
R. Battiti, M. Conti, and R. Lo Cigno (Eds.): WONS 2004, LNCS 2928, pp. 184–198, 2004.
© IFIP International Federation for Information Processing 2004

Dependable and Secure Data Storage in Wireless Ad Hoc
Networks: An Assessment of DS2

S. Chessa1,2, R. Di Pietro3, and P. Maestrini1,2

1Dipartimento di Informatica, Università di Pisa,
via Buonarroti 2, 56127 Pisa, Italy

2Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Area della Ricerca CNR, via Moruzzi 1, 56124 Pisa, Italy

3Dipartimento di Informatica, Università di Roma “La Sapienza”,
via Salaria, 113 – 00198 Roma, Italy

Abstract. DS2 is a dependable and secure data storage for mobile, wireless
networks based on a peer-to-peer paradigm. DS2 provides support to create and
share files under a write-once model, and ensures data confidentiality and de-
pendability by encoding files in a Redundant Residue Number System. The pa-
per analyzes the code efficiency of DS2 using a set of moduli allowing for effi-
cient encoding and decoding procedures based on single precision arithmetic,
and discusses the security issues. The comparison of DS2 with the Information
Dispersal Algorithm approach (IDA) shows that DS2 features security features
which are not provided by IDA, while the two approaches are comparable from
the viewpoint of code efficiency and encoding/decoding complexity.

1 Introduction

Mobile ad hoc networks are composed by a set of mobile hosts (also called mobiles)
communicating with each other via radio transceivers. In order to communicate with
destinations which are located outside of their transmission ranges or hidden by ob-
stacles, communicating mobiles rely on other mobiles which cooperate to forward
messages to their destinations. To this purpose the network layer of the mobiles pro-
vides services of message delivery by running suitable routing algorithms [1], [2].
However, mobility and failures may give rise to network disconnections impairing
service dependability.

Due to mobility of nodes, the network topology varies with time. At a given instant
of time it is described by a graph where nodes are the mobiles, and a link connecting
two nodes in the graph means that the corresponding mobiles can communicate di-
rectly.

The mobiles rely on on-board batteries for energy supply, hence energy efficiency
of mobiles is an important issue [3]. The effect of battery depletion is similar to a
crash fault, from which the mobile may or may not recover depending on the avail-

Dependable and Secure Data Storage in Wireless Ad Hoc Networks 185

ability of battery replacement/recharge. As mobiles may not be equipped with perma-
nent storage, failures may result in data losses or corruption.

An important issue in mobile ad hoc networks is how to implement dependable
and secure data storage. This is an essential requirement in applications where the
mobiles cooperate by sharing information and need to create and access shared files.
The system should prevent data losses or corruption due to network disconnections,
mobile failures or malicious attacks from untrustworthy mobiles, and it should pro-
vide the file owners with mechanisms for secure distribution of files access privileges.

Several techniques to implement dependable and/or secure data storage have been
proposed in the recent literature [4-10]. Some of these, which are based on a client-
server paradigm [4], [5], hardly fit the ad hoc network model which is rather based on
a peer to peer paradigm. Other approaches are conceived for systems connected with
fast, wired networks, where mobility and disconnections of nodes is not supported
[6], or which pay considerable communication overhead to implement a sophisticate
model of intrusion tolerance based on user authentication [7].

Dependable storage systems based on a peer to peer paradigm which may adapt to
the ad hoc network model have also been introduced [8], [9]. They exploit techniques
of data fragmentation and dispersal [10] based on erasure codes [11] and use cryptog-
raphy to achieve data confidentiality.

The technique of data fragmentation and dispersal was originally introduced in
[10], where an information dispersal algorithm (IDA) had been proposed. It exploits
erasure codes which are optimal with respect to code efficiency and allows for effi-
cient encoding and decoding procedures.

A new technique to achieve dependable and secure data storage (DS2) in wireless
networks has been proposed in [12]. DS2 exploits Redundant Residue Number System
(RRNS) [13], [14] to encode data, which allows for a uniform coverage of both era-
sure and errors. RRNS encode data as (h+r)-tuples of residues using h+r keys, or
moduli. Residues are distributed among the mobiles in the network. Recovering the
original information requires the knowledge of at least h residues and of the corre-
sponding moduli. Data can be reconstructed in the presence of up to s≤r residue

losses (erasures), combined with up to  2
sr− corrupted residues. As compared to

IDA, DS2 features basic data confidentiality which is inherently provided by the
RRNS encoding. Data confidentiality is ensured since mobiles having access to the
residues are able to decode them only if they also know the correspondence of the
residues with the set of moduli.

In this paper we evaluate the code efficiency and the coding/decoding complexity
of DS2, we analyze the security issues related to DS2 and we compare DS2 and IDA.

The rest of the paper is organized as follows. The Redundant Residue Number
Systems and DS2 are reviewed in sections 2 and 3, respectively. Section 4 and 5 ana-
lyze the code efficiency and the encoding/decoding complexity, respectively. Section
6 discusses the security issues and Section 7 compares DS2 with IDA. Section 8 draws
the conclusions.

186 S. Chessa, R. Di Pietro, and P. Maestrini

2 Redundant Residue Number Systems

Given h+r pairwise prime, positive integers m1,…,mh+r called moduli, let

∏ +

+=
=

rh

rp pmM
1

, ∏ =
=

r

p pR mM
1

, and, without loss of generality, mp>mp–1 for each

p∈[2,h]. Given any non-negative integer X, let xp = X mod mp be the residue of X
modulo mp. In the rest of the paper also notation (a)b will also be used to denote a
mod b.

The number system representing integers in [0,M) with the (h+r)-tuples of their
residues modulo m1,…,mh+r is called the Redundant Residue Number System (RRNS)
of moduli m1,…,mh+r, range M and redundancy MR [13], [14]. For every h+r-tuple
(x1,…,xh+r), the corresponding integer X can be reconstructed by means of the Chinese
Remainder Theorem:

()
R

p

MMrhp
mpp

p

R x
m

MM
X

⋅+=























 ⋅
= ∑

,1

β (1)

where, for each p∈[1,h],

pmp

R
p m

MM ⋅=β is the multiplicative inverse of M·MR/mp

modulo mp, that is, 1=








 ⋅

pm

p
p

R

m

MM β [15], and βp is in the range [0,mp).

Although the given RRNS could provide unique representations to all integers in
the range [0,M·MR) [15], the legitimate range of representation is limited to [0,M), and
the corresponding h+r-tuples, are called legitimate. Integers in [M,M·MR) and the
corresponding (h+r)-tuples are called illegitimate.

Given an RRNS of range M and redundancy MR, with moduli m1,…,mh+r, let (x1,…,
xh+r) be the legitimate representation of some X in [0,M). An erasure of multiplicity e
is an event making unavailable e arbitrary digits in the representation, and an error of
multiplicity d is an event transforming d arbitrary, unknown digits. If e+2d≤r then the
RRNS can correct the errors to reconstruct X [12].

Efficient error correcting algorithms are reported in [16-18], while an overview on
RRNS is available in [19].

3 The Dependable and Secure Data Storage for Ad Hoc Networks
(DS2)

In the Dependable and Secure Data storage for mobile ad hoc networks (DS2) [12] the
mobiles cooperate by creating and sharing files. The system provides procedures to
create, share and access the files. Once created a file can be written or removed only
by its owner (the file creator).

Dependable and Secure Data Storage in Wireless Ad Hoc Networks 187

Hereafter we assume that each mobile is assigned with a unique identifier ranging
from 0 to n–1, and we will sometimes use the concise notation ui to denote the mobile
i.

The file creation procedure exploits an appropriate RRNS to encode a file. To this
purpose ui selects a set of h+r moduli (pairwise prime positive integers) m1,…,mh+r

with mp>mp–1 for each p∈[2,h+r]. The moduli are chosen among a set of available
moduli computed offline. Since the maximum number which can be represented is
limited by the range M=mr+1⋅…⋅mh+r of the RRNS, files of sizes exceedingly the range
are preliminary partitioned into records b1,…,bs of size b bits each, with 2b≤M, and
each record is encoded separately.

Record bt is encoded in the RRNS of moduli m1,…,mh+r by the (h+r)-tuple of resi-
dues (xt,1,…,xt,h+r). Each residue is sent to a different mobile currently reachable by the
file creator, which in turn stores the residue in its storage. The assignment of mobiles
to residues is arbitrary with the only constraint that different residues of the same
record should be stored in different mobiles. Note that the mobiles storing the residue
are not provided with any information about the modulo used to encode that residue.

The file owner maintains a file descriptor containing the set of the moduli used for
encoding and s record descriptors. Each record descriptor contains the set of the list
mobiles storing the residue digits of the record with the correct association between
mobiles and residues. The file descriptor is kept secret by the owner.

Due to the encoding properties, the file records can be read separately. Record
reading requires knowledge of correspondence between the mobiles storing the resi-
due and the moduli used to encode the residues. Assuming that a mobile i owns a
copy of the file descriptor, it can issue read requests to all the mobiles storing a given
record bt. During the read procedure some of the requested residues could be lost
during the communication or even could be corrupted before reaching i. Once ui re-
ceives a sufficient number of residues, it executes the decoding procedure based on
the Chinese Reminder Theorem. If no residues are corrupted the decoding procedure
returns the value of bt, otherwise ui will attempt to recover from the corrupted resi-
dues. In general, the original content of record bt can be recovered only if the residues
are decoded with the correct moduli and the multiplicity of the erasures e and of the
errors d is such that 2d+e≤r.

File sharing is enabled by the file owner by distributing encrypted replicas of the
file descriptor to trusted mobiles. In DS2 it is assumed that mobiles sharing a file are
not allowed to distribute the file descriptor to other mobiles, nor to write or remove
the file. Since it is assumed that the mobiles sharing the file are trusted by the file
owner, DS2 does not employ any mechanism to inhibit distribution of descriptors. The
policy of denying write and remove privileges is enforced by the mobiles hosting the
residue digits. Failure to enforce this policy is equivalent to malicious digit corruption
by the hosts.

The reader is referred to [12] for an extensive presentation of the DS2.

188 S. Chessa, R. Di Pietro, and P. Maestrini

Table 1. Set of moduli used for the encoding

m1 65536 m10 65503 m19 65449 m28 65393 m37 65339

m2 65533 m11 65501 m20 65447 m29 65383 m38 65327

m3 65531 m12 65497 m21 65437 m30 65381 m39 65323

m4 65529 m13 65491 m22 65431 m31 65371 m40 65321

m5 65527 m14 65489 m23 65423 m32 65369 m41 65311

m6 65525 m15 65479 m24 65419 m33 65363 m42 65309

m7 65521 m16 65477 m25 65413 m34 65357 m43 65293

m8 65519 m17 65473 m26 65411 m35 65353 m44 65287

m9 65509 m18 65459 m27 65407 m36 65347 m45 65281

4 Code Efficiency of DS2

We firstly evaluate the code efficiency without redundancy (that is, r=0). Let f be a
file created by mobile i composed by s records b1,…,bs, where each record consists of
b bits.

To improve the performance of the encoding/decoding procedures, we select the
set of moduli such that most of the operations can be performed using single precision
arithmetic. To this purpose we constructed a library of 45 moduli which is shown in
Table 1. The largest modulo m1 is 216, and all the other moduli have been chosen as
close as possible to 216, with the constraint that the moduli must be pairwise prime.

Consider the Residue Number System with no redundancy (thus r=0) of the first h
moduli of Table 1, and let M= m1⋅…⋅mh be its range and  Mb 2log= . Assume that

record bt (t∈[1,s]) is in the range [0,2b) (it can be represented with b bits), and bt is
encoded into the set of residues xt,1,…,xt,h where residue xt,p (p∈[1,h]) is encoded with
16 bits. Hence the entire record is encoded in e=16h bits.

The code efficiency is defined as the ratio ϕ=b/e. The code efficiency of encoding
with the first h moduli in the library of Table 1 is above 0.96 for h≤6, and it is above
0.99 for h>6.

However, assuming range [0,2b) for records, would imply that the length of the re-
cords, prior to residue encoding, would not be aligned to bytes. If this is a require-
ment, the length of records should be set to b’=b–β’, where β is the smallest positive
integer such that b’ is a multiple of the byte length. For any choice of h in the library
of Table 1, with 1<h≤45, b’=16h–8, and the record length b’ scales linearly with h.

Under the latter assumption, Figure 1a depicts the code efficiency in terms of the
ratio ϕ=b’/e for different values of h. It is seen that, as h increases, the difference
between b’ and e remains constant while b’ and e increase, and hence the code effi-
ciency also increases.

We now evaluate the code efficiency using r>0 redundant moduli. Let us consider
the RRNS of the first h+r moduli of Table 1. Since the redundant moduli should be
larger than the non-redundant ones, the range is given by M=mr⋅…⋅mh+r, and and

 Mb 2log= . Record bt (t∈[1,s]) is encoded into the set of residues xt,1,…,xt,h+r, where

Dependable and Secure Data Storage in Wireless Ad Hoc Networks 189

xt,p (p∈[1,h+r]) has length 16 bits, and the length of the encoded record is e=16(h+r).
Assuming that the length of the record, prior to residue encoding is aligned to the
byte, and defining b’=16h–8. as above, the code efficiency ϕ=b’/e has been evalu-
ated for r∈[1,10] and h∈[1,35]. As shown in Figure 1b the code efficiency increases
rapidly for h<10, after which it asymptotically approaches h/(h+r).

5 Encoding/Decoding Complexity of DS2

Consider first the complexity of operations (p+q)m and (pq)m, with p,q∈[0,2l). For the
sake of simplicity, we tolerate that the computation yields [p+q]m and [pq]m where [x]m

denotes an integer in [0,2l) congruent to (x)m. This substitution is tolerable, and some-
times useful, in the application under consideration. It is assumed that m=2l–δ, with
l=16 and δ<28. The latter assumption holds for all moduli in the library of Table 1.

Given integers p,q∈[0,2l), let p+q=a12
l+b1 where a1 and b1 are non negative inte-

gers. From p+q≤2l+2l–1 and m=2l–δ it is immediate that a1≤1, b1≤2l–1 and
[p+q]m=[a12

l+b1]m=[a1m+a1δ
 +b1]m=[a1δ

 +b1]m. If a1=0 then the single precision modulo
is obtained. Else (a1=1) let δ +b1=a22

l+b2 with a2 and b2 non negative integers and
a2≤1. Observe that a2=1 implies b2=δ+b1–2l≤δ +2l–1–2l=δ–1. Then [δ
+b1]m=[a22

l+b2]m=[a2m+a2δ
 +b2]m=[a2δ

 +b2]m. From b2≤δ –1<m follows that [δ +b1]m=δ
+b2 if a2=1 and [δ +b1]m=b2 if a2=0. Then the complexity of [δ +b1]m requires a single
precision addition, and computing [p+q]m requires two single precision additions in
the worst case.

Similarly, given integers p,q∈[0,2l), let pq=a12
l+b1 where a1 and b1 are non nega-

tive integers. From pq≤2l(2l–2)+1, it is immediate that a1≤2l–2, b1≤2l–1, and
[pq]m=[a1m+a1δ

 +b1]m=[a1δ
 +b1]m=[[a1δ]m

 +b1]m. Letting a1δ
 =a22

l+b2 with a2 and b2 non
negative integers, from a1δ

 ≤(2l–2)δ ≤2l(δ–1)+2l–δ, it follows a2≤δ–1. In turn,
[a1δ]m=[a2m+a2δ+b2] =[a2δ

 +b2]m. Since a2δ≤(δ–1)δ <2l and b2 <2l, computing [a1δ]m

requires 2 single precision additions in the worst case.
In conclusion, computing [pq]m requires at most 2 single precision multiplications

(to yield the pairs (a1,b1) and (a2,b2)) and 4 single precision additions (2 additions to
yield [a1δ]m as [a2δ

 +b2]m and 2 additions to yield [pq]m as [[a1δ]m

 +b1]m).
Given an RRNS of the first h+r moduli m1,…,mh+r of Table 1 and range

M=mr⋅…⋅mh+r, consider now the complexity of the procedure of residue encoding of
an integer X in the range [0,M). X is expanded as:

()∑ −

=
=

1

0
2

h

i

il
iaX (1)

The encoding procedure computes residues x1,…,xh+r, where residue ()
imi Xx = for

each i∈[1,h+r]. For the ease of notation, let m=mi, δ=δi for some i∈[1,h+r]. From (1)

and m=2l–δ follows that ()() ()
m

h

i m
i

i
m

h

i

i
i amax 





=





 += ∑∑ −

=

−

=

1

0

1

0
δδ , and then

190 S. Chessa, R. Di Pietro, and P. Maestrini

()()
m

h

i mm
i

iax 




= ∑ −

=

1

0
δ (2)

The values of (δ i)m can be computed offline and stored with the moduli in the library
of Table 1: this requires storing 4h single precision integers for each modulo. It is
immediate from (2) that the computation of each residue requires at most h multipli-
cations mod m and h–1 additions mod m, that is, 2h single precision integer multipli-
cations and 4h+2h–2=6h–2 single precision integer additions in the worst case.

 In order to evaluate the complexity of decoding, assume without loss of general-
ity that h+t (0≤t≤r) residues x1,…,xh+t from the encoding of a given record are received
correctly, and let M′=m1⋅…⋅ mh+t. Then

()
Mthi

mii
i

i
x

m

M
X

′+=




















 ′
= ∑

,1

β
 (3)

where
imi

i m

M ′
=β (i∈[1,h+t]) is a single precision integer since βi<mi. From (3) the

decoding procedure involves the following operations:
1. h+t multiple precision multiplications to yield ()

imiii xmM β′ ;

2. h+t–1 multiple precision modular additions to yield the sum of the above products;
3. h+t modular multiplications of single precision integers (that is, 2(h+t) single pre-

cision multiplications and 4(h+t) single precision integer additions) to yield
()

imiix β for each i;

4. computation of βi for each i.
Regarding 4), the multiplicative inverse βi can be efficiently computed if the mul-

tiplicative inverse of iR mMM is known as a constant for every i. Such single preci-

sion integer can be computed offline for each modulo in the library of Table 1.
It is easily seen that βi is given by:

i
i

i
m

rh

thp m

p
mi

R
i m

m

MM






























= ∏

+

++= 1

β (4)

Evaluation of Equation 4 requires r–t modular single precision multiplications, that is,
in the worst case 2(r–t) single precision integer multiplications and 4t single preci-
sion, integer additions.
Considering that each multiple precision operation requires O(h+t) operations, com-
plexity of decoding h+t residues has complexity O((h+t)2).

Dependable and Secure Data Storage in Wireless Ad Hoc Networks 191

6 Security Issues in DS2

Confidentiality, authenticity and availability are among the classical security re-
quirements. Confidentiality implies that only authorised users should be able to read a
message; integrity implies that not authorized users are unable to modify a message,
and the availability requirement consists in the protocol capacity to detect and resist
to Denial of Service (DoS) attacks. In the following we analyse the compliance of
DS2 to such requirements.
Confidentiality. To recover a single record encoded into h+r residues by DS2 (where
h is the number of non-redundant moduli and r is the number of redundant moduli),
an attacker must know the nodes on which the residues of the record are stored and
the correspondence between each residue and the appropriate modulo. Further, the
residues of a record do not provide information about the record content. More spe-
cifically a record can be successfully read only if the multiplicity of the erasures e and
of the errors d is such that 2d+e≤r and the correspondence between available residues
and the moduli is known. Under these assumptions the record content can be recov-
ered using using the Chinese Reminder Theorem. We are unaware of any efficient
method to perform decoding which does not use the Chinese Reminder Theorem.
However, the record can still be recovered by a brute force attack.

We evaluate the complexity of a brute force attack to decode the information of a
record in the case in which h+t correct residues {x1,…,xh+t} are known. In principle an
attacker may not know the values of h and r, however these indexes could be easily
guessed by the attacker as the number of reasonable combinations is extremely lim-
ited, for this reason we assume that also h and r are known.

The attacker should consider all the possible h+t-tuples of residues in association
with all the permutations of the h+r available moduli (which are public), and look for
one combination leading to a legitimate number. Note that it is possible that several
combinations lead to wrong legitimate numbers, but we disregard this possibility to
the advantage of the attacker. It is then easy to see that the number of possible combi-
nations is given by

() ()
()!

!!

tr

rh
th

th

rh

−
+=+








+
+

=Θ (5)

It should be considered however that the attacker has the additional advantage that the
DS2 encoding is error correcting. Hence for each combination it could execute the
error correction procedure and look for the correct combination of at least  2/th +
moduli and residues. Note that applying the error correcting procedure would in-
crease the workaround factor required by the attacker to break the confidentiality,
however in the following, we do not take into consideration such a factor. Hence, the
resulting analysis is a lower bound on the efforts required to the attacker to break the
confidentiality of the scheme for this type of attack. Note that, taking into account the
possibility for the attacker to exploit the error correcting features of the RRNS,
the number of combinations in Equation (5) should be divided by

192 S. Chessa, R. Di Pietro, and P. Maestrini

()
() ∑ = 











−
+−








 +
=Φ

2/,0 !
!

tk tr

ktr

k

th
, where, for each k, the first factor accounts for

all the possible combinations of k residues associated with the wrong moduli, and the
second factor accounts for all the possible association of these residues with all the
moduli which are not correctly assigned.

From Figure 2, which shows the value Φ
Θ= 2LogC for r=8, t=4, and h∈[10,35]

and the factorial of h, it is seen that the logarithm of the number of combinations C
grows as the logarithm of h!.

As an alternative, the attacker may generate all the possible integers in the range
[0,M) and encode each integer using the set of available moduli, until it finds an inte-
ger X whose encoding produces a set of residues which includes the set {x1,…,xh+t} of
the received residues. It should be observed that this condition is not sufficient to
guarantee that X equals the original encoded information, however we disregard this
possibility to the advantage of the attacker. It is immediate that, disregarding the
complexity of encoding, this procedure has complexity O(M). This leads to a com-
plexity of about O(216(h+r)), which however, considering the encoding with the moduli
library of Table 1, results less efficient than the technique discussed above.

In principle a record could be reconstructed also by a mobile which has somehow
received at least t<h residue digits. Since the correspondence of residue digits with
the moduli is unknown to the malicious mobile, it should then consider all possible t-
tuples of residues in association with all permutations of the h+r available moduli.
Assuming that the correct association of a t-tuple of residues with the t moduli is
somehow guessed, the decoding procedure only yield an integer which is congruent
to the record. The record could be recovered by adding some (unknown) multiple of
the product of some of the additional moduli.

Decoding the residues in this way leads to many legitimate numbers, and it may be
very difficult to determine the right one. If the records are plain ASCII encoding, a
clue may be provided by the fact that most legitimate numbers do not correspond to
ASCII encoding, on the other hand, to save wireless bandwidth and mobiles storage,
the encoding and dispersal of the file is most likely preceded by file compression and
hence DS2 generally operates on binary files.
Integrity. We consider any attempt of a malicious mobile to modify a record. Note
that the resilience to this type of attack is independent whether the modification is
meaningful or not, that is, the attacker tries to modify the record in such a way that
the resulting record has a different, meaningful information content, or the attacker
randomly modifies the record, which is (wrongly) recognised as a correct one by the
legitimate requester, despite its information content.

With the DS2 encoding, malicious corruptions of residues can be recovered if h+t
(t≤r) residues can be read and no more than  2/t residues are corrupted, and can be

detected if the number of corrupted residues does not exceed t. This feature of DS2 is
an improvement with respect to the behaviour of recent standard protocols, which are
subject to this type of threat, as in [21].
Availability. For every read operation, the disruption of up to r residues of a record
do not compromise the capability recovering the record. Moreover, if the residues are

Dependable and Secure Data Storage in Wireless Ad Hoc Networks 193

routed through paths which have minimal intersection points (the ideal situation
would be to have disjoint paths), the probability of DS2 to be resilient to a DoS attack
enhances dramatically. Indeed, for the attacker to be successful, it should take control
of at least r+1 different specific nodes, each one being on one of the disjoint paths.

As a final remark, we note there is a number of little security flaws to which DS2 is
exposed, but which can be easily circumvented. For example, if the encoding pro-
duces a residue containing the value 65535, it is immediate that this residue must
correspond to modulo m0=65536. Also, the encoding of a record whose decimal con-
tent is smaller than any module of the RRNS yields residues whose content is the
same as the original record. These little flaws can be easily prevented, for example by
selecting a random constant (to be kept secretly in the file descriptor) to be added
modulo 65536 to each residue after the encoding.

7 Comparison of DS2 with Information Dispersal Algorithm (IDA)

We now compare DS2 with the Rabin’s Information Dispersal Algorithm (IDA) [10].
To this purpose we briefly review IDA.

Let us consider a file f composed by N characters b1,…,bN where each bi is in the
range [0,B), and let p be a prime with p>B. Typical values of B and p are B=256 and
p=257. As in DS2 the file encoding produces h+r fragments to be dispersed in the
network, and the file content can be reconstructed from any h fragments.

Let us assume for the sake of simplicity that N=(h+r)h. To the purpose of encod-
ing, IDA partitions the file in h+r records S1,…,Sh+r, each of h characters, that is,
Si=(bh(i-1)+1,…,bih) for each i∈[1,h+r]. Then it selects a h+r-tuple (a1,…,ah+r) of h+r
randomly chosen vectors such that ai=(ai1,…,aih), ai,j∈[0,p), and any subset of h vec-
tors is linearly independent.

The encoding produces h+r fragments F1,…,Fh+r each of size h+r characters, where
Fi =(ci1,…,cih+r) and cik=(ai×Sk) mod p for each i,k∈[1,h+r].

Note that the characters of the fragments F1,…,Fh+r are in the range [0,p), while the
characters of the file are in the range [0,B) with B<p. This in general leads to a wast-
age of at least 1 bit per character, however with a simple technique [10] this overhead
can be avoided.

The decoding procedure of IDA requires at least h fragments of the encoded file.
Assume that F1,…,Fh, are available, the file can be reconstructed as follows. Let A be
the h×h matrix whose ith row is ai. Then record Sk is given by:
















= −

1

11
1 ...

h

k

c

c

S A (6)

Disregarding the memory overhead to store the vectors, the IDA’s encoding is opti-
mal, since the overhead for an r-erasure tolerance encoding of a file is (h+r)/h. Let-

194 S. Chessa, R. Di Pietro, and P. Maestrini

ting a record size of  Mb 2log= in DS2, the code efficiency of IDA and DS2 is

almost the same.
Encoding/Decoding Efficiency. It is immediate that for IDA, the time complexity of
the encoding of a file of size N=(h+r)h is O(N(h+r)) plus the cost of generating the set
of vectors, while the complexity of decoding is O(hN) plus the cost of inverting ma-
trix A. Although for sufficiently large files the costs involved by the generations of
the vectors and the matrix inverse becomes negligible, Rabin shown efficient tech-
niques for generating matrices which are invertible in time O(h2).

Considering a file of size 8N bits, with N=(h+r)h, the complexity of encoding the
file with IDA is O(h(h+r)2). In the encoding of the same file with DS2, the file is pre-
liminary partitioned into 8N/b records with b≈16h. Hence the encoding with DS2 has
complexity O(h(h+r)N/h)= O(h(h+r)2), which equals the complexity of the encoding
of IDA. The complexity of the file decoding with IDA is O(h2(h+r)), while the de-
coding with DS2 is, in general, O((h+r)3) which is slightly worse than the decoding
complexity of IDA. However, if only erasures are considered, the decoding with DS2

is O(h2(h+r)), which equals the complexity of decoding with IDA. Table 2 summa-
rizes the different encoding/decoding running time for the two algorithms.

Table 2. Encoding/Decoding Efficiency.

DS2 IDA

Encoding O(h(h+r)2) O(h(h+r)2)

Decoding h+r residues O((h+r)3) -

Decoding (only erasures) O(h2(h+r)) O(h2(h+r))

Confidentiality. In IDA, the recovery of a file requires knowledge of (a) the vectors
of the matrix A; (b) the relative positions of the vectors of matrix A; (b) the knowl-
edge of the nodes where the fragments are located; (c) the knowledge of the corre-
spondence of each fragment with the appropriate position in the vector to be multi-
plied for A-1, as in Equation (6). It is straightforward to map the requirements for IDA
and those for DS2. Indeed, in DS2 what is needed is (a) the knowledge of the values of
the moduli; (b) the knowledge of the nodes where the residues are located; (c) the
knowledge of the correspondence of each residue with the appropriate module.

If the set of moduli is kept secret in DS2 and the vectors composing matrix A is
kept secret in IDA, the file sharing requires to transmit to the intended receivers such
data. In this case the overhead of transmission of the (h+r) moduli requires at most
16(h+r) bits, which is lower than the overhead required to transmit the matrix A
(which accounts for h(h+r)Log2 p bits). However, in the following we will assume
that the set of moduli is publicly known, as well as the vectors of the matrix A (but
not their relative position). Under this hypothesis assume that that h+t fragments are
correctly recovered. Than, the security of IDA relies on the workload required to the
attacker to correctly identify the correct position of vectors to obtain matrix A, and
bound the fragment with the appropriate position of the vector to be multiplied for
A-1, as in Equation (6). The security analysis for these points results in Equation (5).

Dependable and Secure Data Storage in Wireless Ad Hoc Networks 195

However, in IDA also the access to less than h fragments may provide some informa-
tion about the file. For this reason, to enforce confidentiality, the file could be en-
crypted before being encoded and dispersed by IDA, thus introducing additional
overhead.

a)

 15 20 25 30 35 40 45
h

0.96

0.97

0.98

code efficiency b)

10

20

30

h

2
4

6
8

10 r

0

0.25

0.5

0.75

10

20

30

h

2
4

6
8

10 r

Fig. 1. Code efficiency for: (a) h∈[10,45] and record size b’=16h–8, and (b) r∈[1,10],
h∈[1,35], and record size b’=16h–8.

15 20 25 30 35
h

25

50
75

100
125
150

Log h !

C

[]

Fig. 2. Number of combinations C to be analyzed in case of brute force attack compared with
h! (r=8, t=4, and h∈[10,35]).

On the other hand, in DS2 no information can be easily recovered from any subset
of residues if the association between moduli and residues is not known, and a brute
force attack would require a number of operations which grows as the factorial of h
(for values of h≤50).
Availability and Integrity. DS2 employs an RRNS-based encoding which features
error correcting capabilities, such that corruptions of less than r/2 residues can be
recovered, and corruptions of up to r/2 residues can always be detected. Hence the
availability and integrity requirements are easily met in DS2.

As compared to DS2, the IDA encoding is designed to cover only erasures. This
means that, in case of malicious corruption of fragments, the original content of the

196 S. Chessa, R. Di Pietro, and P. Maestrini

file cannot be recovered. A solution could be to introduce fingerprints, that is, an
indicator of whether the fragment has been altered or not, and hence discarded in the
former case. However, the use of fingerprints introduces both computational and
storage overhead to the encoding. Resorting to standard fingerprinting functions, like
SHA-1, MD5 [20] has a computational complexity which is linear in the size of the
block, but requires at least 128 bits per fragment. Note that without fingerprinting,
both availability and integrity are at a stake. Moreover, only fingerprinting is not
enough to prevent violation of the integrity requirement. Indeed, an attacker could
replace the fragment Fi with an arbitrary one (say Fi’), compute the fingerprinting
(H(Fi’)) for this fragment and than send the tuple (Fi’, H(Fi’)) which will pass the
integrity check. This would result in violation of the security requirements. This
problem can be solved using keyed-fingerprinting [20], that is, the fingerprint is a
function of two parameters, a key (shared only by legitimate users) and the message.
Hence, the tuple (Fi’, H(k,Fi’)) can not be replaced, unless key k is known.

Both integrity and availability of IDA can be enforced resorting to keyed finger-
printing. However, this would result in an additional overhead in both computation
and storage. While the computational overhead can be considered negligible, the
storage requirement is not. Furthermore, the longer the fragment is, the more it is
subject to possible errors during the transmission. Once a corrupted fragment reaches
destination, it would not pass the integrity check, and hence will be discarded. Hence,
to achieve the same degree of reliability and security as DS2, IDA might require an
higher degree of redundancy.

8 Conclusions

This paper discusses a dependable and secure data storage for mobile, wireless net-
works (DS2) based on a peer-to-peer paradigm. DS2 provides support to create and
share files under a write-once model, and ensures at the same time data confidential-
ity and dependability by encoding files in a Redundant Residue Number System.
More specifically files are partitioned into records and each record in encoded sepa-
rately as (h+r)-tuples of data residues using h+r moduli. In turn, the residues are dis-
tributed among the mobiles in the network. Dependability is ensured since data can be
reconstructed in the presence of up to s≤r residue erasures, combined with up to

 2
sr− corrupted residues, and data confidentiality is ensured since recovering the

original information requires knowledge of the correspondence between moduli and
residues. The achievable degrees of dependability and security are determined by the
choice of the RRNS (that is, of the set of moduli).

The paper analyzes the code efficiency of DS2 using a library of moduli which al-
lows for efficient encoding and decoding procedures based on single precision arith-
metic, and discusses the security issues. The comparison of DS2 with IDA shows that
the two approaches have almost the same performance in terms of code efficiency
and complexity, even though DS2 provides richer security features than IDA, ex-

Dependable and Secure Data Storage in Wireless Ad Hoc Networks 197

ploiting the RRNS codes. To achieve the same level of security of DS2, IDA requires
additional overhead in both computation and storage resources.

References

1. D. B. Johnson and D. A. Maltz: Dynamic source routing in ad hoc wireless networks.
Mobile Computing, edited by T. Imielinski and H. Korth, chapter 5, pp. 153–181. Kluwer
Academic Publishers (1996)

2. C. E. Perkins and E. M. Royer:Ad-hoc on-demand distance vector routing. Proc. IEEE 2nd

Workshop on Mobile Computing Systems and Applications, New Orleans, LA (1999) 90-
100

3. L.M. Feeney and M. Nilsson : Investigating the Energy Consumption of a Wireless Net-
work Interface in an Ad Hoc Networking Environment. Proc. IEEE 20th INFOCOM, Vol.
3, Anchorage AK (2001) 1548 –1557

4. C. A. Thekkath, T. Mann, and E. K. Lee : Frangipani: A Scalable Distributed File System.
Proc. ACM 17th Symposium on Operating Systems Principles (1997) 224-237

5. Satyanarayanan, M.; Kistler, J.J.; Kumar, P.; Okasaki, M.E.; Siegel, E.H.; Steere : Coda: a
highly available file system for a distributed workstation environment. IEEE Transactions
on Computers, Vol.39 (4) (1990) 447–459

6. T. E. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang: Serverless
Network File System. Proc. ACM 15th Symposium on Operating System Principles, Cop-
per Mountain Resort, Colorado (1995) 109–126

7. J. C. Fabre, Y. Deswarte, and B. Randell. “Designing secure and reliable applications
using fragmentation-redundancy-scattering: an object-oriented approach. Proc. 1st Euro-
pean Dependable Computing Conference, Berlin, Germany (1994) 21–38

8. Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos: A Prototype Im-
plementation of Archival Intermemory. Proc. ACM 4th Conference on Digital libraries,
Berkeley, CA (1999) 28–37

9. J. Kubiatowicz et. Al.: OceanStore: An Architecture for Global-Scale Persistent Storage.
Proc. ACM 9th Conference on Architectural Support for Programming Languages and Op-
erating Systems, Cambridge, MA (2000) 190–201

10. M. O. Rabin : Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance. Journal of the ACM, Vol.36, (2) (1989) 335–348

11. L. Rizzo : Effective Erasure Codes for Reliable Computer Communication Protocols.
ACM Computer Communication Review, Vol. 27 (2) (1997) 24–36

12. S. Chessa and P. Maestrini : Dependable and Secure Data Storage and Retrieval in Mobile,
Wireless Networks. Proc. IEEE DSN 2003, International Conference on Dependable Sys-
tem and Networks, San Francisco, USA (2003)

13. F. Barsi and P. Maestrini : Error Correcting Properties of Redundant Residue Number
Systems. IEEE Transactions on Computers, Vol. C-22 (3) (1973) 307–315

14. D. Mandelbaum : Error Correction in Residue Arithmetic. IEEE Transactions on Comput-
ers, Vol. C-21 (6) (1972) 538–545

15. N. S. Szabo and R. I. Tanaka, Residue Arithmetic and its Applications to Computer Tech-
nology, Mc Graw-Hill, New York (1967)

16. D. Mandelbaum : On a Class of Arithmetic Codes and Decoding Algorithm. IEEE Trans-
actions on Information Theory, Vol. IT-21 (1976) 85–88

198 S. Chessa, R. Di Pietro, and P. Maestrini

17. F. Barsi and P. Maestrini: Improved Decoding Algorithms for Arithmetic Residues Codes.
IEEE Transactions on Information Theory, Vol. IT-24 (1978) 640–643

18. J. D. Sun and H. Krishna: A coding theory approach to error control in redundant residue
number systems. II. Multiple Error detection and correction. IEEE Transactions on Cir-
cuits and Systems II: Analog and Digital Signal Processing, 39 (1) (1992) 18–34

19. M. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J. Taylor, Residue Number Arithme-
tic: Modern Applications in Digital Signal Processing, IEEE Press,NY (1986)

20. M. Bellare, R. Canetti, and H. Krawczyk: Keying hash functions for message authentica-
tion. in Advances in Cryptology – Crypto 96 Proceedings, LNCS Vol. 1109, N. Koblitz
ed, Springer-Verlag (1996)

21. Nikita Borisov, Ian Goldberg, David Wagner: Intercepting mobile communications: the
insecurity of 802.11. MOBICOM 2001, Rome, Italy (2001) 180–189

	1 Introduction
	2 Redundant Residue Number Systems
	3 The Dependable and Secure Data Storage for Ad Hoc Networks (DS2)
	4 Code Efficiency of DS2
	5 Encoding/Decoding Complexity of DS2
	6 Security Issues in DS2
	7 Comparison of DS2 with Information Dispersal Algorithm (IDA)
	Conclusions
	References

