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Abstract. In this paper, we propose the On-Demand Bluetooth scatter-
net formation algorithm (ODBT). ODBT characterizes an ad hoc infras-
tructure with a tree topology. It is able to cope with topology changes
due to either leaving or moving Bluetooth devices, as well as with de-
vices that dynamically join the scatternet. It can support out-of-range
devices. We describe in detail how ODBT can be implemented in the
Bluetooth protocol stack, and we analyze its performance in comparison
with other proposals existing in the literature, also by means of simula-
tion techniques.

1 Introduction

The Bluetooth technology has been designed with the purpose of replacing ca-
bling amongst neighbor devices, for instance to connect computers and mobile
phones to external devices and accessories via wireless links. Bluetooth is an in-
teresting solution to rapidly deploy wireless infrastractures using low cost, easily
available devices such as PDAs, notebooks and cellular phones.

The base Bluetooth network infrastructure is represented by a piconet, that
is formed by up to 8 Bluetooth devices (BDs) actively participating in the com-
munications, one of which has the role of master while the others act as slaves.
The communication range of a BD is around 10-30 mt., arriving for some devices
to up to 100 mt.; this range is the maximum piconet radius. The Bluetooth spec-
ification includes the possibility of building scatternets, obtained by connecting
several piconets into an ad hoc infrastructure. The scatternets allow to increase
the communication range and the number of BDs involved in a system. Yet,
the scatternet formation mechanism is not provided by the specifications, and is
currently matter of research.

In this paper, we present the On-Demand Bluetooth Scatternet Formation
algorithm (ODBT) to characterize a communication infrastructure connecting a
set of BDs in a tree topology. The scatternet formation is started when needed
by an initiator node, that becomes the tree root; the other BDs are progressively
grafted to the structure, so that the overall topology is optimized with respect
to the latency in the data forwarding. Tipically, the tree root can be the group
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coordinator or the data source. The tree structure guarantees the absence of
loops and minimizes the number of roles each BD can have in the scatternet,
thus reducing the probability that a BD can represent a bottleneck.

2 Bluetooth Architecture

In this section we provide a brief overview of the Bluetooth protocol stack and
operations. The complete Bluetooth specification is provided in [2]. In figure
1(a), we show the low layers of the Bluetooth protocol stack. As the wireless
media, Bluetooth exploits the internationally unlicensed ISM band ranging from
2.4 GHz to 2.48 GHz. It adopts Frequency Hopping Spread Spectrum as the radio
transmission technique, to achieve robustness to the interferences. The hop rate
is 1600 hops per second; hence, each hop slot length is 625 psec. The channel
is partitioned in 79 subchannels having 1 MHz bandwidth each. The baseband
services are exploited by the Bluetooth devices (BDs) to agree on the frequency
hop sequence and to establish the links. The functionalities for the piconet set-up
are involved in the baseband and the Link Manager Protocol (LMP) layers. LMP
also allows to perform the BDs, links and packets configuration. The baseband
and LMP services are accessed through the Host Controller Interface (HCI). The
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Fig. 1. (a) Bluetooth architecture. (b) Example of a scatternet infrastructure.

network layer services are provided by the Logical Link Control and Adaptation
Protocol (L2CAP).

The piconet is built in two steps: the inquiry phase and the page phase.
In the former step, a BD may discover its neighbors by sending broadcast mes-
sages (inquiry procedure). A BD that wants to be discovered performs the
inquiry_scan procedure: upon receiving an inquiry message, it replies with
its own 48-bits MAC layer address (BD_ADDR) and an estimate of its clock
value. In this phase, the BDs are not yet synchronized: in order to increase the
probability that two BDs contemporarily use the same frequency and can then
successfully communicate, an inquiry hopping sequence is used involving 32 fre-
quencies. Those frequencies are split into two groups of 16 frequencies each (a
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train); each train is repeatedly tested before switching to the other train. The
BD_ADDRs and clock estimates of the discovered BDs are used in the succes-
sive page phase to establish a connection. The paged device (the slave) performs
the page_scan procedure by listening for a hop pattern computed basing on
its own BD_ADDR, that was previously sent to the master. The paging device
(the master) enters the page state, in which it sends to the slave information
concerning its own BD_ADDR and clock value, which is used to compute the fre-
quency hopping pattern for the subsequent communications. Since the two BDs
clocks are not yet synchronized, the page procedure is carried out similarly to
the inquiry procedure: the paging pattern involves two trains of 16 frequencies
each, that are repeatedly tested. The page procedure is carried out separately
for each master’s neighbor.

Once the channel has been successfully established at the end of the page
procedure, the master and its slaves communicate exploiting a time-division
duplex policy. The even-numbered slots are for master-to-slave communications;
the odd-numbered slots are for slave-to-master communications. A slave can use
a slot only if it is allowed to by the master in the immediately preceding slot.

As we said before, a master can manage up to 7 active slaves, that can partic-
ipate in the communication; in the page phase, the master assigns to each active
slave a 3-bits active member address (AM_ADDR). Indeed, the number of slaves
grafted to a given master can be higher than 7, but the remaining slaves must
be in park mode. A BD that does not need to participate in the communication
can enter the park mode: the master substitutes the slave AM_ADDR with a
PM_ADDR, that can be used to un-park the BD. A BD can enter the sniff mode
to save energy: it listens to the channel only every T,;ys slots and it maintains
its AM_ADDR. A slave can be put in hold mode by the master for a hold time
holdTO; in the meanwhile, it does not listen to the channel, but, it can be active
in other piconets and it maintains its AM_ADDR. When holdT'O expires, the
slave must wait for a re-synchronization message from the master.

When two piconets are connected into a scatternet structure, the BDs be-
longing to both piconets assume the role of bridges. In fig.1(b), three piconets
are shown (dashed squares): two piconets are connected through a BD behaving
as slave in both of them (S/S bridge); two piconets are connected through a BD
behaving as slave in one piconet and as master in the other piconet (M/S bridge).
The bridges take in charge the traffic forwarding amongst piconets. Since a BD
can be active only in one piconet at a time, the bridges must become active al-
ternatively in each piconet they are connected to. As a consequence, the bridges
represent the potential bottlenecks.

2.1 Related Works

A few other works exist in the literature, that propose mechanisms to form scat-
ternet infrastructures. In Bluetree [8], the scatternet formation is initiated by the
Blueroot, whose identity is predetermined. The Blueroot starts connecting all its
neighbors as slaves. Then, the Blueroot slaves act as masters for their neighbors
and so on recursively. The maximum allowed number of slaves for each master is
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5. To fulfil this constraint, in the second phase of the algorithm the scatternet is
reconfigured by splitting the piconets that are too dense. Bluenet [7] builds scat-
ternets by initially aggregating the BDs into piconets involving at most N,az
slaves, and then by interconnecting the piconets. In the simulations presented in
[7], Nimaz was equal to 5. In Bluenet, a bridge node must avoid to form multiple
links with the same piconet. This is achieved by having the BDs that provide
information about the piconet they currently belong to, when they are paged.
BTCP [5] is a 3-phases algorithm: in the first phase an election protocol is carried
out, at the end of which the chosen coordinator knows the identities of all the
participants. In the second phase the coordinator chooses other P — 1 masters to
form P piconets, and P- (P —1)/2 bridges, thus characterizing a completely con-
nected topology among the piconets in the third phase. The probability that the
scatternet is connected depends on the time spent in electing the coordinator.
In [5] some considerations are presented, concerning the timers sizing. LMS [3]
is a distributed randomized algorithm. The BDs try to aggregate into piconets,
which are then merged to form a scatternet. Piconets are reconfigured to make
them dense (by merging low populated piconets), thus minimizing the number
of piconets composing the scatternet. It has been proved that the formed scat-
ternets have a O(logn) diameter, with n the number of involved BDs, and the
message complexity equals O(n). Some extensions are outlined to support mov-
ing, joining and leaving nodes, as well as BDs that are not all in range with each
other. TSF [6] characterizes a tree scatternet by building a forest of piconets
and scatternets that are then merged. The merging procedure is such that it
guarantees loop freeness. TSF is the unique solution that explicitly allows nodes
to start communicating while the scatternet is under construction. Among the
considered algorithms, only TSF explicitly addresses the problems related with
the management of the node mobility, and BDs dynamically joining and leaving
the scatternet. Anyway, TSF may fail in characterizing a connected scatternet if
the nodes are not all in range of each other; in particular, it is not able to merge
two scatternets if their roots are out of range.

The ODBT algorithm we propose in this work represents an improvement on
the Bluetree algorithm. We study in depth the issues involved with the practical
implementation of the scatternet formation algorithm in the Bluetooth archi-
tecture, and we describe mechanisms to support mobility and BDs dynamically
joining and leaving the scatternet. ODBT can, to some extent, support out-of-
range BDs; moreover, it allows the data forwarding during the tree construction.
ODBT achieves a trade-off between the data transmission latency and the con-
trol overhead, trying to maintain a low tree depth. In sec. 4, we compare the
above algorithms with ODBT.

3 Scatternet Formation Algorithm

In this section, we describe ODBT. For the sake of simplicity, in section 3.1 we
firstly assume that the BDs are all in range, and that the BDs do not move,
neither they dynamically join or leave the system; crash failures are not consid-
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ered. In section 3.2, we discuss in detail the synchronization issues that allow
the link maintenance and the message forwarding, by appropriately controlling
the behavior of the bridge BDs switching between two piconets. In section 3.3,
we finally relax the assumptions above by considering the mechanisms adopted
to deal with dynamically changing membership and topology.

3.1 Algorithm Overview

The scatternet formation is initiated by the scatternet root (SR). We assume that
each BD knows whether it has to assume the role of SR or not. This assumption
is appropriate, as for the most part of the customized applications requiring a
scatternet infrastructure, the BD coordinating the group activities is known at
configuration time.

The scatternet is built trying to minimize the number of piconets by max-
imizing the number of BDs involved in each piconet, with a twofold purpose:
the lower is the number of piconets, the lower are both the path lengths and
the number of bridges, which are bottlenecks in the data forwarding because
they have to switch between two piconets. To build the first scatternet layer, the
SR performs the inquiry procedure, while all the BDs different from SR start
performing the inquiry_scan procedure. The inquiry and page procedures are
performed as usual to form a piconet, but they are repeated until the SR con-
nects exactly 7 slaves'. At that point, the SR notifies its slaves that they may
in turn continue the scatternet formation, by becoming masters and connecting
other BDs. This procedure is recursively repeated, with each master that, after
having connected 7 slaves, authorizes them to become masters and to form new
piconets. Notice that, continuing the scatternet formation only when a piconet
is full does not guarantee that the obtained tree is balanced. Indeed, one branch
may grow faster than another, because it is not required that a whole tree level
is completed before starting a new one. Yet, this policy aims at filling up each
piconet as much as possible before creating new piconets, while a good balancing
is guaranteed by the contemporary start of all the bridges belonging to the same
piconet. A perfectly balanced tree could be obtained only by having the SR that
coordinates the tree growth level by level. This would be expensive in terms of
the number of control messages that should be exchanged.

Once a BD is connected to a master, it does not reply to the inquiries
of other BDs; as a consequence, all the bridges in the scatternet are of type
master/slave and each BD belongs to at most two piconets. This also guarantees
that the tree is loop free: indeed, a loop could form if a master connects as slave
a BD already connected to another piconet.

The bridge BDs must alternate between the slave role in the upstream piconet
and the master role in the downstream piconet. According to the Bluetooth
specification, a link is considered broken if it is not used for a supervisionTO
timer, whose default value is 20 sec. To guarantee that links are not disrupted
in a piconet while a BD is active in the other, we choose to exploit the Hold

! Remind that we are assuming that all the BDs are in range.
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Mode for two reasons: the hold mode does not require to reassign the BD active
member address, and a BD in hold mode does not listen to the channel until
the holdT'O expires, thus allowing energy saving. As we discuss in sec.3.2, the
holdT'O value must be negotiated depending on the state of the downstream
piconets. According to the Bluetooth specification, the hold mode negotiation
requires one slot for the master to broadcast the LMP_hold_request and one
slot for each slave to reply with a LMP_hold_accepted. In figure 2, we show the

SR S1 S8
Lmp_hold_request
oR L 1 Inquiry
Lmp_hold_accepted [ ———
S1 Inquiry response
| Uiy response
@ @ HoLD | P
S
Page response
(s3 | Pageresponse
@ DATA EXCHANGE
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@ re-synchronization ~ Jj«—— |
]

Fig. 2. Communication pattern for the first tree levels.

communication pattern for the SR and the first 2 levels of the tree. When SR has
grafted the slaves S; through S7, it authorizes them to form new piconets. Then,
SR puts its slaves into hold mode so that they can become active as masters.
Before the holdT'O imposed by SR to its slaves expires, S; must put its own
slaves into hold mode. This way S can return active in the SR piconet without
its inactivity being interpreted as a disconnection by Sg. While a piconet is under
construction, the slaves it involves simply alternate between the active and the
hold state.

3.2 Device Synchronization

To guarantee the tree connectivity we must carefully synchronize the BDs; the
synchronization must be compliant with the Bluetooth specification. In figure
3, we show the lifecycle of a bridge, a connected slave of its still incomplete
piconet and a free BD? throughout the tree construction. Those lifecycles have

2 That is, a BD that does not belong to any piconet.
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to fit together: a master that is forming its own piconet must periodically return
active in the upstream piconet as a slave, according to the holdT'O imposed
by its own master. By contrast, when the SR’s slaves are active in their own
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Fig. 3. Timers sizing.

piconets, SR remains inactive (fig.2).
Let us define the following time intervals:

inquiryTO is the interval in which a bridge performs the inquiry procedure;

Tisc_tength is the interval during which a free BD performs the inquiry_scan
procedure. Since a free BD that receives an inquiry waits for a random
time Tk (0 < Tr < 1023 slots, that is, Tr < 0.64 sec) before replying, it
must be Crisc,length > TR;

Tpsc_iengtn is the interval during which a free BD either performs the
page-_scan procedure, if it has replied to an inquiry message in a previous
inquiry_scan phase, or it stays inactive waiting to start a new inquiry_scan
phase;

age_scan 18 the interval between the beginnings of two consecutive page_scan
phases for a free BD. It equals Tisc_jength + Lpsc_iength;

Thage_tengtn is the interval during which a bridge performs the page procedure;

Tuctive 18 either the interval in which a bridge is active as a master in its own

piconet or the interval in which a BD is active as a slave in the upstream
piconet.

T,

p

The inquiryTO and Tpage_scan timers are defined as in the specifications. We
can derive the above timer values from the Bluetooth specification, as follows.
The minimum value for inquiryT O is 1.28 sec., which allows to perform half
of a train test. We adopt inquiryT’O = 1.28 sec. To maximize the probability
that a master and a free BD meet, thus minimizing the scatternet formation
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latency, we choose the time spent in the inquiry_scan state (Tisc_jengen) equal
to inquiryTO, that is, 1.28 sec. Moreover, we set Tpgc_jength = 1.28 sec.; this
way, Tpage_scan = 2.56 sec. If the interval between two consecutive page_scan
phases is between 1.28 sec. and 2.56 sec., then the master shall use mode R2
to perform the page procedure, that is, it must repeat a train scan at least 256
times, thus spending 2.56 sec. which we adopt as the value of Ty,qgc_iength- Tactive
must be long enough to allow the master to turn into hold mode its slaves, and
to forward them some data. We choose to have the BDs active for 28 slots in each
piconet: 14 slots are for the data exchange and 14 slots are for the hold mode
negotiation. Hence, Tyetive = (28-0.625msec.) = 17.5 msec. A bridge stays active
17.5 msec. in the upstream piconet and 17.5 msec. in the downstream piconet.
We also need a mechanism to de-synchronize the masters and the free BDs: if
a master constantly performs the inquiry phase while some of the free BDs
surrounding it are in the page_scan phase, they never connect. We introduce
some randomization by having each BD that waits for a random time after the
bootstrap before starting the first inquiry_scan procedure.

When a piconet is completed, the execution of the inquiry and page proce-
dures is useless, and the activity time of a master can be completely exploited
for the data exchange. In fig.4, we show the timers settings after the algorithm

SR slave/master slave/master slave/master slave
active HOLD — active (17.5 ms) <—] H
= (19375ms) = inquiry 0
(1937.5 ms.) (1280 ms.) L
HOLD I ’ D
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(1937.5 ms.) (1937.5 ms) -
—= active (17.5 ms) <—]
. = active (17.5 ms) <— H
active HOLD L. 0
(1937.5 ms) (1937.5 ms.) 1121;1;1 = L
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(19375 ms) (19375 ms) > active (17.5ms) <—

Fig. 4. Timers sizing after the scatternet has been built.

termination in the case of a 5-layers tree. The masters of the leaf piconets con-
tinue performing the inquiry and page procedures to support joining BDs, as
we discuss in the next section. This requires an appropriate sizing of holdTO
at the above layer, that is achieved through the hold mode negotiation. The
inquiry and page phases in the leaf piconets could be avoided only under the
assumption that the number of BDs that must be connected to the scatternet
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is a priori known, or that an agreement is maintained about the membership
cardinality in spite of dynamic join and leave events. With this assumption, the
whole bandwidth could be used for the data exchange once it is known that all
the BDs have been grafted. Yet, we do not consider this assumption because in
real environments the membership knowledge is in general not available.

3.3 Dynamic Membership and Topology

In this section, we describe the mechanisms to support dynamic changes in the
scatternet topology and membership.

A bridge that leaves the scatternet partitions the ad hoc infrastructure leav-
ing disconnected all the downstream piconets. The same occurs if a bridge moves
out of the range of its upstream or downstream neighbors. To reconnect the scat-
ternet, the disconnected subtree is flushed: a bridge noticing the disconnection
from its parent® notifies the failure to its own children and so on recursively, so
that all the BDs in the disconnected subtree become free and they can rejoin.
A free BD can graft the scatternet by becoming a slave in a not yet completed
piconet.

It is more difficult to release the assumption concerning out-of-range BDs.
In [8], the definition of geographically connected system is provided. A set of
BDs is geographically connected if a (multi-hop) path exists between every two
of them. This property is necessary to build a connected scatternet; anyway,
it is not sufficient. If a master M exists having N free BDs in range, with NV
greater than the number of BDs M can connect, then M must select a subset
of those BDs as slaves. The other free BDs could be out of the range of every
other master, thus failing in connecting the scatternet.

As we will discuss in sec.4, the ability of exploiting the system geographical
connectivity varies in the different algorithms. ODBT may suffer of the above
syndrome. Anyway, the scatternet formation procedure may be modified to deal
with out-of-range BDs while doing a best effort to form a connected infrastruc-
ture. According to the Bluetooth specification, in an error free environment the
inquiry procedure must span at least 3 train switches (i.e., 10.24 sec.) to collect
all the responses. We modify ODBT so that each master performs the inquiry
procedure 8 times, before allowing its slaves to become bridges and to take for-
ward the scatternet formation. This way, we still try to maximize the number of
slaves per piconet, while at the same time preventing the algorithm from starv-
ing on a scatternet branch because of the lack of enough BDs in the range of a
master. To dynamically graft moving and joining BDs, moreover, each master
having less than 7 slaves periodically performs the inquiry and page procedures.

4 Performance Evaluation

In Table 1, we summarize the characteristics of ODBT and the other scatternet
formation algorithms described in 2.1. The characterization of a tree topology,

3 Because of the supervisionTO expiration.
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as done by ODBT, guarantees that no loops exist. The tree can be exploited as is
for broadcast communications; otherwise, routing is easy to perform by appropri-
ately forwarding the data along a subset of the tree branches. By contrast, when
redundant paths exist between two BDs, a routing service is needed to avoid
bandwidth waste in the message forwarding, but, the scatternet has a greater
resilience to node mobility and failures. ODBT exploits M/S bridges only: ac-
cording to [4], they allow to achieve lower inter-piconet delay with respect to S/S
bridges. Differently from ODBT, the most part of the solutions proposed so far
does not support BDs mobility or nodes leaving the scatternet, nor BDs joining
after the procedure completes. Joining nodes can be supported provided that
the masters of the incomplete piconets (i.e. those with < 7 slaves) periodically
perform inquiries in order to discover them. The greater the number of incom-
plete piconets, the greater the probability that a free BD moves in a piconet that
can graft it. On the other hand, the more populated are the piconets, the lower
is the number of piconets, and the shorter are the paths within the scatternet.
A short path requires a low number of bridge’s switchings between adjacent pi-
conets, thus providing a low latency. Bluetree and Bluenet explicitly bound the
maximum number of slaves per piconet, but they are not able to exploit this
characteristic to support dynamically joining devices. The goal of minimizing

Table 1. Comparison among scatternet formation algorithms.

ODBT!| Bluetree | Bluenet BTCP LMS TSF
topology tree tree graph |fully connected graph tree
bridge type M/S |M/S, S/S|M/S, S/S| M/S, S/S M/S,S/S |M/S
mobility support yes no no no with extensions| yes
Join/Leave support| yes no no no with extensions| yes
dense piconet <7 5 Niaz <7 6 1
# phases 1 2 3 3 1 1
out-of-range BDs yes yes yes no with extensions| no

latency also motivates the choice of all the algorithms of having < 7 slaves for
each piconet: the management of the non-active slaves would prohibitively in-
crease the re-synchronization complexity. On the other hand, apart from ODBT,
all the considered works do not discuss in detail the problems involved by the
BDs timer configuration for the switching between adjacent piconets. A perfor-
mance index of a scatternet formation algorithm is the time spent to terminate
before starting the data forwarding. Some algorithms require multiple phases,
involving the discovery of the existing BDs and possible reconfigurations of the
infrastructure characterized in the previous phases. Those reconfigurations may
hinder the fast scatternet formation, thus negatively affecting the algorithm per-
formance particularly in the case of mobility. By contrast, ODBT, LMS and TSF
build the scatternet in one phase. The algorithms differ in the ability of dealing
with out-of-range BDs. Those BDs cannot be supported by both BTCP and
TSF. In the former algorithm, all BDs have to be in range to carry out the
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coordinator election. In the latter algorithm, two neighbor components could be
prevented from merging because the respective roots are out of range. Bluenet
has problems similar to TSF, but its ability of merging two piconets exploiting
any BD makes it more tolerant to out-of-range devices. The ODBT behaviour
should be similar to that of Bluenet with respect to supporting out-of-range
BDs. Bluetree seems to be the more effective solution to support out-of-range
BDs, thanks to the capability of reorganizing the piconets. Notice that dealing
with out-of-range BDs allows to build scatternets spanning a larger area, thus
overcoming the limitations due to the short communication range provided by
the Bluetooth technology.

4.1 Simulation Results

In this section we provide a quantitative analysis of ODBT by means of simu-
lation techniques. ODBT has been implemented in the framework of the Ns-2
network simulator, extended with Blueware [1] that simulates the Bluetooth
protocol stack. Blueware includes the TSF implementation; this allows us to
compare the behaviors of ODBT and TSF. So far, the simulation environment
does not allow to reproduce BDs movements, nor it involves the notion of dis-
tance amongst BDs. As a consequence, we performed experiments only with
in-range? BDs that do not move.
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.
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Fig.5. (a) Termination time of the scatternet formation algorithms. (b) Standard
deviation of the termination time.

The number of BDs varies between 10 and 200; the device with identifier 0
assumes the role of SR. We performed experiments with both BDs starting all
at the same time and BDs starting sequentially every 2 sec., obtaining compa-
rable results. The results reported in this section refer to the latter case; every
experiment has been repeated 50 times and we report the average results.

4 This is a required TSF condition.
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In fig.5(a), we show the average termination time. In TSF, when two compo-
nents (either piconets or scatternets) meet, they can be merged into one. In our
experiments, we observed that TSF tends to form pairs of BDs (a master con-
nected to only one slave), that are then combined. This requires checking that the
newly created links do not form loops, and possibly performing a master/slave
switch to merge the two components. These operations are time consuming and
they negatively affect the algorithm performance. Moreover, the algorithm be-
haviour is highly unstable: in fig.5(b), we show the standard deviation of the
termination time. That behaviour depends on how the components form and
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Fig. 6. (a) Average number of piconets forming the scatternet. (b) Average number of
slaves per piconet.

merge throughout the simulation, depending on random events that make the
algorithm performance not predictable. This characteristic may be a flaw with
respect to the service provided to the users, in that it delays the data forward-
ing particularly to the last connected BDs, that can observe data loss if the
transmission starts while the scatternet formation is still ongoing.

ODBT builds more dense trees than TSF: in fig.6(a), we show the average
number of piconets composing the scatternet, while in fig.6(b) we report the
average number of slaves per piconet. In the ODBT case, indeed, all the high
level piconets have 7 slaves in the adopted experimental setting; the average is
decreased by the leaf piconets. Having the slaves in a piconet that contemporarily
start behaving as bridges allows to obtain balanced trees: in our simulations we
observed a maximum difference of one level among the leaf piconets. By contrast,
the random component merging in TSF tends to form low populated piconets
that concatenate to each other yielding deep trees (fig. 7(a)).

Minimizing both the tree depth and the number of piconets allows to min-
imize the number of bridges as well. Bridges represent the bottleneck in the
data forwarding, as a bridge receiving data from its upstream master has to
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wait that the master puts it into hold mode, before acting as a master on its
own and forwarding the data in its downstream piconet. We evaluated the la-
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Fig. 7. (a) Average tree depth. (b) Maximum latency in the data forwarding with
ODBT.

tency perceived at the farthest BD from the SR, after the scatternet has been
formed, averaged on 1000 data packets (fig.7(b)); the reported results refer to
the complete infrastructure where the leaf masters do not execute the inquiry
and page procedures. The latency increases with the number of involved BDs
proportionally to the increase of the tree depth.

5 Concluding Remarks

In this work we present the On-Demand Bluetooth scatternet formation protocol
(ODBT) for the formation of scatternets with a tree topology. We show how the
Bluetooth stack should be configured to implement ODBT. We compare ODBT
with other algorithms existing in the literature, also by means of simulation
techniques.

ODBT builds efficient tree structures, minimizing the number of bridges con-
necting the piconets and relying only on M/S bridges. ODBT shows a stable
behaviour for increasing number of involved BDs. It is able to dynamically re-
configure the scatternet to deal with joining, leaving and moving BDs, and it
can support out-of-range devices.

We are currently extending the simulator with the notion of distance amongst
BDs and the simulation of movements, to perform further experiments with
ODBT in order to evaluate its behavior in the presence of out-of-range moving
devices. In particular, we are interested in observing how the data transmission
latency varies as a function of the number of slaves that are grafted in the
piconets.
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As a future work, we plan to extend the protocol so that it can operate in the
presence of multiple SRs. In the case different devices contemporarily start the
formation of a scatternet involving the same BDs, we must be able to merge the
different scatternets into one to guarantee the system connectivity. This can be
achieved by including a SR election algorithm in ODBT. Further developments
concern the implementation of unicast and multicast routing services on top of
ODBT, and the deployment of ODBT on a testbed platform.
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