

 Agent-Mediated Knowledge Engineering Collaboration

Adam Pease, John Li

Teknowledge
 [apease | jli]@teknowledge.com

Abstract

Abstract: Knowledge Management is most necessary and
valuable in a collaborative and distributed environment. A
problem with commercial knowledge management tools is
that they do not understand at a deep level the content that
they are managing. In this paper we discuss the System for
Collaborative Open Ontology Production (SCOOP), which
manipulates logic expressions and checks for redundancies
or contradictions between the products developed by
different engineers. SCOOP also includes an automated
workflow process that supports recommendations for
changes and voting to agree on changes.

 Introduction

 The current state of practice in knowledge management
hinges on human review of content. Tools exist for
organizing content or facilitating human collaboration but
they do not understand the knowledge that they are
managing. The System for Collaborative Open Ontology
Production (SCOOP) works with logic expressions (among
other knowledge products), which can be understood, to
some degree, by a machine.
 There are four primary features of the SCOOP
collaboration process.

1. Knowledge is organized hierarchically as a set of files
with inheritance of content. Consistency among these
files is maintained vertically by enforcing that any
assertion must not be contradictory with respect to files
of knowledge that is inherited by the file where the
assertion in question is to be placed. Consistency is
encouraged horizontally by alerting individuals to
contradictions or redundancies with respect to the files
of their colleagues, and providing them a structured
process for being aware of and resolving inconsistencies
if they so choose.

2. Knowledge developers can influence their colleagues in

several ways. They can register supervisory authority
over another developer’s content. They can register
interest in particular keywords that are dynamically
matched to their colleagues’ content, which allows them
to be alerted when new content matching the keywords
is created. They can register interest in specific files or
documents their colleagues are creating.

3. SCOOP assists developers in resolving conflicts and
inconsistencies by identifying the statements by different
developers that are problematic. The system
accomplishes this by analyzing the results of theorem
proving that detects the problem, and extracting only
those statements that were authored directly, rather than
automatically deduced. The full proof remains available
for analysis by the authors if desired.

4. Authors have primary control over their own content but

are given information that can help them maintain
compatibility with the content created by their
colleagues. When an author is alerted to a redundancy
with respect to a colleague’s content, he has several
choices. He may withdraw the knowledge, elect to keep
it, or vote to have it and the colleague’s knowledge
elevated to a more general document. A majority must
vote to elevate the knowledge for this to occur. When a
contradiction is discovered, the developer may either
retract the knowledge, vote to keep it as knowledge
which is contextually valid, although inconsistent with
another view, or vote to have the colleague’s knowledge
removed. Such a vote is informational though since
only the author, or someone who has registered authority
over the author’s content may change the author’s
content. This approach could of course be made stricter
to be in keeping with a more authoritarian work
environment.

General Architecture and Mechanism

 A general architecture of SCOOP and its environment
are shown in the figure below. To the knowledge authors,
SCOOP is an invisible agent working at the background.
Its existence becomes known to the authors only when
conflicts or errors are detected in their products. To
perform the error detection and limited correction
functions described above, the SCOOP has an inference
engine that it uses to process diagnostic queries. This
architecture allows any inference engine to be used for this
purpose as long as it can answer logic queries and provide
justifications. Our current implementation of SCOOP uses
a first order logic (FOL) theorem-prover that accepts KIF
(Genesereth, 1991), the language and grammar in which
the assertions created by users are written. With small
modifications, SCOOP can employ other inference engines
that accept other languages the end users use.

From: AAAI Technical Report SS-03-01. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

SCOOP depends on a distributed scheme of inference.
Each knowledge developer runs a local inference engine
that handles vertical consistency with the developer’s
products, and those products he uses directly. A central
inference engine handles the detection of conflicts between
knowledge developers. Each assertion made by its author
is first verified locally as vertically consistent and then sent
to SCOOP for horizontal consistency check. As required
by this co-authoring task, when the developers start to
work on their own products, their inference engines, as
well as SCOOP’s central inference engine, have the same
background knowledge base loaded.

When a knowledge developer asserts a statement into a
file, SCOOP is notified of this action. The content of the
assertion is sent to SCOOP by the Knowledge Engineering
(KE) Editor that the author uses to enter the assertion.
SCOOP stores that assertion and its authorial information
to its own temporary storage for possible future usage.
When there are multiple assertions, SCOOP treats them in
the order of their arrival. To detect redundancies, SCOOP
asks a central inference engine whether it can prove that
statement is true in the existing context. If it is not
redundant, SCOOP will continue to ask whether the engine
can prove the negation of the statement is true in the
existing context. If both answers are negative, the
statement will be asserted into the inference engine and
becomes a part of the context to test the next statement by
the same or different author. This mechanism of diagnosis
sounds simple but is very powerful when more domain-
specific axioms, diagnostic rules and term interpretations
(such as synonyms and antonyms) are available in the
background knowledge base. For example, SCOOP can
detect a contradiction between (instance MyCar-1
FastMovingObject) and (instance MyCar-1
SlowMovingObject) when there is an axiom in the
knowledge base on the oppositeness of the terms,
FastMovingObject and SlowMovingObject.
 If an error is detected, SCOOP will send the diagnosis
and the justification to the author and other affected
knowledge developers. The justification comes from the
proof by SCOOP’s inference engine but is not a full proof.
It only lists the facts and axioms used by the inference
engine to reach the diagnosis but not the further
deductions. The full proof is generated by SCOOP as a

web page that the user can view if desired. The usage of
justification has two purposes. Besides giving a brief view
of the assertions involved in the diagnosis, the justification
also provides a base for an algorithm to identify the other
authors who are related to the problem because of their
contributions in the proof of the diagnostic result. Since the
authorial information of each assertion is stored in
SCOOP, SCOOP can easily identify the authors from the
assertions and seek solution from only those who need to
know, but not all authors.
 An author has three choices with regarding to a
redundancy warning: withdraw the knowledge, elect to
keep it, or vote to have it and the colleague’s knowledge
elevated to a more general document. As to a
contradiction case, the developer may either retract the
knowledge, or to vote to keep it (in that case the
contradictory knowledge will be removed by the colleague
author). If the author does not want to retract the assertion
diagnosed as redundant or contradictory to the existing
knowledge base, a request to vote will be sent out by
SCOOP to the need-to-know authors/reviewers, together
with the result of the diagnosis message. When all votes
are cast for a case, SCOOP will then tally the votes. The
fate of the statement is determined based on the voting
results and a pre-set policy. The voting authors will be
notified of the decision made on the statement afterwards.

K.E Editor

CVS

SCOOP

FOL
Inference
Engine

K.E Editor
K.E Editor

Diagnostic queries,
Assertions

Diagnosis and
justification

Assertions,
votes

Diagnosis, justification,
Request for votes,
Notification of result

Files to be stored and
retrieved

An Example of SCOOP Usage

 The following example may provide a better
understading of our current implementation of SCOOP.
Suppose there are three knowledge engineers or subject
matter experts, Joe, Jane and Arnold, co-authoring a
knowledge base in a distributed environment. Each of
them is working with a KE editor that is connected to its
local inference engine. To work with SCOOP, a KE editor
must be able to communicate with SCOOP and display
messages as appropriate. We implemented a simple KE
editor as shown in the figure below. Our KE editor has
three major windows: Assertion Editor, Results Window
and a window for Redundant and Contradictory Items. As
the authors log in, the KE editor sends their user names to
SCOOP and SCOOP establishes a user session for each of
them. After an author adds assertions in the KE editor, the
diagnostic result for the assertion is shown in the Results
Window. If a redundancy or a contradiction is detected, a
warning will appear and a new indexed entry will appear in
the Redundant or Contradictory Items window. The author
can see the detailed report (with justification) or the full
proof by highlighting the item in the window and then
making a choice on the View Details button or View
Complete Proof button. The voting buttons are also
enabled when a redundant or contradictory item is selected.

As an example, suppose that Joe defines that a sibling
relationship is an irreflexive relation and his assertion gets
OK from SCOOP:
(instance sibling IrreflexiveRelation)

In SCOOP’s background, there is an axiom about the
IrreflexiveRelation:
(=>
 (instance ?REL IrreflexiveRelation)
 (forall (?X)
 (not
 (holds ?REL ?X ?X))))

Jane is asserting some facts about the sibling relation:

(mother Bill Jane)
(mother Bob Jane)
(sibling Bob Bill)

SCOOP accepts each of these statements and returns an
OK message.

Arnold tries to assert an axiom that defines the sibling

relationship in terms of father and mother relationships:
(=>
 (or
 (exists (?F)
 (and
 (father ?S1 ?F)
 (father ?S2 ?F)))
 (exists (?M)
 (and
 (mother ?S1 ?M)
 (mother ?S2 ?M))))
 (sibling ?S1 ?S2))

As Arnold enters the assertion, SCOOP sends him the
result of the diagnosis, which is a contradiction, and adds
an entry in the windows below “[ITEM-1]
CONTRADICTION”. By highlighting this entry, Arnold
can choose to view the detailed report or view the full
proof. These two reports are as follows:

Sample XML-formatted Report
Note that some XML tags below have been removed for
brevity.
<DETAILS:>
 <ITEM-ID:1>
 <assertion:
 (=>
 (or
 (exists (?F)
 (and
 (father ?S1 ?F)
 (father ?S2 ?F)))
 (exists (?M)
 (and
 (mother ?S1 ?M)
 (mother ?S2 ?M))))
 (sibling ?S1 ?S2))>
 <author: ARNOLD>
 <diagnostics: CONTRADICTION>
 <justification>
 <premises>
 <statement:(mother Bob Jane)>
 <statement:
 (=>
 (instance ?X0 IrreflexiveRelation)
 (forall (?X1)
 (not (holds ?X0 ?X1 ?X1))))>
 <statement:
 (instance sibling IrreflexiveRelation)>
 <conclusion>
 <statement:
 (not
 (=>
 (or
 (exists (?F)
 (and
 (father Bob ?F)
 (father Bob ?F)))
 (exists (Jane)
 (and
 (mother Bob Jane)
 (mother Bob Jane))))
 (sibling Bob Bob))>

Sample Proof

Result: There is 1 answer.
Answer 1:[definite] ?S2 = Bob, ?S1 = Bob
1. (mother Bob Jane)[KB]

2. (=>
 (instance ?X0 IrreflexiveRelation)
 (forall (?X1)
 (not (holds ?X0 ?X1 ?X1))))[KB]

3. (forall (?X0)
 (=>
 (instance ?X0 IrreflexiveRelation)
 (forall (?X1)
 (not (holds ?X0 ?X1 ?X1))))) [2]

4. (forall (?X0)
 (or
 (not (instance ?X0 IrreflexiveRelation))
 (forall (?X1)
 (not (holds ?X0 ?X1 ?X1))))) [3]

5. (or
 (not (instance ?X0 IrreflexiveRelation))
 (not (holds ?X0 ?X1 ?X1))) [4]

6. (instance sibling IrreflexiveRelation)[KB]

7. (not
 (not
 (=>
 (or
 (exists (?X4)
 (and
 (father ?X3 ?X4)
 (father ?X2 ?X4)))
 (exists (?X5)
 (and
 (mother ?X3 ?X5)
 (mother ?X2 ?X5))))
 (sibling ?X3 ?X2)))) [Negated Query]

8. (forall (?X2 ?X1)
 (not
 (not
 (=>
 (or
 (exists (?X0)
 (and
 (father ?X1 ?X0)
 (father ?X2 ?X0)))
 (exists (?X3)
 (and
 (mother ?X1 ?X3)
 (mother ?X2 ?X3))))
 (sibling ?X1 ?X2))))) [7]

9. (forall (?X2 ?X1)
 (or
 (and
 (forall (?X0)
 (or
 (not (father ?X1 ?X0))
 (not (father ?X2 ?X0))))
 (forall (?X3)
 (or
 (not (mother ?X1 ?X3))

 To perform the centralized knowledge harmonization
functions described above, SCOOP is connected to a
Concurrent Version System (CVS) repository that stores
the files developed by all authors at different stages. The
repository is organized into knowledge modules so the
products at different development stages can be stored
together under a theme. SCOOP allows users to specify
relationships between themselves, others and knowledge
products in the system that influences the workflow
process employed when change or conflict occurs. A
knowledge developer can designate another developer as
the knowledge reviewer of his or her products. All users
can also register their interests in the products of other
authors via keywords. If there is any match of the
keywords to the contents of the files in the repository,
existing or in the future, the user will automatically get
informed of the presence of the new or changed content.
When an author submits a file for review, the reviewer will
also automatically get a notice. The reviewers can vote to
approve or reject a document and determine whether a file
should pass the reviewing process. All the notifications
and votes are carried via automatically generated email
messages.

 (not (mother ?X2 ?X3)))))
 (sibling ?X1 ?X2))) [8]

10.(or
 (and
 (or
 (not (father ?X1 ?X0))
 (not (father ?X2 ?X0)))
 (or
 (not (mother ?X1 ?X3))
 (not (mother ?X2 ?X3))))
 (sibling ?X1 ?X2)) [9]

11.(or
 (sibling ?X1 ?X2)
 (not (mother ?X2 ?X3))
 (not (mother ?X1 ?X3))) [10]

12.(not (sibling ?X0 ?X0)) [5,6]

13.(or
 (sibling ?X0 Bob)
 (not (mother ?X0 Jane))) [11,1]

14.(and (= ?S2 Bob)(= ?S1 Bob)) [1,12,13]

Note that in the proof above, [N] after a formula means the
formula is derived from the formula in proof step #N.
[KB] means the assertion already exists in the knowledge
base, either by assertion or in a preloaded background
context.
 The proof shows that the axiom developed by Arnold has
a flaw that can lead to (sibling Bob Bob), violating the
declared irreflexive nature of the predicate. The author
may choose to retract it to resolve the conflict with the
other axioms. If the author chooses to retain the statement,
SCOOP will try to resolve the issue by sending a vote
request to Jane and Joe because their products are involved
in the proof.

Version Control and Change Notification

SUMO
 SCOOP is especially useful when there is a large body
of formal knowledge. The example in the previous section
displays the use of a background axiom in the proof. One
key to having informed and intelligent assistance to the
knowledge developer is having existing knowledge that
can support machine analysis of new content. We
developed a large, formal ontology that can support that
need.
 The SUMO (Suggested Upper Merged Ontology) is an
ontology that was created at Teknowledge Corporation
with extensive input from the SUO mailing list, and it has
been proposed as a starter document for the IEEE-
sanctioned SUO Working Group. The SUMO was initially
created by merging publicly available ontological content
into a single, comprehensive, and cohesive structure (Niles
& Pease, 2001) (Pease et al, 2002). As of January 2003,
the ontology contains 1000 terms and 4000 assertions
including 750 rules. The ontology can be browsed online
(http://ontology.teknowledge.com), and source files for all
of the versions of the ontology can be freely downloaded.
SUMO has also been mapped, by hand, to the complete set
of 100,000 WordNet (Miller et al, 1993) noun, verb,
adjective and adverb word senses. This supports keyword
matching within SCOOP.

Related Work
 The Ontolingua (Farquhar et al, 1996) ontology server
provides user and group access control that can facilitate
group work. It also allows simultaneous access to
ontologies and change highlighting. Some work detecting
inconsistencies during ontology merging has been shown
(Noy & Musen, 2000). Other relevant work includes (Elst,
2001) and (Dignum, 2002).
 Previous work in collaborative ontology construction
environment and recent developments in CSCW
(Computer Supported Cooperative Work), knowledge
sharing models, meaning negotiation approaches and
ontological approach in knowledge management has
provided a broad base and motivation for our research.
However, SCOOP is unique in the following aspects:

(1) SCOOP concentrates on support for knowledge and
ontology authoring and formation activities. It is not a
general-purpose CSCW tool.

(2) SCOOP mainly supports collaborating authors who
are formalizing knowledge in the same domains to
create harmonious knowledge for the domains. It is
not a general-purpose collaborative tool that brings the
knowledge owners and the seekers together.

(3) SCOOP provides a conflict detection and limited
conflict resolution mechanism on the contents the
authors generate. It is not simply a distributed co-
authoring environment that does not check the
correctness of the contents.

(4) SCOOP not only provides notifications to the co-
authors when conflicts are detected, but also conducts
voting among the related authors and seeks
resolutions.

Future Work
 A primary area of effort is to make it possible for users
to author content that SCOOP can check for consistency.
We have developed a system for translating a restricted
natural language to logic. Otherwise, we are faced with
having developers author knowledge in formal logic,
which would dramatically limit the applicability of this
work.
 A second area of effort is in improving the quality of
proofs of contradiction and redundancy. We have done
preliminary work in removing the application of the same
axiom in a particular line of reasoning. Additional efforts
are in removing proof steps that are conceptually very
small, such as taking advantage of the associativity of the
logical operator “and” to change the order of clauses. We
can currently generate natural language from logic, as well
as translating from language to logic, although
considerable work remains in making this output more
colloquial.
 A potentially very difficult problem is in guessing how
long to let a theorem prover run in order to find
contradictions or redundancies. It is quite possible that
however long the system tries to find a problem, that other
undiscovered problems remain. Users are not going to be
willing to wait indefinitely before their knowledge is
declared consistent and compatible with that of their
colleagues. As a result, SCOOP must consider that an
undiscovered contradiction may at some point cause all
subsequent proofs to declare the existence of an erroneous
contradiction, since if the system is asked to prove a
contradiction, and another real contradiction exists, the
system will always respond “true”. This is a result of the
fact that any fact holds from a contradictory knowledge
base.
 Future work will also include a more flexible and
powerful method for specifying interest and relevance in
knowledge products. While currently a simple keyword
matching scheme is employed, the presence of formally
encoded knowledge provides a rich basis for more
powerful methods. We anticipate provide full logical
queries to specify interest, and employing our theorem-
prover to pose the query against new knowledge products.
 Finally, we anticipate providing alternate encodings of
knowledge to facilitate knowledge sharing. Our work on
the DARPA DAML project (Pease et al, 2002) has allowed
us to develop translators to convert formal ontologies to a
form suitable for the semantic web. We have also
developed a semantic web crawler and search system,
which should facilitate knowledge discovery on a much
larger scale than any individual collaboration system will
allow.

http://ontology.teknowledge.com/

References
Dignum, V., (2002), A Knowledge Sharing Model for Peer
Collaboration in the Non-Life Insurance Domain,
Proceedings of German Workshop on Experience
Management, 7. 8 March 2002, Berlin, Germany.
Published in Lecture Notes in Informatics of the German
Society for Informatics. available at
http://www.cs.uu.nl/people/virginia/publications.htm#y03

Elst, L., Abecker, A. “Domain Ontology Agents in
Distributed Organizational Memories”. In Working Notes
of the IJCAI 2001 Workshop on Knowledge Management
and Organizational Memories, August 2001, Seattle,
Washington, USA, pp. 39-48.

Farquhar, A., Fikes, R., and Rice, J., (1996). The
Ontolingua Server: a Tool for Collaborative Ontology
Construction. Proceedings of Tenth Knowledge
Acquisition for Knowledge-Based Systems Workshop.
Available at
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/farquhar/farquha
r.html#RTFToC15

Genesereth, M., (1991). ``Knowledge Interchange Format'',
In Proceedings of the Second International Conference on
the Principles of Knowledge Representation and
Reasoning, Allen, J., Fikes, R., Sandewall, E. (eds),
Morgan Kaufman Publishers, pp 238-249.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and
Miller, K. “Introduction to WordNet: An On-line Lexical
Database.” 1993.

Niles, I & Pease A., (2001) “Towards A Standard Upper
Ontology.” In Proceedings of Formal Ontology in
Information Systems (FOIS 2001), October 17-19,
Ogunquit, Maine, USA, pp 2-9. See also
http://ontology.teknowledge.com

Noy, N., and Musen, M., (2000). PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment.
Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), Austin, TX.

Pease, A., Niles, I., Li, J., (2002), The Suggested Upper
Merged Ontology: A Large Ontology for the Semantic
Web and its Applications, in Working Notes of the AAAI-
2002 Workshop on Ontologies and the Semantic Web.

Statement of Interest of the Authors
Adam Pease is Program Manager and Director of
Knowledge Systems at Teknowledge Corporation. He led
an integration team for the DARPA High Performance
Knowledge Bases project and he participates in the
DARPA DAML project. He was chair of the IJCAI-2001
Workshop on the IEEE Standard Upper Ontology and
initiated Teknowledge's work on a Suggested Upper
Merged Ontology proposal to the IEEE SUO group. He is
the author of the Core Plan Representation (CPR), and the
article "Knowledge Bases" in the Wiley Encyclopedia of
Software Engineering. He worked previously at
NASA/Ames and at the Naval Undersea Warfare Center.
He holds M.S. and B.S. degrees in Computer Science from
Worcester Polytechnic Institute.
http://projects.teknowledge.com/apease

John Li is a senior scientist/project leader for
Teknowledge's Knowledge Systems Division, currently
working on DARPA's Rapid Knowledge Formation (RKF)
project and DARPA Agent Markup Language (DAML)
project. Previously, he worked for Teknowledge on
DARPA's High Performance Knowledge Base (HPKB)
project and other government projects. Dr. Li has his Ph.D.
in Communication and Information Sciences from the
University of Hawaii, 1992. Prior to joining Teknowledge,
John was a Research System Developer, Research
Corporation of the University of Hawaii.

http://www.cs.uu.nl/people/virginia/publications.htm
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/farquhar/farquhar.html
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/farquhar/farquhar.html
http://ontology.teknowledge.com/
http://reliant.teknowledge.com/AAAI-2002/Pease.ps
http://reliant.teknowledge.com/AAAI-2002/Pease.ps
http://reliant.teknowledge.com/AAAI-2002/Pease.ps
http://projects.teknowledge.com/apease

