
 
 Agent-Mediated Knowledge Engineering Collaboration 

 
Adam Pease, John Li 

Teknowledge 
                   [apease | jli]@teknowledge.com 

 
Abstract 

Abstract:  Knowledge Management is most necessary and 
valuable in a collaborative and distributed environment.  A 
problem with commercial knowledge management tools is 
that they do not understand at a deep level the content that 
they are managing.  In this paper we discuss the System for 
Collaborative Open Ontology Production (SCOOP), which 
manipulates logic expressions and checks for redundancies 
or contradictions between the products developed by 
different engineers.  SCOOP also includes an automated 
workflow process that supports recommendations for 
changes and voting to agree on changes. 
 

        Introduction  

 The current state of practice in knowledge management 
hinges on human review of content.  Tools exist for 
organizing content or facilitating human collaboration but 
they do not understand the knowledge that they are 
managing.  The System for Collaborative Open Ontology 
Production (SCOOP) works with logic expressions (among 
other knowledge products), which can be understood, to 
some degree, by a machine.   
 There are four primary features of the SCOOP 
collaboration process. 

1. Knowledge is organized hierarchically as a set of files 
with inheritance of content. Consistency among these 
files is maintained vertically by enforcing that any 
assertion must not be contradictory with respect to files 
of knowledge that is inherited by the file where the 
assertion in question is to be placed.  Consistency is 
encouraged horizontally by alerting individuals to 
contradictions or redundancies with respect to the files 
of their colleagues, and providing them a structured 
process for being aware of and resolving inconsistencies 
if they so choose.   

 
2. Knowledge developers can influence their colleagues in 

several ways.  They can register supervisory authority 
over another developer’s content.  They can register 
interest in particular keywords that are dynamically 
matched to their colleagues’ content, which allows them 
to be alerted when new content matching the keywords 
is created.  They can register interest in specific files or 
documents their colleagues are creating. 

 

3. SCOOP assists developers in resolving conflicts and 
inconsistencies by identifying the statements by different 
developers that are problematic.  The system 
accomplishes this by analyzing the results of theorem 
proving that detects the problem, and extracting only 
those statements that were authored directly, rather than 
automatically deduced.  The full proof remains available 
for analysis by the authors if desired. 

 
4. Authors have primary control over their own content but 

are given information that can help them maintain 
compatibility with the content created by their 
colleagues.  When an author is alerted to a redundancy 
with respect to a colleague’s content, he has several 
choices.  He may withdraw the knowledge, elect to keep 
it, or vote to have it and the colleague’s knowledge 
elevated to a more general document.  A majority must 
vote to elevate the knowledge for this to occur.  When a 
contradiction is discovered, the developer may either 
retract the knowledge, vote to keep it as knowledge 
which is contextually valid, although inconsistent with 
another view, or vote to have the colleague’s knowledge 
removed.   Such a vote is informational though since 
only the author, or someone who has registered authority 
over the author’s content may change the author’s 
content.  This approach could of course be made stricter 
to be in keeping with a more authoritarian work 
environment. 

 
 

General Architecture and Mechanism 
 

   A general architecture of SCOOP and its environment 
are shown in the figure below.  To the knowledge authors, 
SCOOP is an invisible agent working at the background.  
Its existence becomes known to the authors only when 
conflicts or errors are detected in their products.  To 
perform the error detection and limited correction 
functions described above, the SCOOP has an inference 
engine that it uses to process diagnostic queries. This 
architecture allows any inference engine to be used for this 
purpose as long as it can answer logic queries and provide 
justifications.  Our current implementation of SCOOP uses 
a first order logic (FOL) theorem-prover that accepts KIF 
(Genesereth, 1991), the language and grammar in which 
the assertions created by users are written.  With small 
modifications, SCOOP can employ other inference engines 
that accept other languages the end users use. 
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SCOOP depends on a distributed scheme of inference.  
Each knowledge developer runs a local inference engine 
that handles vertical consistency with the developer’s 
products, and those products he uses directly.  A central 
inference engine handles the detection of conflicts between 
knowledge developers.  Each assertion made by its author 
is first verified locally as vertically consistent and then sent 
to SCOOP for horizontal consistency check.   As required 
by this co-authoring task, when the developers start to 
work on their own products, their inference engines, as 
well as SCOOP’s central inference engine, have the same 
background knowledge base loaded.   

When a knowledge developer asserts a statement into a 
file, SCOOP is notified of this action.  The content of the 
assertion is sent to SCOOP by the Knowledge Engineering 
(KE) Editor that the author uses to enter the assertion.  
SCOOP stores that assertion and its authorial information 
to its own temporary storage for possible future usage.  
When there are multiple assertions, SCOOP treats them in 
the order of their arrival.  To detect redundancies, SCOOP 
asks a central inference engine whether it can prove that 
statement is true in the existing context.  If it is not 
redundant, SCOOP will continue to ask whether the engine 
can prove the negation of the statement is true in the 
existing context.   If both answers are negative, the 
statement will be asserted into the inference engine and 
becomes a part of the context to test the next statement by 
the same or different author.   This mechanism of diagnosis 
sounds simple but is very powerful when more domain-
specific axioms, diagnostic rules and term interpretations 
(such as synonyms and antonyms) are available in the 
background knowledge base.  For example, SCOOP can 
detect a contradiction between (instance MyCar-1 
FastMovingObject) and (instance MyCar-1 
SlowMovingObject) when there is an axiom in the 
knowledge base on the oppositeness of the terms, 
FastMovingObject and SlowMovingObject. 
   If an error is detected, SCOOP will send the diagnosis 
and the justification to the author and other affected 
knowledge developers.  The justification comes from the 
proof by SCOOP’s inference engine but is not a full proof. 
It only lists the facts and axioms used by the inference 
engine to reach the diagnosis but not the further 
deductions.  The full proof is generated by SCOOP as a 

web page that the user can view if desired.  The usage of 
justification has two purposes. Besides giving a brief view 
of the assertions involved in the diagnosis, the justification 
also provides a base for an algorithm to identify the other 
authors who are related to the problem because of their 
contributions in the proof of the diagnostic result. Since the 
authorial information of each assertion is stored in 
SCOOP, SCOOP can easily identify the authors from the 
assertions and seek solution from only those who need to 
know, but not all authors. 
  An author has three choices with regarding to a 
redundancy warning:  withdraw the knowledge, elect to 
keep it, or vote to have it and the colleague’s knowledge 
elevated to a more general document.  As to a  
contradiction case, the developer may either retract the 
knowledge, or to vote to keep it (in that case the 
contradictory knowledge will be removed by the colleague 
author).  If the author does not want to retract the assertion 
diagnosed as redundant or contradictory to the existing 
knowledge base, a request to vote will be sent out by 
SCOOP to the need-to-know authors/reviewers, together 
with the result of the diagnosis message.  When all votes 
are cast for a case, SCOOP will then tally the votes.  The 
fate of the statement is determined based on the voting 
results and a pre-set policy.  The voting authors will be 
notified of the decision made on the statement afterwards.    
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An Example of SCOOP Usage 
 
   The following example may provide a better 
understading of our current implementation of SCOOP.   
Suppose there are three knowledge engineers or subject 
matter experts, Joe, Jane and Arnold, co-authoring a 
knowledge base in a distributed environment.  Each of 
them is working with a KE editor that is connected to its 
local inference engine.  To work with SCOOP, a KE editor 
must be able to communicate with SCOOP and display 
messages as appropriate.  We implemented a simple KE 
editor as shown in the figure below. Our KE editor has 
three major windows: Assertion Editor, Results Window 
and a window for Redundant and Contradictory Items.  As 
the authors log in, the KE editor sends their user names to 
SCOOP and SCOOP establishes a user session for each of 
them.  After an author adds assertions in the KE editor, the 
diagnostic result for the assertion is shown in the Results 
Window.  If a redundancy or a contradiction is detected, a 
warning will appear and a new indexed entry will appear in 
the Redundant or Contradictory Items window.  The author 
can see the detailed report (with justification) or the full 
proof by highlighting the item in the window and then 
making a choice on the View Details button or View 
Complete Proof button.  The voting buttons are also 
enabled when a redundant or contradictory item is selected.   
 
 
 
 



As an example, suppose that Joe defines that a sibling 
relationship is an irreflexive relation and his assertion gets 
OK from SCOOP: 
(instance sibling IrreflexiveRelation)  

In SCOOP’s background, there is an axiom about the 
IrreflexiveRelation: 
(=>  
  (instance ?REL IrreflexiveRelation)  
  (forall (?X)  
    (not  
      (holds ?REL ?X ?X))))  
 
Jane is asserting some facts about the sibling relation: 
 
(mother Bill Jane)  
(mother Bob Jane) 
(sibling Bob Bill)  

 
SCOOP accepts each of these statements and returns an 
OK message. 

Arnold tries to assert an axiom that defines the sibling 

relationship in terms of father and mother relationships: 
(=>  
  (or  
    (exists (?F)  
      (and   
        (father ?S1 ?F)  
        (father ?S2 ?F))) 
    (exists (?M) 
      (and  
        (mother ?S1 ?M)  
        (mother ?S2 ?M)))) 
  (sibling ?S1 ?S2))  

As Arnold enters the assertion, SCOOP sends him the 
result of the diagnosis, which is a contradiction, and adds 
an entry in the windows below “[ITEM-1] 
CONTRADICTION”.  By highlighting this entry, Arnold 
can choose to view the detailed report or view the full 
proof.  These two reports are as follows: 
 
Sample XML-formatted Report 
Note that some XML tags below have been removed for 
brevity. 
<DETAILS:> 
   <ITEM-ID:1> 
   <assertion: 
     (=>  
       (or  
         (exists (?F)  
           (and  
             (father ?S1 ?F)  
             (father ?S2 ?F)))  
         (exists (?M)  
           (and  
             (mother ?S1 ?M)  
             (mother ?S2 ?M)))) 
       (sibling ?S1 ?S2))> 
   <author: ARNOLD> 
   <diagnostics: CONTRADICTION> 
   <justification> 
      <premises> 
         <statement:(mother Bob Jane)> 
         <statement: 
           (=>  
             (instance ?X0 IrreflexiveRelation)  
             (forall (?X1)  
               (not (holds ?X0 ?X1 ?X1))))> 
         <statement: 
          (instance sibling IrreflexiveRelation)> 
      <conclusion> 
         <statement: 
           (not  
             (=>  
               (or  
                 (exists (?F)  
                   (and  
                     (father Bob ?F)  
                     (father Bob ?F)))  
                 (exists (Jane)  
                   (and  
                     (mother Bob Jane)  
                     (mother Bob Jane)))) 
               (sibling Bob Bob))> 



Sample Proof  
 
Result: There is 1 answer. 
Answer 1:[definite] ?S2 = Bob, ?S1 = Bob  
1. (mother Bob Jane)[KB] 

2. (=>      
     (instance ?X0 IrreflexiveRelation) 
     (forall (?X1)  
      (not (holds ?X0 ?X1 ?X1))))[KB] 

3. (forall (?X0)  
     (=>  
      (instance ?X0 IrreflexiveRelation)           
       (forall (?X1)   
        (not  (holds ?X0 ?X1 ?X1))))) [2] 

4. (forall (?X0)      
     (or  
       (not (instance ?X0 IrreflexiveRelation)) 
       (forall (?X1) 
         (not (holds ?X0 ?X1 ?X1))))) [3] 

5. (or  
     (not (instance ?X0 IrreflexiveRelation))     
     (not (holds ?X0 ?X1 ?X1))) [4] 

6. (instance sibling IrreflexiveRelation)[KB] 

7. (not  
     (not  
      (=>  
        (or  
          (exists (?X4) 
            (and  
              (father ?X3 ?X4) 
              (father ?X2 ?X4))) 
          (exists (?X5)  
            (and  
              (mother ?X3 ?X5) 
              (mother ?X2 ?X5))))  
      (sibling ?X3 ?X2)))) [Negated Query] 

8. (forall (?X2 ?X1)   
     (not       
       (not              
         (=>                  
           (or                      
             (exists (?X0)        
               (and  
                 (father ?X1 ?X0)  
                 (father ?X2 ?X0)))  
             (exists (?X3)        
               (and  
                 (mother ?X1 ?X3)  
                 (mother ?X2 ?X3)))) 
         (sibling ?X1 ?X2))))) [7] 

9. (forall (?X2 ?X1)      
     (or          
       (and              
         (forall (?X0)  
           (or  
             (not (father ?X1 ?X0))   
             (not (father ?X2 ?X0))))    
         (forall (?X3)                  
           (or  
             (not (mother ?X1 ?X3))                                

  To perform the centralized knowledge harmonization 
functions described above, SCOOP is connected to a 
Concurrent Version System (CVS) repository that stores 
the files developed by all authors at different stages. The 
repository is organized into knowledge modules so the 
products at different development stages can be stored 
together under a theme.  SCOOP allows users to specify 
relationships between themselves, others and knowledge 
products in the system that influences the workflow 
process employed when change or conflict occurs.  A 
knowledge developer can designate another developer as 
the knowledge reviewer of his or her products.  All users 
can also register their interests in the products of other 
authors via keywords.  If there is any match of the 
keywords to the contents of the files in the repository, 
existing or in the future, the user will automatically get 
informed of the presence of the new or changed content. 
When an author submits a file for review, the reviewer will 
also automatically get a notice.    The reviewers can vote to 
approve or reject a document and determine whether a file 
should pass the reviewing process.  All the notifications 
and votes are carried via automatically generated email 
messages. 

             (not (mother ?X2 ?X3)))))          
     (sibling ?X1 ?X2 ))) [8] 

10.(or      
     (and          
       (or              
         (not (father ?X1 ?X0))              
         (not (father ?X2 ?X0)))          
       (or  
         (not (mother ?X1 ?X3))              
         (not (mother ?X2 ?X3))))      
   (sibling ?X1 ?X2)) [9] 

11.(or  
     (sibling ?X1 ?X2)      
     (not (mother ?X2 ?X3))      
     (not (mother ?X1 ?X3))) [10] 

12.(not (sibling ?X0 ?X0)) [5,6] 

13.(or  
     (sibling ?X0 Bob)      
     (not (mother ?X0 Jane))) [11,1] 

14.(and (= ?S2 Bob)(= ?S1 Bob)) [1,12,13] 
 
Note that in the proof above, [N] after a formula means the 
formula is derived from the formula in proof step #N.  
[KB] means the assertion already exists in the knowledge 
base, either by assertion or in a preloaded background 
context. 
  The proof shows that the axiom developed by Arnold has 
a flaw that can lead to (sibling Bob Bob), violating the 
declared irreflexive nature of the predicate. The author 
may choose to retract it to resolve the conflict with the 
other axioms. If the author chooses to retain the statement, 
SCOOP will try to resolve the issue by sending a vote 
request to Jane and Joe because their products are involved 
in the proof.   
 

Version Control and Change Notification 
 



SUMO 
 SCOOP is especially useful when there is a large body 
of formal knowledge.  The example in the previous section 
displays the use of a background axiom in the proof.  One 
key to having informed and intelligent assistance to the 
knowledge developer is having existing knowledge that 
can support machine analysis of new content.  We 
developed a large, formal ontology that can support that 
need. 
 The SUMO (Suggested Upper Merged Ontology) is an 
ontology that was created at Teknowledge Corporation 
with extensive input from the SUO mailing list, and it has 
been proposed as a starter document for the IEEE-
sanctioned SUO Working Group.  The SUMO was initially 
created by merging publicly available ontological content 
into a single, comprehensive, and cohesive structure (Niles 
& Pease, 2001) (Pease et al, 2002).   As of January 2003, 
the ontology contains 1000 terms and 4000 assertions 
including 750 rules.  The ontology can be browsed online 
(http://ontology.teknowledge.com), and source files for all 
of the versions of the ontology can be freely downloaded.  
SUMO has also been mapped, by hand, to the complete set 
of 100,000 WordNet (Miller et al, 1993) noun, verb, 
adjective and adverb word senses.  This supports keyword 
matching within SCOOP. 

Related Work 
 The Ontolingua (Farquhar et al, 1996) ontology server 
provides user and group access control that can facilitate 
group work.  It also allows simultaneous access to 
ontologies and change highlighting.  Some work detecting 
inconsistencies during ontology merging has been shown 
(Noy & Musen, 2000). Other relevant work includes (Elst, 
2001) and (Dignum, 2002). 
 Previous work in collaborative ontology construction 
environment and recent developments in CSCW 
(Computer Supported Cooperative Work), knowledge 
sharing models, meaning negotiation approaches and 
ontological approach in knowledge management has 
provided a broad base and motivation for our research.  
However, SCOOP is unique in the following aspects: 

(1) SCOOP concentrates on support for knowledge and 
ontology authoring and formation activities. It is not a 
general-purpose CSCW tool. 

(2) SCOOP mainly supports collaborating authors who 
are formalizing knowledge in the same domains to 
create harmonious knowledge for the domains. It is 
not a general-purpose collaborative tool that brings the 
knowledge owners and the seekers together. 

(3) SCOOP provides a conflict detection and limited 
conflict resolution mechanism on the contents the 
authors generate. It is not simply a distributed co-
authoring environment that does not check the 
correctness of the contents.  

(4) SCOOP not only provides notifications to the co-
authors when conflicts are detected, but also conducts 
voting among the related authors and seeks 
resolutions.   

Future Work 
 A primary area of effort is to make it possible for users 
to author content that SCOOP can check for consistency.  
We have developed a system for translating a restricted 
natural language to logic.  Otherwise, we are faced with 
having developers author knowledge in formal logic, 
which would dramatically limit the applicability of this 
work. 
 A second area of effort is in improving the quality of 
proofs of contradiction and redundancy.  We have done 
preliminary work in removing the application of the same 
axiom in a particular line of reasoning.  Additional efforts 
are in removing proof steps that are conceptually very 
small, such as taking advantage of the associativity of the 
logical operator “and” to change the order of clauses.  We 
can currently generate natural language from logic, as well 
as translating from language to logic, although 
considerable work remains in making this output more 
colloquial.   
 A potentially very difficult problem is in guessing how 
long to let a theorem prover run in order to find 
contradictions or redundancies.  It is quite possible that 
however long the system tries to find a problem, that other 
undiscovered problems remain.  Users are not going to be 
willing to wait indefinitely before their knowledge is 
declared consistent and compatible with that of their 
colleagues.  As a result, SCOOP must consider that an 
undiscovered contradiction may at some point cause all 
subsequent proofs to declare the existence of an erroneous 
contradiction, since if the system is asked to prove a 
contradiction, and another real contradiction exists, the 
system will always respond “true”.  This is a result of the 
fact that any fact holds from a contradictory knowledge 
base. 
 Future work will also include a more flexible and 
powerful method for specifying interest and relevance in 
knowledge products.  While currently a simple keyword 
matching scheme is employed, the presence of formally 
encoded knowledge provides a rich basis for more 
powerful methods.  We anticipate provide full logical 
queries to specify interest, and employing our theorem-
prover to pose the query against new knowledge products. 
 Finally, we anticipate providing alternate encodings of 
knowledge to facilitate knowledge sharing.  Our work on 
the DARPA DAML project (Pease et al, 2002) has allowed 
us to develop translators to convert formal ontologies to a 
form suitable for the semantic web.  We have also 
developed a semantic web crawler and search system, 
which should facilitate knowledge discovery on a much 
larger scale than any individual collaboration system will 
allow. 

http://ontology.teknowledge.com/
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