlying transition system T , G(Wa) can be
built effectively, and it can be decided if a BSSC is correct for α and if it is
reachable from σ.

These techniques apply to any extension where reachability remains decid-
able and where finite attractors can be identified. For example, in [AR03], Ab-
dulla and Rabinovich investigate an extension of the local-fault model where
other forms of channel unreliability exist: messages in transit can be corrupted
(randomly replaced by some other message), duplicated (the duplicate message
appears just alongside the original message), and spurious messages can appear
out of the blue (these are called insertion errors in [CFP96]). If corruptions and
duplications have a per-message probability 7 of, respectively, pcorrupt and pdupl,
then W0 is an attractor if pdupl < ploss, in which case decidability of almost-sure
model-checking can be inferred from the decidability of reachability.

5 Approximate quantitative verification of PLCS’s

Computing quantitative properties, e.g. computing the actual probability P(ϕ)
that ϕ will be satisfied, is usually harder than deciding qualitative properties
(like we did in Section 4). For one thing, and unless it is zero or one, P(ϕ) will
depend on the actual values of the weights and ploss.

Purushothaman Iyer and Narasimha proposed algorithms for the verification
of quantitative properties of PLCS’s. It turns out these algorithms are flawed
(as observed by Rabinovich [Rab03]) in the global-fault model for which they
were intended. However, the underlying ideas can be salvaged and made to work
for the local-fault model (or the global-fault model if ploss ≥ 1

2 : the required
condition is the existence of a finite attractor).

5.1 The decidability results

Under the local-fault interpretation, the following problems have effective solu-
tions:

Quantitative probabilistic reachability:
Given: a PLCS S, two configurations σ0 and σf , and a tolerance ν > 0,
Problem: find a p such that p − ν ≤ Pσ0

(♦σ) ≤ p + ν.

Quantitative probabilistic model checking:
Given: a PLCS S, a configuration σ0, some LTL−X formula ϕ, and a tol-
erance ν > 0,
Problem: find a p such that p − ν ≤ Pσ0

(ϕ) ≤ p + ν.

7 Regarding insertion errors, we find it more natural to see them as having a
global probability, not a per-message one. But one can model insertion as dupli-
cation+corruption going in pairs.
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We speak of approximate quantitative verification because of the tolerance pa-
rameter ν (that can be as small as one wishes).

5.2 The algorithmic ideas

The methods for answering quantitative probabilistic reachability may be of
more general interest. Assume we are given some PLCS S with two configurations
σ0 and σf . For k ∈ N we let Tk(σ0) denote the tree obtained by unfolding Ml(S)
from σ0 until depth k. Fig. 2 displays a schematic example for k = 3.

σ0

σ1

p1

σ2

p2

σ3

p3

σ1,1

p1,1

σ1,1,1

p1,1,1

σ1,1,2

p1,1,2

σ2,1 = σf

p2,1

σ2,2

p2,2

σ2,2,1

p2,2,1

σ2,2,2 = σf

p2,2,2

σ3,1

p3,1

×

×

d = 0:

d = 1:

d = 2:

d = 3:

Fig. 2. A tree T3(σ0) obtained by unfolding some M(S)

Not all paths in Tk(σ0) have length k: paths are not developed beyond σf

when it is encountered (these leaves are underlined in Fig. 2), or beyond any
configuration σ from which σf is not reachable (these leaves are crossed).

Observe that it is effectively possible to build Tk(σ0): the crucial part is to
cross out the leaves from which σf is not reachable, but this can be done since
reachability is decidable (recall section 2.3).

A path from the root of Tk(σ0) to some leaf denotes a basic cylinder in the
space of runs of Ml(S). The measure of these cylinders is given by multiplying
the individual probabilities along the edges of the path, e.g. the leftmost leaf in
our example denotes a set of runs with measure p1 × p1,1 × p1,1,1. We collect
these cylinders in three classes: a path is a >-path if it ends in σf , a ⊥-path if
it ends in a crossed-out leaf, and a ?-path otherwise. Thus Tk(σ0) partitions the
runs from σ0 in a finite number of cylinders belonging to three different types. If
we now collect the measures of these cylinders according to type we end up with
total measure P

k
> for the >-paths, P

k
⊥ for the ⊥-paths, and P

k
? for the ?-paths,

ensuring P
k
> + P

k
⊥ + P

k
? = 1 for all k ∈ N. Obviously, Tk+1 refines Tk in such a

way that P
k+1
> ≥ P

k
> and P

k+1
⊥ ≥ P

k
⊥, entailing P

k+1
? ≤ P

k
? .

The value Pσ0
(♦σf ) we are looking for satisfies

P
k
> ≤ Pσ0

(♦σf ) ≤ P
k
> + P

k
? (7)

Lemma 5.1. limk→∞ P
k
? = 0.
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Proof. P
k
? is the probability that, in its first k steps, a run only visits configu-

rations from which σf is reachable (called good configurations) without actually
visiting σf itself. Thus limk→∞ P

k
? , denoted P

ω
? , is the probability that an infinite

path only visits good configurations but not σf .
Now, Ml(S) has a finite attractor W0 (Lemma 4.5) and an infinite run almost

surely visits W0 infinitely often. Hence P
ω
? is also the probability that an infinite

run only visits good configurations, visits infinitely often some configuration
σa ∈ W0, and never visits σf . But if σa is visited infinitely often, and σf is
reachable from σa, then σf is visited almost surely. ut

A possible algorithm for evaluating Pσ0
(♦σf ) within ν is to build Tk(σ0), use

it to evaluate P
k
> and P

k
? , and check if the margin provided by Eq. (7) is low

enough for ν, i.e. if P
k
? ≤ 2ν. If this is not the case, we retry with a larger k:

Lemma 5.1 ensures that eventually the margin will be as small as needed.
The same method can be used for approximating the value of some

Pσ0
(
∧n

i=1(�♦Ai ⇒ �♦A′
i)): Lemma 4.2 equates this to some Pσ0

(♦(B1 ∪ · · · ∪
Bk)).

Remark 5.2. In the global-fault model, Lemma 5.1 does not always hold and
P

ω
? can be strictly positive. This is what was missed in [PN97]. For example,

consider a simple system with only the rule q
c!a
−→ q. Mg(S) is essentially a

random walk on N with a reflecting barrier in 0: in configuration 〈q, an〉 with
n > 0 messages, one moves to 〈q, an−1〉 with probability ploss and to 〈q, an+1〉
with probability 1 − ploss. It is well-known that if ploss < 1

2 then there is a non-
zero probability that a run from some nonempty configuration will never visit
the empty configuration. This non-zero probability coincides with P

ω
? . ut

The ideas underlying the above algorithm are quite general and apply to all
finitely-branching countable Markov chains with a finite attractor. Effectiveness
relies on the fact that ⊥-paths can be identified: the decidability of reachability is
an essential ingredient in the algorithm for quantitative probabilistic reachability.

5.3 A first assessment

The positive results of section 4 and 5 provide methods for verifying channel
systems where message losses are seen as some kind of fault obeying probabilis-
tic laws. These results can handle arbitrary LTL formulae (indeed, arbitrary
ω-regular properties) and therefore they can be seen as circumventing the unde-
cidability of LTL model checking for standard, non-probabilistic, lossy channel
systems.

However there are two main limitations with these results.

1. The value of Pσ0
(ϕ) depends on ploss and on the weights D of rules in S.

Assigning a fixed fault probability is natural in many situations, and sound
reasoning can be carried out even under the assumption of an overly pes-
simistic fault probability. However, given a distributed protocol modelled as
some LCS, it is difficult to meaningfully give values for D. Thus it is hard
to make sense of any quantitative evaluation of some Pσ0

(ϕ).
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2. This difficulty disappears with qualitative verification, since the answers do
not depend on the exact values of D or ploss. However, it is still the case that
the models we have been considering, Ml(S) or Mg(S), see the rules of S as
probabilistic instead of nondeterministic. In practical verification situations,
there are at least four possible reasons for nondeterminism in rules:

– Arbitrary interleaving of deterministic but asynchronously coupled com-
ponents.

– Under-specification, at some early stage of the design process.
– Inclusion of the unknown environment as part of the model for an open

system.
– Abstraction of some complex protocol to make it fit the finite-state con-

trol paradigm.

The first kind of nondeterminism can perhaps accommodate randomisation
of the rules, but the other kinds usually cannot: a branch at a nondetermin-
istic choice point in the abstract model may well never be followed in the
actual system, even if the choice point is visited infinitely often.

This difficulty with Markov chains is well-known and its solution usually requires
using a richer family of models: the reactive (or concurrent) Markov chains, also
known as Markovian decision processes.

6 PLCS’s as Markovian decision processes

It is very natural to model PLCS’s as Markovian decision processes (MDP’s)
where message losses have some probabilistic behaviour, and where the LCS
rules retain their classical nondeterministic meaning. Such a model was first
introduced by Bertrand and Schnoebelen [BS03].

There are several possibilities for associating a MDP with a channel system
S. The proposal in [BS03] adopts the conventions of [Var99] and elaborates on
the ideas underlying the definition of Ml(S):

1. we have two kinds of configurations: nondeterministic ones and probabilistic
ones,

2. steps alternate between firing LCS rules (going from a nondeterministic con-
figuration to probabilistic ones) and losing messages (from a probabilistic
configuration to nondeterministic ones), hence the underlying graph is bi-
partite.

In [BS03] the losses follow the “local”, per-message, interpretation of the ploss

parameter, so that we shall write Pl(S) to denote the MDP associated with S.
As usual, the behaviour of Pl(S) is defined by means of schedulers (denoted

u, u′, . . .) that make the nondeterministic choices, based on what happened ear-
lier. When such an scheduler u is provided, the system gives rise to a Markov
chain (denoted Pu

l (S)) in the usual way.
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Remark 6.1. [BS03] introduces one important definitional detail that make tech-

nicalities easier: we assume that it is always possible to idle, written σ
0
−→ σ,

instead of firing a rule of ∆. This possibility prevents deadlocks and the defini-
tional difficulties they raise, but it also give more flexibility to schedulers: they
can empty the channels by just waiting (idling) until the probabilistic losses do
the emptying job, which will eventually happen almost surely. ut

6.1 The decidability results

The main verification questions in this framework are

Adversarial model checking:
Given: a PLCS S, a configuration σ0, and some LTL−X formula ϕ,
Question: does Pσ0

(ϕ) = 1 hold in Pu(S) for all u?

Cooperative model checking:
Given: a PLCS S, a configuration σ0, and some LTL−X formula ϕ,
Question: does Pσ0

(ϕ) = 1 hold in Pu(S) for some u?

Note that, though the two problems are related, they cannot be reduced one
to the other. It can be argued that, in verification settings, adversarial model
checking is the more natural question.

Bertrand and Schnoebelen [BS03,BS04] show that adversarial and cooper-
ative model checking are decidable when one only considers finite-memory 8

schedulers (i.e. when the quantifications over “all u” is relativized to “all finite-
memory u”).

They show that adversarial and cooperative model checking are undecidable
when there are no restrictions on the schedulers 9.

6.2 The algorithmic ideas

When considering adversarial model checking, we follow the traditional wisdom
that it is simpler to reason about questions of the form ∃u P(¬ . . .) > 0, rather
than of the form ∀u P(. . .) = 1, even though the two are dual. Since Streett
properties are closed by negation, we can further simplify our framework and
consider questions of the form ∃u P(α) > 0.

To begin with, we try to explain how decidability of adversarial model check-
ing depends on the finite-memory assumption. For this we reproduce the proof
that the unrestricted problem is undecidable: this provides a lively example of
the difference between unrestricted and finite-memory schedulers.

8 A scheduler is said to be finite-memory when it makes its choices as a function of
the current configuration and some finite-state information about the history of the
computation.

9 Or on the LTL−X formulae: for example, formulae of the simpler form ♦W lead
to decidable adversarial or cooperative problems with no restriction on the sched-
ulers [BS03].
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Ideas for undecidability. Let S = 〈Q, {c}, Σ,∆, σ0〉 be a single-channel LCS
where σ0 is 〈r0, ε〉.

We modify S to obtain S′, a new LCS. The construction is illustrated in
Fig. 3, where S is copied in the dashed box.

S
′ :

r0

r
· · ·

S

in eraseout erase

erasing gadget

retry success fail
?Σ

Fig. 3. The NPLCS S′ associated with LCS S

S′ is obtained by adding three control states (success, retry and fail), some
fixed gadget for erasing (that is, emptying) the channel,10 and rules allowing to
jump 11 from any S-state r ∈ Q to success or to retry . Jumping from success to
fail is always possible but moving from success to retry requires that one message
be read from the channel: the “?Σ” label is a shorthand for all ?a where a ∈ Σ.

Let us now ask ourselves whether we could devise a scheduler u s.t.
Pσ0

(�♦A) > 0 in Pu
l (S′) for A = ↑success \ 〈success , ε〉, i.e. whether there

exists a scheduler that can make S ′ visit success infinitely often with nonzero
probability (and without just idling there with an empty channel).

This seems easy: when we are in the S part of S ′, we can visit success
whenever we want by jumping there, then we can erase the channels, jump to
σ0 and start again.

There is a catch however: if the channel is empty when we visit success, we
will not be allowed to reach the erasing gadget via retry (this requires a read) and
will end up stuck in fail . Now the bad news is that, whenever we decide to jump
from some 〈r, U〉 configuration to success, there always is a nonzero probability (a
risk) that all messages currently in the channel will be lost during this one jump,
leaving us in configuration 〈success, ε〉 and thwarting our purposes. Precisely, if
|U | = m, then the risk is (ploss)

m.

10 The specification of the gadget is that, from any 〈in erase, U〉 configuration it is
always possible to reach 〈out erase, ε〉 whatever happens (there are no deadlock)
and it is impossible to reach 〈out erase, V 〉 for V 6= ε. See [BS04] for a fully detailed
solution.

11 These are internal rules where no reading or writing takes place. Such rules can be
simulated by writing to a dummy channel.
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Therefore, visiting success infinitely many times requires that we make an
infinite number of jumps, each of them with a nonzero risk. The product of
these risks will only be nonzero if the values are diminishingly small (e.g. the
risk associated with the nth jump is less than n−2), which can only be the case
if we jump from configurations having larger and larger channels contents. Thus,
if S is bounded and such ever larger configurations do not exist, then necessarily
Pσ0

(�♦A) = 0 for all u.
On the other hand, if S is not bounded, there exists ever larger reachable

configurations in Tloss(S). It would be smart to try and reach these larger and
larger configurations, and only jump to success when a large enough configura-
tion is reached. Since the losses in P(S ′) are probabilistic, we may need some
luck to reach these large configurations. However, when the losses do not com-
ply, we can simply have another go (via the rules jumping from S to retry) so
that a persistent scheduler will eventually reach any (reachable) configuration it
wishes. Such a scheduler is clearly not finite-memory: it has to remember what
large configuration it is currently aiming at, and there are an infinite number of
them.

Finally, in Pl(S
′), Pσ0

(�♦A) = 0 for all u iff Tloss(S) is bounded. Since
boundedness of Tloss(S) is undecidable [May00], we obtain undecidability for
adversarial model checking.

Ideas for decidability. It is now possible to hint at why adversarial model check-
ing is decidable when we restrict to finite-memory schedulers.

Assume we want to check whether there is some scheduler u that yields
P(α) > 0 for some PLCS S = 〈Q,C,Σ,∆, σ0, ploss, D〉 and some Streett property
α =

∧n
i=1(�♦Ai ⇒ �♦A′

i). We assume the sets Ai, A
′
i ⊆ Conf are determined

by sets of control states Xi, X
′
i ⊆ Q.

A possible strategy for such a scheduler is to try to reach a set X ⊆ Q of
control states s.t. when one is in X-configurations (that is, configurations with
a control state from X) then one can fulfill α without stepping out of X. More
formally, we want that X is reachable from σ0, is non-trivially connected by
transitions that do not visit states out of X, and satisfies α: such an X is called
a safe set.

If a safe X exists, a scheduler exists for P(α) > 0: it tries to reach X (this
succeeds with non-zero probability) and, when in X, it just has to fill some
�♦A′

i obligations. Since from any 〈x, ε〉 with x ∈ X, there is a path to A′
i that

does not step out of X, it is enough to try that path. When this fails because
probabilistic losses did not comply with the path, the scheduler waits until
the channels are empty and tries again from the 〈x′, ε〉 configuration we end
up in. This scheme is bound to eventually succeed, and only requires finite
memory. Thus, once we are in a safe X, we have P(α) = 1 (the only risk is
in whether we can reach X from σ0, but this has a nonzero probability of success).

The remarkable thing with finite-memory schedulers is that, if there exists
a finite-memory scheduler ensuring P(α) > 0, then there exists one that follows
the simple “pick a safe X ⊆ Q” strategy.
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To see this, remember that any scheduler u will make us visit the attractor W0

infinitely often, and in particular some 〈x, ε〉 infinitely often. But a finite-memory
scheduler cannot distinguish between all these infinitely many visits to 〈x, ε〉 and

there is some sequence (〈x, ε〉 =)〈x0, U0〉
δ1−→ 〈x1, U1〉

δ2−→ 〈x2, U2〉 · · · 〈xn, Un〉 of
transitions, with xn in some obligation A′

i, that it will try infinitely many times.
Trying this infinitely many times means that all the 〈xj , ε〉 for j = 0, . . . , n are
bound to happen infinitely often because of probabilistic losses. Assuming that
u ensures α with a nonzero probability entails that the xj ’s form a safe set X.

Now that we have equated the existence of a finite-memory u with the ex-
istence of a safe set, it remains to check that safe sets can be computed: this
is easily done by enumerating the finite number of candidates X and checking
each of them using the decidability of reachability in Tloss.

6.3 An assessment of the adversarial verification of PLCS’s

Modelling PLCS’s as Markovian decision processes is a recent idea, and many
questions remain unanswered. However, it seems this approach may lead to satis-
factory ways of circumventing the undecidability of (classical) LCS model check-
ing: decidability is recovered by simply omitting to take into account exaggerat-
edly malicious nondeterministic behaviours, be they schedulers that need finite
memory or losses that have a zero probability of occurring in real life. One fur-
ther advantage of this approach is that it relies on reachability questions of the
kind that has been shown tractable via symbolic methods.

7 Conclusions and perspectives

There are two main reasons for moving from LCS’s to probabilistic LCS’s:

1. obtaining quantitative information about the behaviour of the system (av-
erage times, probability that something happens, etc.), and

2. getting rid of exaggeratedly malicious nondeterministic behaviours by im-
posing some form of fairness.

The results we surveyed are very recent and it is not yet clear what will
be the main directions for further research in this area. We just mention the
problems that have been left unanswered in our survey:

In the quantitative approach:

– Can one compute exactly (not approximately) Pσ0
(ϕ) in the Markov chain

models?
– Can one compute, or approximate, other numerical values like mean hitting

time, etc.?
– Can one compute, or approximate, the extremal values of Pσ0

(ϕ) when rang-
ing over all adversaries in the MDP models?

In the qualitative approach:
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– Is cooperative model checking decidable?
– Do the decidability results extend to more general MDP models of LCS’s

(e.g. where probabilistic steps are not limited to message losses)?

From a more general perspective, it would be interesting to see how much of the
ideas that have been put forward in the analysis of probabilistic lossy channel
systems can be of use in other infinite-state probabilistic models.
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