N

N

Validity Conditions in Agreement Problemsand Time
Complexity

Bernadette Charron-Bost, Fabrice Le Fessant

» To cite this version:

Bernadette Charron-Bost, Fabrice Le Fessant. Validity Conditions in Agreement Problemsand Time
Complexity. [Research Report] RR-4526, INRIA. 2002. inria-00072062

HAL 1d: inria-00072062
https://inria.hal.science/inria-00072062
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072062
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4526--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Validity Conditionsin Agreement Problems
and Time Complexity

Bernadette Charron-Bost Fabrice Le Fessant

N° 4526

August 2002

THEME 1

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Validity Conditions in Agreement Problems
and Time Complexity

Bernadette Charron-Bost* Fabrice Le Fessant'

Théme 1 — Réseaux et systémes
Projets SOR

Rapport de recherche n° 4526 — August 2002 — 15 pages

Abstract: We study the time complexity of different agreement problems in the
synchronous model with crash failures, by varying their validity condition. We first
introduce a continuous class of agreement problems, the k-TAg problems, which
includes both the Uniform Consensus and Non-Blocking Atomic Commitment. We
then exhibit a general early-deciding algorithm, that we instanciate to solve every
problem of this class. The algorithm always achieves the previously established
lower-bounds for early-deciding, showing that these lower-bounds are tight.

Key-words: distributed consensus, synchronous model, non-blocking atomic com-
mitment, eraly-deciding algorithm, k-TAg, lower-bounds, validity conditions, time
complexity

* LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France
T INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Conditions de validité pour les problémes d’agrément
et complexité en temps

Résumé :

Nous étudions la complexité en temps de differents problémes d’agrément dans
le modeéle synchrone avec pannes par crash, en utilisant différentes conditions de
validité.

Nous présentons d’abord une classe continue de problémes d’agrément, les pro-
blemes k-TAg, qui contient & la fois le Consensus Uniforme et le Non-Blocking Atomic
Commitment.

Nous exhibons alors un algorithme général de décision précoce, que nous instan-
cions pour résoudre chaque probléme de cette classe.

L’algorithme atteint toujours les bornes minimales établies précédemment pour
les algorithmes de décision précoce, montrant que ces bornes sont bien atteintes.

Mots-clés : consensus distribué, modéle synchrone, non-blocking atomic commit-
ment, algorithme de décision précoce, k-TAg, bornes, limites, conditions de validité,
complexité en temps

Validity Conditions and Time Complezity 3

1 Introduction

Reaching agreement in a distributed system is a fundamental problem which arises
in numerous guises. In all the versions of agreement problems, each process start
with an initial value from some fixed set V. At some point in the computation,
correct processes must irrevocably decide on some values in V. The specification of
an agreement problem includes two safety conditions which basically depend on the
failure model that is considered [10]. In this paper, we suppose that processes can
fail only by crashing; for this failure model, all the agreement problems share the
safety condition, called agreement, which specifies that no two processes may decide
differently. Another safety condition, called walidity, describes the decision values
that are permitted. Validity condition varies according to the particular version
of agreement problem. For instance, Fischer, Lynch and Paterson [5] consider a
weak form of validity, called non-triviality, which only specifies that there exist at
least two runs with two different decision values. For the crash failure model, validity
condition of the Consensus problem, that we call integrity, imposes that any decision
value for any process is the initial value of some process. Integrity is inappropriate as
a validity condition for the transaction commitment problem where the initial votes
of all processes influence the decision. Indeed, the validity condition of the mon-
blocking atomic commitment (NB-AC, for short) is unanimity: decide 1 (commit)
only if every process initial value is 1 (yes), and decide 0 (abort) if some process
starts with 0 (no) or a failure occurs.

In this paper, we investigate the relationships between different agreement prob-
lems. Indeed, slight modifications in the validity condition may yield considerable
discrepancy between agreement problems. For instance, in synchronous systems
Dwork and Moses [4] show that two rounds are always sufficient for solving the
agreement problem of [5] with the integrity condition, while any Consensus algorithm
tolerating ¢ failures requires ¢ 4+ 1 rounds. In asynchronous systems Charron-Bost
and Toueg [2] show that Consensus and NB-AC are incomparable in almost all en-
vironments: NB-AC is never reducible to Consensus, and Consensus is not reducible
to NB-AC, except when only one process may fail. However, we observe that in-
creasing the synchrony degree allows us to compare these two problems, and makes
them closer and closer: In each of the partially synchronous models described in [3],
NB-AC is harder than Consensus; indeed if a majority of processes is correct, then
Consensus is solvable but not NB-AC. Moreover, in synchronous systems Consensus
and NB-AC are both solvable no matter how many processes fail, and so are equiv-
alent in terms of solvability. Actually they are equivalent in a stronger sense: in the
presence of up to ¢ failures, ¢+ 1 rounds are sufficient and necessary in the worst case

RR n° 4526

4 Charron-Bost & Le Fessant

execution to solve as well Consensus as NB-AC [10]. One can refine this comparison
by discriminating runs according to the number of failures f that actually occur.
Charron-Bost and Schiper [1] and subsequently Keidar and Rajsbaum [6] proved
that both Consensus and NB-AC require at least f + 2 rounds if f is less than t — 1,
and only f+ 1 rounds if f =¢—1 or f = ¢ (where ¢ is the maximum number of
failures).

One may wonder whether these lower bounds for early deciding in Consensus and
NB-AC algorithms are tight. An algorithm for Consensus is presented in [1] that
achieves these lower bounds. Unfortunately, this algorithm cannot be easily adapted
for the NB-AC problem. As noticed by Lamport in [9], “a [popular| belief is that a
three-phase commit protocol a la Skeen [11] is needed” for solving NB-AC. It is not
exactly clear what that means, but it seems to imply that at least three rounds are
required in failure free runs. The f + 2 lower bound would be thereby too weak in
the case of NB-AC.

In this paper, we show that this intuition is incorrect: for that, we devise an
algorithm for NB-AC which achieves the general lower bounds for early deciding
of [1, 6]. Even when refining the comparison in this way, Consensus and NB-AC
remains two equivalent problems.

Another contribution of the paper is to introduce a natural extension of the NB-
AC problem, which we call the k-Threshold Agreement problem. It turns out that this
problem is also a generalization of Consensus. In this way, we connect Consensus and
NB-AC from the strict view point of problem specification. Actually, our algorithm
for NB-AC is general enough to work for any k-Threshold Agreement problem. These
agreement problems for various values of & — in particular, Consensus and NB-AC
— can be proved incomparable in asynchronous systems, but become equivalent in
synchronous systems in the strong sense of early deciding.

2 The Model

In this paper, we consider the synchronous model for distributed systems described
in [10] which we review briefly.

Let II be a fully connected graph with n nodes. We consider some fixed message
alphabet M, and we let null be a placeholder indicating the absence of message.

A synchronous algorithm A is a collection of n processes, one for each node of
I1. Each process p;, i € II, is defined by four components: a set of states states;, a
subset start; C states; of initial states, a message-generation function msgs; map-

INRIA

Validity Conditions and Time Complezity 5

ping states; x IT to a unique (possibly null message, and a state transition function
trans; mapping states; and vectors indexed by II of messages to states;.

An execution of the algorithm A begins with each process in an arbitrary start
state. Then each process p;, in lock-step, repeatedly performs the following three
steps: (1) apply msgs; to the current state to determine the messages to be sent
and send these messages, (2) receive all the messages which are sent to p; during the
previous step, and (3) apply trans; to the current state and the messages that are
just received to obtain the new state. The combination of these three steps is called
a round of A.

A run of A models an execution of the entire system: it is defined by the collection
of the initial states of processes, and the infinite sequence of rounds of A that are
executed.

We assume that links are reliable but processes can fail by crashing, that is by
stopping somewhere in the middle of its execution. A process may crash before or
during some instance of the steps described above. In particular, a process may
succeed in sending only a subset of the messages specified to be sent. After crashing
at a round, a process does not send any message during subsequent rounds. A process
is said to be correct in a run if it does not crash; otherwise it is said to be faulty.

2.1 Agreement Problems

We now focus on the two well-known agreement problems that are Consensus and
Non-Blocking Atomic Commitment.

The Consensus problem considers a fixed collection of processes which have each
an initial value drawn from some domain V. Processes must eventually decide on
the same value; moreover, the decision value must be the initial value of some pro-
cess. The Non-Blocking Atomic Commitment (NB-AC) problem arises in distributed
database systems to ensure the consistent termination of transactions. Each process
that participate in the processing of a database transaction arrives at an initial
opinion about whether to commit the transaction or abort it, and votes yes or no
accordingly. Processes must eventually reach a common decision (commit or abort).
The decision to commit may be reached only if all processes initially vote yes. In
this case, commit must be decided if there is no failure.

When identifying yes and commit with 1, and no and abort with 0, it appears
that binary Consensus and NB-AC are two very similar problems. They share the
following two conditions:

Agreement: No two processes (whether correct or faulty) decide differently.

RR n° 4526

6 Charron-Bost & Le Fessant

Termination: All correct processes eventually decide.

Binary Consensus and NB-AC only differ in their wvalidity conditions, i.e., the
conditions describing the decision values that are permitted: in the Consensus prob-
lem, the possible decision values are related only to the initial values, contrary to
the NB-AC problem for which the decision values depend on both input values and
failure pattern. More precisely, the validity condition of Consensus is as follows:

Integrity: Any decision value for any process is the initial value of some process.
The validity condition of NB-AC is:
Unanimity:

1. If any process starts with 0, then 0 is the only possible decision value.

2. If all processes start with 1 and there is no failure, then 1 is the only
possible decision value.

At this point, it is relevant to consider the weak validity condition introduced by
Lamport in [7]:

Weak Validity: If there is no failure, then any decision value is the initial value of
some process.

Obviously, the weak validity condition is weaker than the validity conditions of both
Consensus and atomic commitment, but it is stronger than the one in [5] which
only precludes the trivial protocols that always decide the same value. This latter
condition, that we call non-triviality, is as follows:

Non-triviality: For every value v € {0,1}, there is an execution in which some
process decides v.

Binary Consensus and NB-AC specifications are clearly not comparable because
of their incomparable validity conditions'. However, it is possible to link up these
two problems from a syntactic standpoint. For that, we introduce the k- Threshold
Agreement problem (the k-TAg problem, for short) that is parametrized by some
integer k € {1,--- ,n}. The termination and agreement conditions of k-TAg are the
same as those of Consensus and NB-AC, and its validity condition is as follows:

!Furthermore, Charron-Bost and Toueg [2] showed that these two problems are also incomparable
from an algorithmic point of view: NB-AC is not reducible to Binary Consensus, and vice-versa
(except when the maximum number of failures is 1).

INRIA

Validity Conditions and Time Complezity 7

k-Validity:

1. If at least k processes start with 0, then 0 is the only possible decision
value.

2. If all processes start with 1 and at most & — 1 failures occur, then 1 is the
only possible decision value.

This new problem is a natural generalization of the atomic commitment problem —
1-TAg is exactly NB-AC —, but turns out to be also a generalization of Consensus —
n-TAg actually corresponds to binary Consensus —. We have thereby defined a chain
of problems which interpolates between NB-AC and binary Consensus. The original
motivation for this generalization is purely theoretical: it is interesting to connect
two incomparable problems by exploiting differences in validity conditions. But it
is easy to imagine actual situations in which such a generalization could be natural:
for example, it might be desirable for processes to enforce them to decide abort only
if a majority of processes initially vote no, but to require that they commit if all of
them initially vote yes as soon as a minority of processes are faulty.

3 Lower Bounds for Time Complexity

A fundamental result in synchronous systems [4] is that if n > t 4+ 2, then any
Consensus algorithm that tolerates ¢ crashes must run ¢+ 1 rounds in some execution
before processes have all decided. As noticed by Lynch [10], the proof of this result
still works if one weakens the validity condition to the weak validity condition. So
the t+1 lower bound also holds for NB-AC and more generally, for the all the k-TAg
problems. However, it no more holds if one weakens validity to the non-triviality
condition. Indeed, Dwork and Moses [4] device a simple algorithm achieving non-
triviality, agreement, and termination in only two rounds.

These remarks, which concern the generalization of the worst case time com-
plexity of Consensus to other agreement problems, also apply when one refines the
analysis of time complexity by discriminating runs according to the number of fail-
ures that actually occurs. More precisely, Charron-Bost and Schiper [1] show the
following lower bounds:

Theorem 3.1 Let A be a Consensus algorithm which tolerates t process crashes.
For each f, 0 < f < t, there exists a run of A with at most f crashes in which at
least one process decides not earlier than during round f + 2 if f <t — 2, and not
earlier than during round f + 1 otherwise.

RR n° 4526

8 Charron-Bost & Le Fessant

Afterwards, Keidar and Rajsbaum [6] showed the same lower bounds by an alter-
native method. The two proofs use different techniques but both clearly extend to
the weak validity condition. As a consequence, this shows that each k-TAg problem,
and in particular NB-AC?, requires at least f + 2 rounds to decide if 0 < f <t — 2
and f+ 1 roundsift—1< f <t.

4 A General Early Deciding Algorithm

We now describe a general algorithm for the k-TAg problem that tolerates ¢ crashes
and achieves the lower bounds of Theorem 3.1 for early deciding.

Our algorithm is based on a strategy borrowed from [8] for determining the time of
decisions: each process p; maintains a variable Failed containing the set of processes
that p; detects to have crashed. During a round, p; learns that p; has crashed if p;
receives no message from p; at this round. At the end of every round, each process
p; updates its variable Failed. If Failed remains unchanged during some round,
namely if p; detects no new crash failure, then p; becomes ready to decide in this
round. Any process that becomes ready at round r is permitted to decide at round
r+1ifr <t—1or as early as round r if r =t or r = t+ 1; furthermore, it broadcasts
a ready message at round r + 1 both to inform other processes that it is ready to
decide and to force the processes to become ready in turn.

To determine its decision value, each process maintains a vector W of size n.
Initially, every process sets its own component of W to its initial value, and the
other components to L. At each round r > 1, every process p; broadcasts its own
component W[i]. Then it collects all the values it has just received into W; if p;
does not receive a value from pj, it simply sets W{[j] := L. Finally, p; sets its own
component to a new value which depends on the round number r and the values
p; has received, that is W[i] = ®(r, W) where ® is an arbitrary function mapping
{1, ,t+1} x (VU{L})" to V. A simple induction on the round number shows
that no process ever applies ® to (L,---, 1) during any execution of the algorithm.
The formal code of the algorithm is given in Figure 1.

In this section, we first prove that if all the processes invoke the same function
® to adjust their own components in W, then agreement is guaranteed. This com-

Interestingly, the validity condition of the NB-AC problem makes simpler the proof of the f+2
lower bound: following the proof scheme of [1], the existence of a bivalent initial configuration (with
respect to the set of runs with initial failures) and the basis case f = 0 directly result from the
validity condition of NB-AC.

INRIA

Validity Conditions and Time Complezity 9

mon function is then determined according to the validity condition to satisfy: in
particular, we specify a function ® that guarantees the k-validity property.

4.1 Correctness Proof

Theorem 4.1 For any mapping ® : {1,--- ,t+1}x(VU{L})" — V, the algorithm in
Figure 1 satisfies the termination and agreement properties in a synchronous system
with at most t faulty processes. Moreover, the algorithm achieves the lower bounds
of Theorem 3.1 for early deciding.

Proof: To prove this theorem, we use the following notation and terminology. The
(r)

value of any variable = at process p; just at the end of round r is denoted by z;

By extension, xgo) denotes the initial value of z;. A round r is quiescent with regard
to process p;, also noted i-quiescent, if p; detects no additional failure during round
7.

For termination, consider a run of the algorithm in which f processes actually
crash (0 < f < t). Every correct process p; detects f crashes in this run, and
so there is at least one round r; with 1 < r; < f + 1 which is é-quiescent, i.e.,

Rec_Failedz(”) = Failedz(”). Suppose p; has not yet decided at the end of round

r; — 1; then we have haltgr”"_l) = false. There are two cases to consider:

1. Process p; is not ready at the end of round r; — 1, that is readyzm_l) = false.
Since round r; is 4-quiescent, p; necessarily becomes ready at round r;, and so
p; decides at the end of round r; + 1 if r; < ¢ — 1 and at the end of round r; if
T3 > 1.

2. Process p; is ready at the end of round r; — 1. In this case, the algorithm
enforces p; to decide the current value of Wj[i] at the end of round r;.

In any case, p; decides by the end of round f+ 2 if 0 < f <t —1 and by the end of
round f+1if f =t —1 or f =t. This proves that the algorithm meets the lower
bounds of Theorem 3.1, and subsequently the termination property.

For agreement, we first give a lemma which establishes a weak form of agreement
among the processes that are ready. More precisely, the lemma states that two ready
messages sent at the same round carry the same value.

Lemma 4.2 If two messages (ready,v) and (ready,v') are sent at the same round
r>2, thenv =1

RR n° 4526

10 Charron-Bost & Le Fessant

states;
rounds € N, initially 0
W e (VU{L})", initially (L,---,v,---, L) where v is p;’s initial value
ready, a Boolean, initially false
halt, a Boolean, initially false
Rec_ Failed C 11, initially ()
Failed C 11, initially ()
decision € V U {unknown}, initially unknown

msgs;
if =halt then
if —ready then send Wi] to all processes
else send (ready, W1i]) to all processes

trans;
if =halt then
rounds := rounds + 1
let w; be the value sent by p;, for each p; from which a message arrives
if a message has arrived from p; then W{j] := w;
else W[j] :== L
if ready then
if rounds < t then decision := WTi]
halt := true
else if some message (ready,w) arrives then
Wi :==w
ready := true
else Rec_ Failed := Failed
Failed := {p; : no message arrives from p; at the current round}
Wi] := ®(rounds, W)
if Rec_ Failed = Failed then ready := true
if ready and rounds > t then decision := Wi

Figure 1: A General Algorithm for Early Deciding

INRIA

Validity Conditions and Time Complezity 11

Proof: The proof is by induction on r. Let p; and p; be the senders of (ready,v)
and (ready,v'), respectively; from the algorithm, p; and p; have not yet halted but
have both become ready at the end of round r — 1.

Basis: v = 2. Processes p; and p; can send a ready message at round 2 only
if the first round is 4 and j-quiescent. In other words, both p; and p; receive the
same vector W of n initial values at round 1, and so W;[i]) = W;[§]0) = &(1, W).
From the code of the algorithm, p; and p; send ready messages at round 2 which are
tagged by W;[i]() and W;[j](V), respectively. Therefore, we have v = v'.

Inductive step: Assume r > 2, and suppose the lemma holds at any round 7’ with
2 < r' < r. There are three cases to consider:

1. Processes p; and p; both receive some ready messages at round r — 1. From the
inductive hypothesis, all these ready messages are tagged by the same value
v. Upon receiving (ready,v) at round r — 1, p; and p; set Wj[i] := v and
W;[j] := v, respectively. At round r, p; and p; both broadcast ready messages
which carry the current value of W;[i] and Wj[j], i.e., the value v. Therefore,
we have v = v =,

2. Exactly one of the two processes, say p;, receives some ready messages at round
r — 1; the same argument as before shows that each of them are tagged with
value v. Let p be the sender of such a message; process p is obviously alive
at the very beginning of round r — 2. On the other hand, since p; becomes
ready at round r — 1 without receiving a ready message, it follows that round
r — 1 is j-quiescent. At round r — 1, process p; thus detects no new failure
and so receives a message from p. This message is equal to (ready,v) since p
sends the same message to all processes. This contradicts that only p; receives
a ready message at round r — 1, and so this case cannot occur.

3. None of processes p; and p; receive ready messages at round r — 1. From the
algorithm, it follows that round 7 —1 is both ¢ and j-quiescent. Then p; and p;
receive the same information at this round, and so the vectors W; and W; are
equal just after the receive phase of round r—1. Let W denote this vector. Since
neither p; nor p; receive a ready message at round r—1, both p; and p; set their
own component to ®(r—1, W), that is W;[i]") = W;[j]") = &(r—1,W). Then
p; and p; tag the ready messages that they send at round r with the current
values of W;[i] and W;[j], respectively. Therefore, we have v = W;[i]"=1),
v’ = W;[j]7Y, and so v = v as needed.

DLemma 4.2

RR n° 4526

12 Charron-Bost & Le Fessant

We are now in position to prove that the algorithm in Figure 1 satisfies agreement.
Let r be the first round in which some process decides. Let p; denote this process
and v its decision value. Let p; be a process that decides v’ at round r’. Thus, we
have ' > r. We consider two cases:

1. Process p; is ready at the end of round r — 1, and so sends a ready message at
round 7. From the algorithm, this message is tagged by W;[i]("~ 1. Afterwards,
p; does not modify the value of W;[i], and so decides v = W;[i]""D. The
(ready, v) message from p; is received by p; since p; is still alive at the end of
round 7/, and 7’ > 1.

(a) If p; is also ready at the end of round r — 1, then it sends a ready message
at round 7. Therefore, r = r' and the ready message from p; is tagged
by the current value of W; [5]~D. As for p;, process p; decides value
o' = W;[j]"V. Lemma 4.2 shows that W;[i]~1 = W;[§]"~Y, and so
v=1.

(b) Otherwise, p; receives some ready messages at round r, and by Lemma 4.2
all these messages are tagged by v. From the algorithm, p; must set W;[j]
to v and becomes ready at the end of round r. Then p; decides the current
value of Wj[j] at round r or r + 1. This implies that v = v, as needed.

2. Process p; is not ready at the end of round r — 1. This may happen only if
r >t ie,r=torr=1t+1. Moreover, we can assume that p; is also not
ready at the end of round 7 —1 (otherwise, we have ' = r and then we go back
to the first case by exchanging the roles of p; and p;). Therefore, none of the
rounds 1,--- ,7 — 1 are ¢ or j-quiescent. There are two sub-cases to consider:

(a) Process p; receives some ready messages at round r. Then all these mes-
sages are tagged by the decision value v of p;. Let pi be the sender of
such a message.

i. Assume process p; also receives (ready,v) from pj at round r; then
pj becomes ready and sets W;[j] to v. Since r > t, p; decides at the
end of round r and its decision value is the current value of Wj[j],
i.e., W;[§]" = v. This proves that v' = v.

ii. Otherwise process p; receives no message from py at round r. Since py,
sends a message to p; at this round, it necessarily succeeds in sending
a message to p; at the previous round 7 — 1. Therefore, round r is
not j-quiescent, and so p; does not decide at round r. Moreover, p;

INRIA

Validity Conditions and Time Complezity 13

(b)

has detected at least r crashes at the end of round r. Since r > ¢, no
additional failure can occur later. This shows that process p; (that
is still alive at the end of round r) is actually correct, and that it
succeeds in sending (ready,v) to p; at round r 4 1. It follows that p;
decides the value v' = v at round r + 1.

Process p; receives no ready message at round r. From the algorithm, it
follows that round r is ¢-quiescent.

i. If process p; receives a ready message at round r, then p; becomes
ready and since r > t, it decides at round r. We get ' = r, and by
exchanging the roles of p; and p; we go back to the previous sub-case.

ii. Otherwise process p; receives no ready message at round r. At this
point there are two possible cases:

A. Round r is also j-quiescent. The algorithm enforces p; to decide
at round 7, and so r’ = r. The fact that round r is both ¢ and
J-quiescent ensures that p; and p; receive the same information
at this round, and so the vectors W; and W; are equal just after
the receive phase of round r. Let W denote this vector. Since
neither p; nor p; receive a ready message at round r, both p;
and p; set their own component to ®(r, W), that is Wi[z'](’") =
W;[§]") = ®(r, W). Then p; and p; decide on v = W;[i]") and
v’ = W;[4]), respectively. This enforces that v = v’

B. Otherwise, p; detects a new crash at round r. Therefore, p; has
detected at least r crashes at the end of round r. We then argue
as in a previous case. Since r > ¢, no additional failure can occur
later. This shows that process p; (that is still alive at the end
of round r) is actually correct, and that it succeeds in sending
(ready,v) to p; at round r + 1. It follows that p; decides the
value v' = v at round r + 1.

IjTheorem 4.1

We now address the validity issue. For that, we limit the set to which functions

® belong.

More precisely, for each k € {1,--- ,n} we restrict ourselves to functions

® which satisfy the following (Cj) condition:

RR n° 4526

14 Charron-Bost & Le Fessant

(1) ®(r,W)=0 if r=1and |{i: WI[i] € {0,L1}}| > k;

(2) ®(r,W) e {WIi]: W[i] # L} otherwise and W # (L,---,1).

Note that for every k € {1,---,n}, there exist functions which satisfy (Cg).
Moreover, part (2) in (Cy) is quite natural here since ® is never applied to (L,---, 1)
during the algorithm (cf. Section 4).

We now prove that condition (Cg) for function ® in Figure 1 yields an algorithm
which solves the k-TAg problem.

Theorem 4.3 For any function ® : {1,--- ,t+1} x (VU{L})"™ — V wverifying (Cy),
the algorithm in Figure 1 satisfies the k-validity property.

Proof: First suppose that at least k processes start with the initial value 0. Let
Py, ,Pi, denote such processes, and let p; be any process. Process p; receives value
0 or no message at the first round from at least k& processes. From the definition of
®y(1,-), it follows that W;[i](V) = 0. The algorithm then enforces any component
W;[j] to remain equal to 0 at the subsequent rounds. So, 0 is the only possible
decision value.

On the other hand, consider a run of the algorithm in which all the processes
start with 1, and with at most k& — 1 failures. At the first round, every process p;
receives at least n — k + 1 messages with value 1, and so W;[i]() = 1 (if p; is still
alive at the end of round 1). A simple induction on r shows that for any r, we have
W;[i]™) = 1 because of the definition of ®(r,—) for > 2. Therefore, the only
possible decision value in this run is 1.

IjTheorem 4.3

For k = n, the algorithm in Figure 1 thereby solves binary consensus. Obviously,
this algorithm can be generalized for an arbitrary value set V.

Part 2 of (Cr) provides a large flexibility for the choice of ®. For instance,
min, max, and W[i] where ¢ = min{j : W[j] # L} all yield correct solutions of the k-
TAg problems. In the Non-Blocking Atomic Commitment case, this flexibility can be
used to tune the frequency of commit decisions. Indeed, setting ®(r, W) = max; Wi]
in part 2 of (Cy) allows processes to commit more often: if all processes initially vote
yes, then the decision is commit as soon as at least one correct process has received
yes from all processes at the first round no matter whether failures occur. This is
clearly a desirable feature of any database transaction system.

INRIA

Validity Conditions and Time Complezity 15

References

[1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]
[10]
[11]

B. Charron-Bost and A. Schiper. Uniform consensus is harder than consensus.
Technical Report DSC/2000/028, Département Systémes de Communication,
EPFL, May 2000.

Bernadette Charron-Bost and Sam Toueg. Comparing the atomic commitment
and consensus problems. In preparation, January 2001.

C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288-323, April 1988.

Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in
a Byzantine environment: Crash failures. Information and Computation,
88(2):156-186, October 1990.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382, April
1985.

I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there
are no faults — a tutorial. Technical Report MIT-LCS-TR-821, Laboratory for
Computer Science, Massachusetts Institute of Technology, May 2001.

Leslie Lamport. The weak byzantine generals problem. Journal of the ACM,
30(3):668-676, July 1983.

Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit
protocols. Technical Report 62, SRI International, April 1982.

Lamport Leslie. Lower bounds on consensus. March 2000.
N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Dale Skeen. Nonblocking commit protocols. In Proceedings of the ACM SIG-
MOD Conf. on Management of Data, pages 133-147. ACM, June 1982.

RR n° 4526

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

