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Theory of One Tape Linear Time Turing Machines ∗
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Abstract. A theory of one-tape (one-head) linear-time Turing machines is essentially different from its
polynomial-time counterpart since these machines are closely related to finite state automata. This paper
discusses structural-complexity issues of one-tape Turing machines of various types (deterministic, nondeter-
ministic, reversible, alternating, probabilistic, counting, and quantum Turing machines) that halt in linear time,
where the running time of a machine is defined as the length of any longest computation path. We explore
structural properties of one-tape linear-time Turing machines and clarify how the machines’ resources affect
their computational patterns and power.
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1 Prologue

Computer science has revolved around the study of computation incorporated with the analysis and development
of fast and efficient algorithms. The notion of a Turing machine, proposed by Turing [41, 42] and independently
by Post [34] in the mid 1930s, is now regarded as a mathematical model of many existing computers. This
machine model has long been a foundation of extensive studies in computational complexity theory. Early
research unearthed the significance of various restrictions on the resources of machines: for instance, the number
of work tapes, the number of heads, execution time bounds, memory space bounds, and machine types in use.
This paper aims at the better understanding of how various resource restrictions directly affect the patterns
and the power of computations.

The number of work tapes and also machine types of time-bounded Turing machines significantly alter their
computational power. For instance, two-tape Turing machines are shown to be more powerful than any one-tape
Turing machines [12, 35]. Even on the model of multiple-tape Turing machines, Paul, Pippenger, Szemeredi,
and Trotter [32] proved in the early 1980s that linear-time nondeterministic Turing machines are more powerful
than their deterministic counterparts.

Of particular interest in this paper is the model of one-tape (or single-tape) one-head linear-time Turing
machines, apart from well-studied polynomial-time machines. Not surprisingly, this rather simple model proves
a close tie to finite state automata. Despite its simplicity, such a model still offers complex structures. As a
result, a theory of one-tape (one-head) linear-time complexity draws a picture quite different from multiple-tape
models as well as polynomial-time models. It is thus possible for us to prove, for instance, the collapses and
separations of numerous one-tape linear-time complexity classes without any unproven assumption, such as the
existence of one-way functions.

Hennie [18] made the first major contribution to the theory of one-tape linear-time Turing machines in the
mid 1960s. He demonstrated that no one-tape linear-time deterministic Turing machine can be more powerful
than deterministic finite state automata. To prove his result, Hennie described the behaviors of a Turing
machine in terms of the sequential changes of the machine’s internal states at the time when the tape head
crosses a boundary of two adjacent tape cells. Such a sequence of state changes is known as a crossing sequence
generated at this boundary. Using this technical tool, he argued that (i) any one-tape linear-time deterministic
Turing machine has short crossing sequences at every boundary and (ii) if any crossing sequence of the machine
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is short, then this machine recognizes only a regular language. Using the non-regularity measure of Dwork
and Stockmeyer [13], the second claim asserts that any language accepted by a machine with short crossing
sequences has constantly-bounded non-regularity. Extending Hennie’s argument, Kobayashi [25] later showed
that any language recognized by one-tape o(n log n)-time deterministic Turing machines should be regular as
well. This time bound o(n log n) is actually optimal since certain one-tape O(n log n)-time deterministic Turing
machines can recognize non-regular languages.

Unlike polynomial-time computation, one-tape linear-time nondeterministic computation is sensitive to the
definition of the machine’s running time. Such sensitivity is also observed in average-case complexity theory
[44]. By taking his weak definition that defines the running time of a nondeterministic Turing machine to be
the length of a “shortest” accepting path, Michel [30] demonstrated that one-tape nondeterministic Turing
machines running in linear time (in the sense of his weak definition) solve even NP-complete problems. Clearly,
his weak definition gives an enormous power to one-tape nondeterministic machines and therefore it does not
seem to offer any interesting features of time-bounded nondeterminism. On the contrary, the strong definition
(in Michel’s term) requires the running time to be the length of any “longest” (both accepting and rejecting)
computation path. This strong definition provides us with a reasonable basis to study the effect of linear-time
bounded computations. We therefore adopt his strong definition of running time and, throughout this paper,
all one-tape time-bounded Turing machines are assumed to accommodate this strong definition. By expanding
Kobayashi’s result, we prove that one-tape o(n logn)-time nondeterministic Turing machines recognize only
regular languages.

The model of alternating Turing machines of Chandra, Kozen, and Stockmeyer [6] naturally expand the
model of nondeterministic machines. The number of alternations of such an alternating Turing machine seems
to enhance the computational power of the machine; however, our strong definition of running time makes it
possible for us to prove that a constant number of alternations do not give any additional computational power
to one-tape linear-time alternating Turing machines; namely, such machines recognize only regular languages.

Apart from nondeterminism, probabilistic Turing machines with fair coin tosses of Gill [16], can present
distinctive features. Any language recognized by a certain one-head one-way probabilistic finite automaton
with unbounded-error probability is known as a stochastic language [35]. By employing a crossing sequence
argument, we can show that any language recognized by one-tape linear-time probabilistic Turing machines
with unbounded-error probability is just stochastic. This collapse result again proves a close relationship
between one-tape linear-time Turing machines and finite state automata.

The model of Turing machines, nonetheless, presents distinguishing looks when we discuss functions rather
than languages. Beyond the framework of formal language theory, Turing machines are capable of computing
(partial multi-valued) functions by simply modifying their tape contents and producing output strings (which
are sometimes viewed as numbers). Such functions also serve as many-one reductions between two languages.
To explore the structure of language classes, we introduce various types of “many-one one-tape linear-time”
reductions. Nondeterministic many-one reducibility, for instance, plays an important role in showing the afore-
mentioned collapse of alternating linear-time complexity classes. Naturally, we can view many-one reducibility as
oracle mechanism of the simplest form. In terms of such oracle computation, we can easily prove the existence
of an oracle that separates the one-tape linear-time nondeterministic complexity class from its deterministic
counterpart.

The existence of a one-way function is a key to the building of secure cryptosystems. Intuitively, a one-way
function is a function that is easy to compute but hard to invert. Restricted to one-tape linear-time deterministic
computation, we can show that no one-way function exists.

The number of accepting computation paths of a time-bounded nondeterministic Turing machine has been
a crucial player in computational complexity theory. With the notion of counting Turing machines, Valiant
[43] initiated a systematic study in the late 1970s on the structural properties of counting such numbers.
Counting Turing machines have been since then used to study the complexity of “counting” on numerous issues
in computer science. The functions computed by these machines are called counting functions and complexity
classes of languages defined in terms of such counting functions are generally referred to as counting classes. We
show that counting functions computable by one-tape linear-time counting Turing machines are more powerful
than deterministically computable functions. By contrast, we also prove that certain counting classes induced
from one-tape linear-time counting Turing machines collapse to the family of regular languages.

The latest variant of the Turing machine model is a quantum Turing machine, which is seen as an extension
of a probabilistic Turing machine. While a probabilistic Turing machine is based on classical physics, a quantum
Turing machine is based on quantum physics. The notion of such machinery was introduced by Deutsch [9] and
later reformulated by Bernstein and Vazirani [5]. Of all the known types of quantum Turing machines, we study
only the following two machine types: bounded-error quantum Turing machines [5] and “nondeterministic”
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quantum Turing machines [1]. We give a characterization of one-tape linear-time “nondeterministic” quantum
Turing machines in terms of counting Turing machines.

We also discuss supplemental mechanism called advice to enhance the computational power of Turing ma-
chines. Karp and Lipton [24] formalized the notion of advice, which means additional information supplied
to underlying computation besides an original input. We adapt their notion in our setting of one-tape Turing
machines as well as finite state automata. We can demonstrate the existence of context-free languages that
cannot be recognized by any one-tape linear-time deterministic Turing machines with advice.

2 Fundamental Models of Computation

This paper uses a standard definition of a Turing machine (see, e.g., [11, 20]) as a computational model. Of
special interest are one-tape one-head Turing machines of various machine types. Here, we give brief descriptions
of fundamental notions and notation associated with our computational model.

Let Z, Q, R be the sets of all integers, of all rational numbers, of all real numbers, respectively. In particular,
let R≥0 be {r ∈ R | r ≥ 0}. Moreover, let N denote the set of all natural numbers (i.e., non-negative integers)
and set N+ = N − {0}. For any two integers n,m with n ≤ m, an integer interval [n,m]Z means the set
{n, n+1, n+2, . . . ,m}. We assume that all logarithms are to the base two. Throughout this paper, we use the
notation Σ (Σ1, Σ2, etc.) to denote an arbitrary nonempty finite alphabet. A string over alphabet Σ is a finite
sequence of elements from Σ and Σ∗ denotes the collection of all finite strings over Σ. Note that the empty
string over any alphabet is always denoted λ. Let Σ+ = Σ∗−{λ}. For any string x in Σ∗, |x| denotes the length
of x (i.e., the number of symbols in x). A language (or simply a “set”) over alphabet Σ is a subset of Σ∗, and
a complexity class is a collection of certain languages. The complement of A is the difference Σ∗ − A, and it is
often denoted A if Σ is clear from the context. For any complexity class C, the complement of C, denoted co-C,
is the collection of all languages whose complements belong to C.

We often use multi-valued partial functions as well as single-valued total functions. For any multi-valued
partial function f mapping from a set D to another set E, dom(f) denotes the domain of f , namely, dom(f) =
{x ∈ D | f(x) is defined} and, for each x ∈ dom(f), f(x) is a subset of E. Whenever f is single-valued, we
write “f(x) = y” instead of “y ∈ f(x)” by identifying the set {y} with y itself. Notice that total functions are
also partial functions. The characteristic function χA of a language A over Σ is defined as, for any string x in
Σ∗, χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. For any single-valued total function g from N to N, O(g(n))
denotes the set of all single-valued total functions f such that f(n) ≤ c · g(n) for all but finitely many numbers
n in N, where c is a positive constant independent of n. Similarly, o(g(n)) is the set of all functions f such that,
for every positive constant c, f(n) < c · g(n) for all but finitely many numbers n in N.

Let us give the basic definition of one-tape (one-head) Turing machines. A one-tape (one-head) Turing
machine (abbreviated 1TM) is a septuple M = (Q,Σ,Γ, δ, q0, qacc, qrej), where Q is a finite set of (internal)
states, Σ is a nonempty finite input alphabet, Γ is a finite tape alphabet including Σ, q0 in Q is an initial state,
qacc and qrej in Q are an accepting state and a rejecting state, respectively, and δ is a transition function. In
later sections, we will define different types of transition functions δ, which give rise to various types of 1TMs.
A halting state is either qacc or qrej . Our 1TM is equipped only with one input/work tape such that (i) the
tape stretches infinitely to both ends, (ii) the tape is sectioned by cells, and (iii) all cells in the tape are indexed
with integers. The tape head starts at the cell indexed 0 (called the start cell) and either moves to the right
(R), moves to the left (L), or stays still (N).

A configuration of a 1TM M , which represents a snapshot of a “computation,” is a triplet of an internal
state, a head position, and a tape content of M . The initial configuration of M on input x is the configuration
in which M is in internal state q0 with the head scanning the start cell and the string x is written in an
input/work tape, surrounded by the blank symbols, in such a way that the leftmost symbol of x is in the
start cell. A computation of a 1TM M generally forms a tree (called a computation tree) whose nodes are
certain configurations of M . The root of such a computation tree is an initial configuration, leaves are final
configurations, and every non-root node is obtained from its parent node by a single application of δ. Each
path of a computation tree, from its root to a certain leaf is referred to as a computation path. An accepting
(a rejecting, a halting, resp.) computation path is a path terminating in an accepting (a rejecting, a halting,
resp.) configuration. We say that a TM halts on input x if every computation path of M on input x eventually
reaches a certain halting state. Of particular importance is the synchronous notion for 1TMs. A 1TM is said to
be synchronous if all computation paths terminate at the same time on each input; namely, all the computation
paths have the same length.

Throughout this paper, we use the term “running time” for a 1TM M taking input x, denoted TimeM (x),
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to mean the height of the computation tree produced by the execution of M on input x; in other words, the
length of any longest computation path (no matter what halting state the machine reaches) of M on x. We
often use the notation T (n) to denote a time-bounding function of a given 1TM that maps N to N. Furthermore,
a “linear function” means a function of the form cx+ d for a certain constant c, d ∈ R≥0. A 1TM M is said to
run in linear time if its running time TimeM (x) on any input x is upper-bounded by f(|x|) for a certain linear
function f .

Although our machine has only one input/work tape, the tape can be split into a constant number of tracks.
To describe such tracks, we use the following notation. For any pair of symbols a, b ∈ Σ, [ a

b ] denotes the
special tape symbol for which a is written in the upper track and b is written in the lower track of the same cell.
By extending this notion, for any strings x, y ∈ Σ∗ with |x| = |y|, we write [ x

y ] to denote the concatenation
[ x1

y1
][ x2

y2
] · · · [ xn

yn
] if x = x1x2 · · ·xn and y = y1y2 · · · yn, where all xi’s and yi’s are in Σ.

For the definition of language recognition, we need to impose certain reasonable accepting criteria as well as
rejecting criteria onto our 1TMs to define the set of “accepted” input strings. With such criteria, we say that
a 1TM recognizes a language A if, for every string x, (i) if x ∈ A then M halts on input x and satisfies the
accepting criteria and (ii) if x 6∈ A then M halts and satisfies the rejecting criteria.

The non-regularity measure has played a key role in automata theory. For any pair x and y of strings and
any integer n ∈ N, we say that x and y are n-dissimilar with respect to a given language L if there exists a
string z such that (i) |xz| ≤ n and |yz| ≤ n and (ii) xz ∈ L ⇐⇒ yz 6∈ L. For each n ∈ N, define NL(n) (the
non-regularity measure of L at n) to be the maximal cardinality of a set in which any distinct pair is n-dissimilar
with respect to L [13]. It is immediate from the Myhill-Nerode theorem [20] that a language L is regular if and
only if NL(n) = O(1) [13]. This is further improved by the results of Karp [23] and of Kaņeps and Freivalds
[22] as follows: a language L is regular if and only if NL(n) ≤

n
2 + 1 for all but finitely-many numbers n in N.

We assume the reader’s familiarity with the notion of finite (state) automata (see, e.g., [19, 20]). The class of
all regular languages is denoted REG, where a language is called regular if it is recognized by a certain (one-head
one-way) deterministic finite automaton. The languages recognized by (one-head one-way) nondeterministic
push-down automata are called context-free and the notation CFL denotes the collection of all context-free
languages.

A rational (one-head) one-way generalized probabilistic finite automaton (for short, rational 1GPFA) [38, 40]
is a quintuple N = (Q,Σ, π, {T (σ) |σ ∈ Σ}, η), where (i) Q is a finite set of states, (ii) Σ is a finite alphabet, (iii)
π is a row vector of length |Q| having rational components, (iv) for each σ ∈ Σ, T (σ) is an |Q|×|Q| matrix whose
elements are rational numbers, and (v) η is a column vector of |Q| rational entries. A word matrix T (x) of N on
input string x ∈ Σ∗ is defined as T (λ) = I for the empty string λ, where I is the identity matrix of order |Q|, and
T (x1 . . . xk) = T (x1) . . . T (xk) for x1, . . . , xk ∈ Σ. For each x ∈ Σ∗, the acceptance function pN(x) is defined to
be π T (x) η. A matrix T is called stochastic if every row of T sums up to exactly 1. A rational (one-head) one-way
probabilistic finite automaton (for short, rational 1PFA) [35] N is a rational 1GPFA (Q,Σ, π, {T (σ) |σ ∈ Σ}, η)
such that (i) π is a stochastic row vector whose entries are all nonnegative, (ii) for each symbol σ ∈ Σ, T (σ)
is stochastic with nonnegative components, and (iii) η is a column vector whose components are either 0 or 1.
From this η, we define the set F of all final states of N as F = {a ∈ Q | the ath entry of η is 1}. Moreover,
since pN (x) equals the probability of N accepting x, pN(x) is called the acceptance probability of N on the input
x.

Let ε be any rational number. For each rational 1GPFA N , let L(N, ε) = { x ∈ Σ∗ | pN (x) > ε} and
L=(N, ε) = { x ∈ Σ∗ | pN (x) = ε}, where ε is called a cut point of N . Let GSLrat and SLrat denote the
collections of all sets L(N, ε) for certain rational 1GPFAs N and for certain rational 1PFAs, respectively, where
ε is a certain rational number. Similarly, GSL=

rat and SL=
rat are defined from GSLrat and SLrat, respectively,

by substituting L=(N, ε) for L(N, ε). Sets in SLrat are known as stochastic languages [35]. Turakainen [40]
demonstrated the equivalence of GSLrat and SLrat. With a similar idea, we can show that GSL=

rat = SL=
rat.

The proof of this claim is left to the avid reader.

3 Deterministic and Reversible Computations

Of all computations, deterministic computation is one of the most intuitive types of computations. We begin this
section with reviewing the major results of Hennie [18] and Kobayashi [25] on one-tape deterministic Turing
machines. A deterministic 1TM, embodying a sequential computation, is formally defined by a transition
function δ that maps (Q−{qacc, qrej})×Γ to Q×Γ×{L,N,R}. Since the notation DLIN is widely used for the
model of multiple-tape linear-time Turing machines, we rather use the following new notations to emphasize
our model of one-tape Turing machines. The general notation 1-DTime(T (n)) denotes the collection of all
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languages recognized by deterministic 1TMs running in T (n) time. Given a set T of time-bounding functions,
1-DTime(T ) stands for the union of 1-DTime(T (n))’s over all functions T in T . The one-tape deterministic
linear-time complexity class 1-DLIN is then defined to be 1-DTime(O(n)).

Earlier, Hennie [18] proved that REG = 1-DLIN by employing a so-called crossing sequence argument.
Elaborating Hennie’s argument, Kobayashi [25] substantially improved Hennie’s result by showing REG =
1-DTime(o(n logn)). This time-bound o(n logn) is optimal because 1-DTime(O(n log n)) contains certain non-
regular languages, e.g., {anbn | n ∈ N} and {a2

n

| n ∈ N}. These facts establish the fundamental collapse and
separation results concerning deterministic 1TMs.

Proposition 3.1 [18, 25] REG = 1-DTime(o(n log n)) $ 1-DTime(O(n log n)).

In the early 1970s, Bennett [4] initiated a study of reversible computation. Reversible computations have
recently drawn wide attention from physicists as well as computer scientists in connection to quantum compu-
tations. We adopt the following definition of a (deterministic) reversible Turing machine given by Bernstein and
Vazirani [5]. A (deterministic) reversible 1TM is a deterministic 1TM of which each configuration has at most
one predecessor configuration. We use the notation 1-revDTime(T (n)) to denote the collection of all languages
recognized by T (n)-time reversible 1TMs and define 1-revDTime(T ) to be

⋃

T∈T 1-revDTime(T (n)). Finally,
let 1-revDLIN = 1-revDTime(O(n)). Obviously, 1-revDLIN is a subset of 1-DLIN.

Kondacs and Watrous [26] demonstrated that any one-head one-way deterministic finite automaton can
be simulated in linear time by a certain one-head two-way deterministic reversible finite automaton. Since
any one-head two-way deterministic reversible finite automaton is indeed a reversible 1TM, we obtain that
REG ⊆ 1-revDLIN. Proposition 3.1 thus concludes:

Proposition 3.2 REG = 1-revDLIN = 1-revDTime(o(n log n)).

The computational power of a Turing machine can be enhanced by supplemental information given besides
inputs. Karp and Lipton [24] introduced the notion of such extra information under the name of advice, which
is given depending only on the size of input. Damm and Holzer [8] later considered finite automata that take the
Karp-Lipton type advice. To make most of the power of advice, we should take a slightly different formulation
for our 1TMs. In this paper, for any complexity class C defined in terms of Turing machines (including finite
state automata as special cases), the notation REG/n is used to represent the collection of all languages A for
which there exist an alphabet Σ, a deterministic finite automaton M working with another alphabet, and a
total function§ h from N to Σ∗ with |h(n)| = n (called an advice function) satisfying that, for every x ∈ Σ∗,
x ∈ A if and only if [ x

h(|x|) ] ∈ L(M). For instance, the context-free language Leq = {0n1n | n ∈ N} belongs
to REG/n. More generally, every language L, over alphabet Σ, whose restriction L ∩ Σn for each length n has
cardinality bounded from above by a certain constant, independent of n, belongs to REG/n, because the advice
can encode a finite look-up table for length n.

This gives the obvious separation REG $ REG/n. On the contrary, REG/n cannot include CFL since,
as we see below, the non-regular language Equal = {x ∈ {0, 1}∗ | #0(x) = #1(x)}, where #i(x) denotes the
number of occurrences of the symbol i in x, is situated outside of REG/n. This result will be used in Section 7.

Lemma 3.3 The language Equal is not in REG/n. Hence, CFL * REG/n.

Proof. Let Σ = {0, 1}. Assuming that Equal ∈ REG/n, choose a deterministic finite automaton M =
(Q,Σ, q0, F ) and an advice function h from N to Σ∗ such that, for every string x ∈ Σ∗, x ∈ Equal if and only
if [ x

h(|x|) ] ∈ L(M). Take n = |Q|. For each number k ∈ [0, n]Z, yk denotes any string of length n satisfying
#0(yk) = k.

There exist two distinct indices k, l ∈ [0, n]Z such that (i) ykzk, ylzl ∈ Equal for certain strings zk, zl ∈ Σn

and (ii) M enters the same internal state after reading [ yk
wn

] as well as [ yl
wn

], where wn is the first n bits of
h(2n). Notice that such a pair (k, l) indeed exists because n+1 > |Q|. It follows from these conditions that M
also accepts the input [ ykzl

h(|ykzl|)
]. Thus, #0(ykzl) = #1(ykzl), which implies #0(zl) = n − k. However, since

#0(ylzl) = #1(ylzl), we obtain #0(yl) = k. This contradicts the definition of yl. Therefore, Equal is not in
REG/n. The second claim CFL * REG/n follows from the fact that Equal ∈ CFL. ✷

Up to now, we have viewed “Turing machines” as language recognizers (or language acceptors); however,
unlike deterministic finite state automata, Turing machines are fully capable of computing partial functions.
Since a 1TM M has only one input/work tape, we need to designate the same input tape as the output tape

§As standard in computational complexity theory, we allow non-recursive advice functions in general.
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of the machine as well. To specify an “outcome” of the machine, we adopt the following convention. When
the machine eventually halts with its output tape consisting only of a single block of non-blank symbols, say s,
surrounded by the blank symbols, in a way that the leftmost symbol of s is written in the start cell, we consider
s as the valid outcome of the machine.

For notational convenience, we introduce the function class 1-FLIN in the following fashion. A total function
from Σ∗

1 to Σ∗
2 is in 1-FLIN if there exists a deterministic 1TM M satisfying that, on any input x ∈ Σ∗

1, (i) M
halts by entering the accepting state in time linear in |x| and (ii) when M halts, M outputs f(x) as a valid
outcome. When “partial” functions are concerned, we conventionally regard the “rejecting state” as an invalid
outcome. We thus define 1-FLIN(partial) to be the collection of all partial functions f from Σ∗

1 to Σ∗
2 such

that, for every x ∈ Σ∗
1, (i) if x ∈ dom(f) then M enters an accepting state with outputting f(x) and (ii) if

x 6∈ dom(f) then M enters a rejecting state (and we ignore the tape content).
Historically, automata theory has also provided the machinery that can compute functions (see, e.g., [20] for

a historical account). In comparison with 1-FLIN, we herein consider only so-called Mealy machines. A Mealy
machine (Q,Σ,Γ, q0, δ, ν) is a deterministic finite automaton (Q,Σ,Γ, q0, δ), ignoring final states, together with a
total function ν from Q×Σ to Γ such that, on input x = x1x2 · · ·xn, it outputs ν(q0, x1)ν(q1, x2) · · · ν(qn−1, xn),
where (q0, q1, . . . , qn) is the sequence of states in Q satisfying δ(qi−1, xi) = qi for every i ∈ [1, n]Z. Note that a
Mealy machine computes only length-preserving functions, where a (total) function is called length-preserving if
|f(x)| = |x| for any string x. Consider the length-preserving function f defined by f(x1x2 · · ·xn) = xnx1 · · ·xn−1

for any x1, x2, . . . , xn ∈ {0, 1}. It is clear that no Mealy machine can compute f . We therefore obtain the
following proposition.

Proposition 3.4 There exists a length-preserving function in 1-FLIN that cannot be computed by any Mealy
machines.

4 Nondeterministic Computation

Nondeterminism has been widely studied in the literature since many problems arising naturally in computer
science have nondeterministic traits. In a nondeterministic computation, a Turing machine has several choices
to follow at each step. We expand the collapse result of deterministic 1TMs in Section 3 into nondeterminis-
tic 1TMs. We also discuss the multi-valued partial functions computed by one-tape nondeterministic Turing
machines and show how to simulate such functions in a certain deterministic manner.

4.1 Nondeterministic Languages

As a language recognizer, a nondeterministic 1TM takes a transition function δ that maps (Q−{qacc, qrej})×Γ
to 2Q×Γ×{L,N,R}, where 2A denotes the power set of A. An execution of a nondeterministic 1TM produces a
computation tree. We say that a nondeterministic 1TM M accepts an input x exactly when there exists an
accepting computation path in the computation tree of M on input x. Similar to the deterministic case, let
1-NTime(T (n)) denote the collection of all languages recognized by T (n)-time¶ nondeterministic 1TMs and
let 1-NTime(T ) be the union of all 1-NTime(T (n)) for all T ∈ T . We define the one-tape nondeterministic
linear-time class 1-NLIN to be 1-NTime(O(n)).

We first expand Kobayashi’s collapse result on 1-DTime(o(n logn)) into 1-NTime(o(n log n)).

Theorem 4.1 REG = 1-NTime(o(n logn)) $ 1-NTime(O(n log n)).

The proof of Theorem 4.1 consists of two technical lemmas: Lemmas 4.2 and 4.3. The first lemma has
Kobayashi’s argument in [25, Theorem 3.3] as its core, and the second lemma is due to Hennie [18, Theorem 2].
For the description of the lemmas, we need to introduce the key terminology.

Let M be any type of 1TM, which is not necessarily nondeterministic. Any boundary that separates two
adjacent cells in M ’s tape is called an intercell boundary. The crossing sequence at intercell boundary b along
computation path s of M is the sequence of internal states of M at the time when the tape head crosses b, first
from left to right, and then alternately in both directions. To visualize the head move, let us assume that the
head is scanning tape symbol σ at tape cell i in state p. An application of a transition (q, τ, R) ∈ δ(p, σ) makes
the machine write symbol τ into cell i, enter state q, and then move the head to cell i + 1. The state in which
the machine crosses the intercell boundary between cell i and cell i + 1 is q (not p). Similarly, if we apply a

¶As stated in Section 2, this paper accommodates the strong definition of running time; namely, the running time of a machine
M on input x is the height of the computation tree produced by M on x, independent of the outcome of the computation.
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transition (q, τ, L) ∈ δ(p, σ), then q is the state in which the machine crosses the intercell boundary between
cell i − 1 and cell i. The right-boundary of x is the intercell boundary between the rightmost symbol of x and
its right-adjacent blank symbol. Similarly, the left-boundary of x is defined as the intercell boundary between
the leftmost symbol of x and its left-adjacent symbol. Any intercell boundary between the right-boundary and
the left-boundary of x (including both ends) is called a critical boundary of x.

Lemma 4.2 observes that Kobayashi’s argument extends to nondeterministic 1TMs without depending on
their acceptance criteria. For completeness, the proof of Lemma 4.2 is included in Appendix.

Lemma 4.2 Assume that T (n) = o(n log n). For any T (n)-time nondeterministic 1TM M , there exists a
constant c ∈ N such that, for each string x, any crossing sequence at any critical boundary in any (accepting or
rejecting) computation path of M on the input x has length at most c.

In essence, Hennie [18] proved that any deterministic computation with short crossing sequences has constantly-
bounded non-regularity. We generalize his result to the nondeterministic case as in the following lemma.
Different from the previous lemma, Lemma 4.3 relies on the acceptance criteria of nondeterministic 1TMs.
Nonetheless, Lemma 4.3 does not refer to rejecting computation paths. For readability, the proof of Lemma 4.3
is also placed in Appendix.

Lemma 4.3 Let L be any language and let M be any nondeterministic 1TM that recognizes L. For each
n ∈ N, let Sn be the set of all crossing sequences at any critical-boundary along any accepting computation path
of M on any input of length ≤ n. Then, NL(n) ≤ 2|Sn| for all n ∈ N, where |Sn| denotes the cardinality of Sn.

Since REG is closed under complementation, so is 1-NTime(o(n logn)) by Theorem 4.1. In contrast, a simple
crossing-sequence argument proves that 1-NTime(O(n log n)) does not contain the set of all palindromes, Pal =
{x ∈ {0, 1}∗ | x = xR}, where xR is the reverse of x. Since Pal ∈ 1-NTime(O(n log n)), 1-NTime(O(n log n)) is
different from co-1-NTime(O(n log n)).

Corollary 4.4 The class 1-NTime(o(n log n)) is closed under complementation, whereas 1-NTime(O(n log n))
is not closed under complementation.

Reducibility between two languages has played a central role in the theory of NP-completeness as a measuring
tool for the complexity of languages. We can see reducibility as a basis of “relativization” with oracles. For
instance, Turing reducibility induces a typical adaptive oracle computation whereas truth-table reducibility
represents a nonadaptive (or parallel) oracle computation. Similarly, we introduce the following restricted
reducibility into one-tape Turing machines. A language A over alphabet Σ1 is said to be many-one 1-NLIN-
reducible to another language B over alphabet Σ2 (notationally, A ≤1-NLIN

m B) if there exist a linear function
T and a nondeterministic 1TM M such that, for every string x in Σ∗

1, (i) M on the input x halts within time
T (|x|) with the tape consisting only of one block of non-blank symbols, say yp, on every computation path p,
provided that the left-most symbol of yp must be written in the start cell, (ii) when M eventually halts, the
tape head returns to the start cell along all computation paths, and (iii) x ∈ A if and only if yp ∈ B for some

accepting computation path p of M on the input x. For any fixed set B, we use the notation 1-NLINB
m to denote

the collection of all languages A that are many-one 1-NLIN-reducible to B. Furthermore, for any complexity
class C, the notation 1-NLINC

m stands for the union of sets 1-NLINB
m over all sets B in C.

A straightforward simulation shows that 1-NLINREG
m is included in 1-NLIN. More generally, we can show

the following proposition. This result will be used in Section 5.

Proposition 4.5 For any language C, 1-NLIN1-NLINC
m

m ⊆ 1-NLINC
m.

Proof. This proposition is essentially equivalent to the transitive property of the relation ≤1-NLIN
m . Let

A, B, and C be three arbitrary languages and assume that A ≤1-NLIN
m B ≤1-NLIN

m C. Our goal is to show
that A ≤1-NLIN

m C. Take a nondeterministic 1TM M that many-one 1-NLIN-reduces A to B and another
nondeterministic 1TM M ′ that many-one 1-NLIN-reduces B to C. Now, consider the following 1TM N . On
input x, simulate M on x, and if and when it halts with an admissible value on the tape, start M ′ on that value
as its input. This machine N is clearly nondeterministic and its running time is O(n) since so are the running
times of M and M ′. It is not difficult to check that N reduces A to C. ✷

Similar to the many-one 1-NLIN-reducibility, we can define the “many-one 1-DLIN-reducibility” and its
corresponding relativized class 1-DLINB

m for any set B. Although 1-DLIN = 1-NLIN, two reducibilities, many-
one 1-NLIN-reducibility and many-one 1-DLIN-reducibility, are quite different in their power. As an example,
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we can construct a recursive set B that separates between 1-DLINB
m and 1-NLINB

m. The construction of such a
set B can be done by a standard diagonalization technique.

Proposition 4.6 There exists a recursive set B such that 1-DLINB
m $ 1-NLINB

m.

Proof. For any set B ⊆ {0, 1}∗, define LB = {0n | ∃x ∈ {0, 1}n[x ∈ B]}. Obviously, LB belongs to 1-NLINB
m

for any set B.
Baker, Gill, and Solovay [2] constructed a recursive set B such that LB cannot be polynomial-time Turing

reducible to B. In particular, LB is not many-one 1-DLIN-reducible to B; that is, LB 6∈ 1-DLINB
m. ✷

4.2 Multi-Valued Partial Functions

Conventionally, a Turing machine that can output values is called a transducer. Nondeterministic transducers
can compute multi-valued partial functions in general. Let us consider a nondeterministic 1TM that outputs a
certain string in Σ∗

2 (whose leftmost symbol is in the start cell) along each computation path by entering a certain
halting state. Similar to partial functions introduced in Section 3, we invalidate any rejecting computation
path and let M(x) denote the set of all valid outcomes of M on input x. In particular, when M on the
input x enters the rejecting state along all computation paths, M(x) becomes the empty set. A multi-valued
partial function f from Σ∗

1 to Σ∗
2 is in 1-NLINMV if there exists a linear-time nondeterministic 1TM M such

that f(x) = M(x) for any string x ∈ Σ∗
1. Let 1-NLINSV be the subset of 1-NLINMV, containing only

single-valued partial functions. In contrast, 1-NLINMVt and 1-NLINSVt denote the collections of all total
functions in 1-NLINMV and in 1-NLINSV, respectively. Clearly, 1-FLIN(partial) ⊆ 1-NLINSV $ 1-NLINMV
and 1-FLIN ⊆ 1-NLINSVt $ 1-NLINMVt.

Note that, for any function f ∈ 1-NLINMV, we can decide nondeterministically whether x is in dom(f),
and thus dom(f) belongs to the class 1-NLIN, which equals REG by Theorem 4.1.

The basic relationship between functions in 1-FLIN and languages in 1-DLIN is stated in Lemma 4.7. A
multi-valued partial function f from Σ∗

1 to Σ
∗
2 is called length-preserving if, for every x ∈ Σ∗

1 and y ∈ Σ∗
2, y ∈ f(x)

implies |y| = |x|. For convenience, we write LPF to denote the collection of all length-preserving multi-valued
partial functions from Σ∗

1 to Σ∗
2, where Σ1 and Σ2 are arbitrary nonempty finite alphabets. Moreover, for any

multi-valued partial function f ∈ LPF, let L[f ] = {[ x

y ] | y ∈ f(x)}.

Lemma 4.7 For any multi-valued partial function f ∈ LPF, f ∈ 1-NLINMV if and only if L[f ] is in 1-DLIN.

Proof. Let f be any length-preserving multi-valued partial function. Assume that f is computed by
a linear-time nondeterministic 1TM M . Consider the machine N that behaves as follows: on input [ x

y ],
nondeterministically compute z in f(x) from x and check if y = z. This machine N places L[f ] in 1-NLIN,
which equals 1-DLIN. Conversely, assume that L[f ] is recognized by a linear-time nondeterministic 1TM N .
We define another machine M as follows: on input x, guess y ∈ Σn (by writing y in the second track), run N
on input [ x

y ]. If N accepts, output y. Clearly, M computes f and thus f is in 1-NLINMV. ✷

The following major collapse result extends the collapse 1-NLIN = REG shown in Section 4.1.

Theorem 4.8 1-NLINSV ∩ LPF = 1-FLIN(partial) ∩ LPF and thus 1-NLINSVt ∩ LPF = 1-FLIN ∩ LPF.

Theorem 4.8 is a direct consequence of the following key lemma. We first introduce the notion of refinement.
For any two multi-valued partial functions f and g from Σ∗

1 to Σ∗
2, we say that f is a refinement of g if, for any

x ∈ Σ∗
1, (i) f(x) ⊆ g(x) (set inclusion) and (ii) f(x) = Ø implies g(x) = Ø. (See, e.g., Selman’s paper [37] for

this notion.)

Lemma 4.9 Every length-preserving 1-NLINMV function has a 1-FLIN(partial) refinement.

The crucial part of the proof of Lemma 4.9 is the construction of a “folding machine” from a given nonde-
terministic 1TM. A folding machine rewrites the contents of cells in its input area, where the input area means
the tape region where given input symbols are initially written. For later use, we give a general description of
a folding machine.

Construction of a Folding Machine. Let M = (Q,Σ,Γ, δ, q′0, qacc, qrej) be any 1TM that always halts in
linear time. The folding machine N is constructed from M as follows. Choose the minimal positive integer k
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Figure 1: The tape design of the folding machine N where k = 2. The original tape of M is partitioned into
4k blocks of size n− 1 and each block is simulated by a track in the folded tape of N . For instance, block 0 is
simulated by track 0, and block 1 is simulated by track 1 in the reverse order.

such that TimeM (x) ≤ k|x| for all inputs x of length at least 3. Notice that, since M ’s tape head moves in
both directions on its tape, M can use tape cells indexed between −2k(|x|− 1) and 2k(|x|− 1)− 1. Choose four
new internal states q0, q1, q2, q3 not in Q and introduce new internal states of the form [ i

q ] for each number
i ∈ [−2k, 2k − 1]Z and each internal state q ∈ Q. Let x be an arbitrary string written in the input tape of M .

1) The machine N starts in the new initial state q0. If the input x is empty, then N immediately enters M ’s
halting state without moving its head. Hereafter, we assume that x is a nonempty string of the form σ1σ2 · · ·σn,
where each σi is a symbol in Σ. Note that σ1 is written in the start cell.

2) In this preprocessing phase, the machine N re-designs its input/work tape, as shown in Figure 1, by
moving its head. In the original tape of M , the cells indexed between −2k(|x| − 1) and 2k(|x| − 1) − 1 are
partitioned into 4k blocks of |x| − 1 cells. These blocks are indexed in order from the leftmost block to the
rightmost block using integers ranging from −2k to 2k−1. In particular, block 0 contains the string σ1σ2 · · ·σn−1

(without σn). We split the tape of N into 4k tracks, which are indexed from the top to the bottom using −2k
to 2k− 1. Intuitively, we want to simulate block i of M ’s tape using track i of N ’s folded tape. The machine N
first places the special symbol |c (left end-marker) in all tracks of odd indices and then enters the internal state
q1 by stepping right. The machine keeps moving its head rightward in the state q1. When the head encounters
the first blank symbol, if |x| ≥ 3 then N enters the state q2 and steps back; otherwise, N enters M ’s halting
state. In a single step, N places another special symbol $ (right end-marker) in all tracks of even indices, shifts
σn in track 0 to track 1, enters the state q3, and steps to the left. The head then returns to the start cell in
state q3. Notice that this phase can be done in a reversible fashion.

3) The machine N simulates M ’s move by folding M ’s tape content into 4k tracks of the input area. While
M stays within block i in state q, N simulates M ’s move on track i with internal state [ i

q ]. If i is even, then
N moves its head in the same direction as M does. Otherwise, N moves the head in the opposite direction.
In particular, at the time when M ’s head leaves the last (first, resp.) cell of block 2j to its adjacent block by
rewriting symbol σ and entering the state q, N instead enters state [ 2j + 1

q ] ([ 2j − 1
q ], resp.), writes symbol σ

in track 2j (2j, resp.), and moves its head to the right (right, resp.). On the contrary, at the time when M ’s
head leaves block 2j + 1, M moves the head similarly but in the opposite direction. It is clear that N ’s head
never visits outside of the input area. This simulation phase takes exactly the same amount of time as M ’s.

Consider the set S of all (possible) crossing sequences of the folding machine N . For any two crossing
sequences v, v′ ∈ S and any tape symbol σ, we write v →σ v′ if v is a crossing sequence of the left-boundary of
σ and v′ is a crossing sequence of the right-boundary of σ along a certain computation path of N on input xσy
for certain strings x and y. Along any computation path p of N on any nonempty input x, it is important to
note that v0 = (), the empty sequence, and vf = (q1, q2) are respectively the unique crossing sequences at the
left-boundary and the right-boundary of x. We can translate this computation path p on input x = σ1σ2 · · ·σn

into its corresponding series of crossing sequences, v0, v1, . . . , vn, satisfying the following conditions: vn = vf
and vi−1 →σi

vi for every index i ∈ [1, n]Z.
Now, let us return to the proof of Lemma 4.9.

Proof of Lemma 4.9. Let f be any length-preserving multi-valued partial function in 1-NLINMV. There
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exists a linear-time nondeterministic 1TM M∗ = (Q,Σ,Γ, δ, q0, qacc, qrej) that computes f . Consider the folding
machine N constructed from M∗. Matching the output convention of 1TMs, we need to modify this folding
machine to produce the outcomes of M∗. After N eventually halts, we further move the tape head leftward.
When we reach the left end-marker, we move back the head by changing the current tape symbol to the symbol
written in the area of track 0 and track 1 where the original input symbols of N is written. When we reach the
right end-marker, we step right to the first blank symbol by entering a halting state (either qacc or qrej) of M

∗.
Evidently, this modified nondeterministic 1TM produces the outcomes of M∗ and also enters exactly the same
halting states of M∗. This modified machine is hereafter referred to as N for our convenience.

Let CS be the set of all crossing sequences of N . Assume that all elements in CS are enumerated so that
we can always find the minimal element in any subset of CS. For any two elements v, v′ ∈ CS and any symbol
σ with v →σ v′, Symb(v, σ, v′) denotes the output symbol written in the cell where σ is initially written. This
symbol Symb(v, σ, v′) can be easily deduced from (v, v′, σ) by tracing the tape head moves crossing a cell that
initially contains the symbol σ.

Finally, we want to construct a refinement g of f . This desired partial function g is defined by a deterministic
1TM M that behaves as follows. Let n ∈ N and let x = σ1σ2 · · ·σn be an arbitrary input of length n. Set
v0 = () and vf = (q1, q2) as before.

1) In this phase, all internal states except vf are subsets of CS. Let S1 = {v0} be the initial state of M . Let
i ∈ [1, n]Z and assume that M currently scans the input symbol σi in internal state Si. We define two key sets
Vi = {v ∈ Si | ∃ v′ ∈ CS [v →σi

v′]} and Si+1 = {v′ ∈ CS | ∃ v ∈ Vi [v →σi
v′]}. Intuitively, Si+1 captures all

possible nondeterministic moves from Si. Notice that Vi ⊆ Si. When Si+1 is empty, M enters a new rejecting
state. Provided that Si+1 is non-empty, M changes the tape symbol σi to [ σi

Vi
] and enters Si+1 as an internal

state by stepping to the right. Unless x 6∈ dom(f), after scanning σn, M enters the internal state Sn+1. By
the property of the original folding machine, we must have Sn+1 = {vf}. For later convenience, let vn = vf
and Vn+1 = Sn+1. When the tape head scans the first blank symbol, M then enters the internal state vn by
stepping to the left.

2) In the beginning of this second phase, M is in the state vn, scanning the rightmost tape symbol [ σn
Vn

]
in the input area. Notice that vn ∈ Vn+1. For any index i ∈ [1, n]Z, let us assume that M scans the symbol
[ σi

Vi
] in the state vi, where vi ∈ Vi+1 ⊆ Si+1. Since M passes the first phase and enters the second phase, Vi

cannot be empty. Since vi ∈ Si+1, the set Wi = {v ∈ Vi | v →σi
vi} is not empty, either. Choose the minimal

element, say vi−1, in Wi. This crossing sequence vi−1 obviously satisfies that vi−1 →σi
vi. Now, M changes

the symbol [ σi
Vi

] to Symb(vi−1, σi, vi) and moves its tape head to the left by entering vi−1 as an internal state.
After scanning [ σ1

V1
], M enters the internal state v0 because V1 = S1 = {v0}. Note that the resulting series

(v0, v1, v2, . . . , vn) specifies a certain accepting computation path of N and the output tape of M contains the
outcome produced along this particular computation path. When the tape head reaches the blank symbol, M
finally enters a new accepting state. This completes the description of M .

The above deterministic 1TM M clearly produces, for each input x, at most one output string from the
set f(x). Note that, if x 6∈ dom(f), all computation paths are rejecting paths, and thus M never reaches any
accepting state. It is therefore obvious that the partial function g computed by M is a refinement of f . ✷

Another application of Lemma 4.9 is the non-existence of one-way functions in 1-FLIN. To describe the
notion of one-way function in our single-tape linear-time model, we need to expand our “track” notation [ x

y ]
to the case where |x| and |y| differ. To keep our notation simple, we also use the same notation [ x

y ] to express

[ x#k

y ] if |x| + k = |y| and k ≥ 1 and express [ x

y#k ] if |x| = |y| + k and k ≥ 1, where # is a distinct “blank”
symbol. A total function f is called one-way if (i) f ∈ 1-FLIN and (ii) there is no function g ∈ 1-FLIN such

that f
(

g
(

[
f(x)

1|x| ]
))

= f(x) for all inputs x. When f is length-preserving, the equality f
(

g
(

[
f(x)

1|x| ]
))

= f(x)

can be replaced by f(g(f(x))) = f(x).

Proposition 4.10 There is no one-way function in 1-FLIN.

Proof. Assume that a one-way function f mapping Σ∗
1 to Σ∗

2 exists in 1-FLIN. Let f−1 denote a multi-
valued partial function defined as follows. For each string of the form [ y

1n ], if |y| ≥ n, then we define

f−1
(

[ y

1n ]
)

= {x#|y|−n | |x| = n, f(x) = y}; otherwise, let f−1
(

[ y

1n ]
)

= {x | |x| = n, f(x) = y}. Note
that f−1 is length-preserving and belongs to 1-NLINMV. Lemma 4.9 ensures the existence of a 1-FLIN(partial)
function g that is a refinement of f−1. Consider the following 1TM M : on input [ y

1n ], check if [ y

1n ] ∈ dom(g).

If not, M outputs any fixed string of length n (e.g., 0n). Otherwise, M computes g
(

[ y

1n ]
)

and outputs a string
obtained from it by deleting the symbol #. Since dom(g) is in 1-DLIN, M can be deterministic. Clearly, M
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inverts f ; that is, f
(

M
(

[
f(x)

1|x| ]
))

= f(x) for all inputs x. This contradicts the one-wayness of f . Therefore,

f cannot be one-way. ✷

The third application concerns the advised class REG/n. Similar to this class, we define 1-DLIN/lin as
the collection of all languages A such that there are a linear-time deterministic 1TM M , an advice function
h, and a constant c ≥ 1 for which (i) |h(n)| ≤ cn + c for any number n ∈ N, and (ii) for every x, x ∈ A iff
[ x

h(|x|) ] ∈ L(M). Now, we can prove that the two classes REG/n and 1-DLIN/lin coincide.

Proposition 4.11 REG/n = 1-DLIN/lin.

Proof. The inclusion REG/n ⊆ 1-DLIN/lin is obvious. Now, we want to show that 1-DLIN/lin ⊆ REG/n.
Let A be any language, over alphabet Σ, in 1-DLIN/lin. Without loss of generality, we can take a linear-time
deterministic 1TM M and an advice function h satisfying that (i) n ≤ |h(n)| ≤ cn for any number n ∈ N and
(ii) for every x, x ∈ A iff [ x

h(|x|) ] ∈ L(M). For simplicity, we assume that an alphabet for our advice strings is
different from Σ.

Let x be any input of length n. Initially, the tape of M consists of the string [ x#|h(n)|−n

h(n) ]. A folding
machine N , induced from M , starts with its own input, say cont(x, h(n)), which is obtained by folding the tape
content [ x#|h(n)|−n

h(n) ]. From this input string cont(x, h(n)), we can construct another string simply by deleting
all symbols in Σ. Since this new string does not include x, we denote it by h′(n). Note that |h′(n)| = n.

Let us describe a new deterministic 1TM M ′ that behaves as follows. On input [ x

h′(|x|) ], M ′ first modifies
the input to cont(x, h(|x|)) in linear time and then simulates the folding machine N using this new string as an
input. Obviously, for every string x, x ∈ A iff M ′ accepts [ x

h′(|x|) ]. Since M ′ runs in linear time using only its
input area, we can translate M ′ into its equivalent deterministic finite automaton. Therefore, we can conclude
that A belongs to REG/n. ✷

5 Alternating Computation

Chandra, Kozen, and Stockmeyer [6] introduced the concept of alternating Turing machines as a natural exten-
sion of nondeterministic Turing machines. We first give a general description of an alternating 1TM using our
strong definition of running time. An alternating 1TM is defined similar to a nondeterministic 1TM except that
its internal states are all labeled with symbols in {∃, ∀}, where ∃ reads “existential” and ∀ reads “universal”
(this labeling is done by a fixed function that maps the set of internal states to {∃, ∀}). All the nodes of a
computation tree are evaluated inductively as either T (true) or F (false) from the leaves to the root according
to the label of an internal state given in each node in the following recursive fashion. A leaf is evaluated T if and
only if it is in the accepting state. An internal node labeled with symbol ∃ is evaluated T if and only if at least
one of its children is evaluated T . An internal node labeled with symbol ∀ is evaluated T if and only if all of
its children are evaluated T . An alternating 1TM M accepts input x exactly when the root of the computation
tree of M on x is evaluated T .

The k-alternation means that the number of the times when internal states change between different la-
bels is at most k − 1 along every computation path. For instance, a nondeterministic Turing machine can
be viewed as an alternating Turing machine whose internal states are all labeled ∃, and therefore it has 1-
alternation. Let k and T be any functions from N to N satisfying that k(n) ≤ T (n) for all n ∈ N. The
notation 1-Σk(n)Time(T (n)) (1-Πk(n)Time(T (n)), resp.) expresses the collection of all languages recognized
by certain T (n)-time alternating 1TMs with at most k(n)-alternation starting with an ∃-state (a ∀-state,
resp.). For any given language A ∈ 1-Σk(n)Time(T (n)), take a T (n)-time alternating 1TM M that recog-

nizes A with at most k(n)-alternation starting with an ∃-state. Define M to be the one obtained from M
by exchanging ∀-states and ∃-states and swapping an accepting state and a rejecting state. It follows that
M is a T (n)-time alternating 1TM with at most k(n)-alternation starting with a ∀-state. Clearly, M rec-
ognizes A. Thus, co-1-Σk(n)Time(T (n)) ⊆ 1-Πk(n)Time(T (n)). Similarly, we have co-1-Πk(n)Time(T (n)) ⊆
1-Σk(n)Time(T (n)), and hence 1-Πk(n)Time(T (n)) = co-1-Σk(n)Time(T (n)). Given a set T of time-bounding
functions, 1-Σk(n)Time(T ) (1-Πk(n)Time(T ), resp.) stands for the union of all sets 1-Σk(n)Time(T (n)) (1-Πk(n)Time(T (n)),

resp.) over all functions T in T . In particular, we write 1-ΣLIN
k(n) (1-ΠLIN

k(n), resp.) for 1-Σk(n)Time(O(n))

(1-Πk(n)Time(O(n)), resp.).
Of our particular interest are alternating 1TMs with a constant number of alternations. When k is a constant

in N+, it clearly holds that 1-ΠLIN
k = co-1-ΣLIN

k and REG ⊆ 1-ΣLIN
k ∩ 1-ΠLIN

k ⊆ 1-ΣLIN
k ∪ 1-ΠLIN

k ⊆ 1-ALIN.
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Similarly, we define the complexity class 1-∆LIN
k by 1-∆LIN

k+1 = 1-DLIN1-ΣLIN
k

m for every index k ∈ N. Now, we

generalize the earlier collapse result 1-NLIN = REG and prove that three complexity classes 1-ΣLIN
k , 1-ΠLIN

k ,
and 1-∆LIN

k all collapse to REG.

Theorem 5.1 REG =
⋃

k∈N+ 1-ΣLIN
k =

⋃

k∈N+ 1-ΠLIN
k =

⋃

k∈N+ 1-∆LIN
k .

Theorem 5.1 follows from Proposition 4.5 and the following lemma. In this lemma, we show that alternation
can be viewed as an application of many-one 1-NLIN-reductions.

Lemma 5.2 For every number k ∈ N+, 1-ΣLIN
k+1 = 1-NLIN1-ΠLIN

k
m .

The proof of Theorem 5.1 proceeds by induction on k. The base case k = 1, i.e., 1-ΠLIN
1 = 1-ΣLIN

1 = REG, is
already shown in Theorem 4.1 since an alternating 1TM with 1-alternation starting with an ∃-state is identical
to a nondeterministic 1TM. The induction step k > 1 is carried out as follows. Assume that A is in 1-ΣLIN

k .

Lemma 5.2 yields the existence of a set B ∈ 1-ΠLIN
k−1 satisfying that A ∈ 1-NLINB

m. By the induction hypothesis,

B falls into REG and hence A is in 1-NLINREG
m , which is obviously REG. Since 1-ΠLIN

k = co-1-ΣLIN
k , 1-ΠLIN

k

also collapses to REG. Similarly, from the inclusion 1-∆LIN
k ⊆ 1-ΣLIN

k , it follows that 1-∆LIN
k = REG.

Proof of Lemma 5.2. (⊆-direction) Let A be any language in 1-ΣLIN
k+1, where k ≥ 1, over alphabet Σ1. Take

a linear-time alternating 1TM M with at most k-alternation that recognizes A. Without loss of generality, we
can assume that M never visits the cell indexed −1 since, otherwise, we can “fold” a computation into two
tracks, in which the first track simulates the tape region of nonnegative indices, and the second track simulates
the tape region of negative indices.

First, we define a linear-time nondeterministic 1TM M ′ that simulates M during its first alternation. Let
# be a new symbol not in Σ1. On input x, M ′ marks the start cell and then starts simulating M . During this
simulation, whenever M writes a blank symbol, M ′ replaces it with #. When M enters the first ∀-state p, M ′

first marks the currently scanning cell (by changing its tape symbol a to the new symbol [ a

p ]), moves its tape
head back to the start cell, and finally erases the mark at the start cell. It is important to note that M ′ has
only one block of at least |x| non-blank symbols on its tape when it halts. Let Σ consist of all symbols of the
form [ a

p ], where a is any symbol in Σ1 and p is any ∀-state.
Next, we define another alternating 1TM N as follows. Let Σ2 = Σ1∪Σ∪{#} be a new alphabet for N . On

input y in Σ∗
2, N changes all #s to the blank symbol, finds on the tape the leftmost cell that contains a symbol,

say [ a

p ], from Σ, and changes it back to a. At the same time, M ′ recovers the ∀-state p as well. By starting
with this internal state p of M , N simulates M step by step. Finally, the desired set B is defined to include all
input strings accepted by N . Obviously, B is in 1-ΠLIN

k−1. By their definitions, M ′ many-one 1-NLIN-reduces A
to B.

(⊇-direction) Assume that A is in 1-NLIN1-ΠLIN
k

m ; namely, A is many-one 1-NLIN-reducible to B via a
reduction machine N , where B is a certain set in 1-ΠLIN

k . Choose a linear-time alternating 1TM M that
recognizes B with k-alternation starting with a ∀-state. Now, let us define N ′ as follows: on input x, simulate
N , and, when N eventually halts, simulate M on the same input/work tape. Clearly, N ′ runs in linear time
since so do M and N . It is also easy to show that N ′ recognizes A with (k + 1)-alternation starting with an
∃-state. Thus, A belongs to 1-ΣLIN

k+1. ✷

The collapse of the hierarchy of alternating complexity classes with constant-alternation depends on our
strong definition of nondeterministic running time. By contrast, when the linear-time alternating class is
defined with a weak definition of running time (e.g., the length of the shortest accepting path if one exists,
and 1 otherwise), the language L = {x#y | x, y ∈ Σ∗, y is the binary representation of |x|} can separate this
alternating class from REG. (See [33] also [3].)

6 Probabilistic Computation

Probabilistic (or randomized) computation has been proven to be essential to many applications in computer
science. Since as early as the 1950s, probabilistic extensions of deterministic Turing machines have been studied
from theoretical interest as well as for practical applications. This paper adopts Gill’s model of probabilistic
Turing machines with flipping fair coins [16]. Formally, we define a probabilistic 1TM as a nondeterministic
1TM that has at most two nondeterministic choices at each step, which is referred to as a coin toss (or coin flip)
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whenever there are exactly two choices. Each fair coin toss is made with probability exactly 1/2. Instead of
taking an expected running time, we define a probabilistic 1TM M to be T (n)-time bounded if, for each string
x, all computation paths of M on the input x have length at most T (|x|). This definition reflects our strong
definition of running time. The probability associated with each computation path s equals 2−m, where m is
the number of coin tosses along the path s. The acceptance probability of M on the input x, denoted pM (x), is
the sum of the probabilities of all accepting computation paths. For any language L, we say that M recognizes
L with error probability at most ε if, for every x, (i) if x ∈ L, then pM (x) ≥ 1 − ε; and (ii) if x 6∈ L, then
pM (x) ≤ ε.

We begin with a key lemma, which is a probabilistic version of Lemma 4.3. Kaņeps and Freivalds [22],
following Rabin’s [35] result, proved a similar result for probabilistic finite automata.

Lemma 6.1 Let L be any language and let M be any probabilistic 1TM that recognizes L with error probability
at most ε(n), where 0 ≤ ε(n) < 1/2 for all numbers n ∈ N. For each number n ∈ N, let Sn be the union, over
all strings x of length at most n, of the sets of all crossing sequences at any critical-boundary of x along any
accepting computation path of M on x. Then, NL(n) ≤ 2|Sn|⌈|Sn|/δ(n)⌉ for all n ∈ N, where δ(n) = 1/2− ε(n).

Proof. Fix n ∈ N arbitrarily. For every string x ∈ Σ≤n and every crossing sequence v ∈ Sn, let wl(x|v)
be the sum, over all z with |xz| ≤ n, of all probabilities of the coin tosses made during the tape head staying
in the left-side region of the right-boundary of x along any accepting computation path of M on the input
xz. Similarly, for every z ∈ Σ≤n and every v ∈ Sn, let wr(v|z) be the sum, over all x with |xz| ≤ n, of all
probabilities of the coin tosses made during the tape head staying in the right-side region of the left-boundary
of z along any accepting computation path of M on the input xz. By these two definitions, it follows that
0 ≤ wl(x|v), wr(v|z) ≤ 1. The key observation is that the acceptance probability of M on the input xz with
|xz| ≤ n equals

∑

v∈Sn
wl(x|v)wr(v|z).

Now, we say that x n-supports (i, v) if |x| ≤ n, i ∈ [0, ⌈|Sn|/δ(n)⌉−1]Z, v ∈ Sn, and i ·δ(n)/|Sn| ≤ wl(x|v) ≤
(i + 1)δ(n)/|Sn|. Define the support set Suppn(x) = {(i, v) | x n-supports (i, v)}. We first show that, for
every x, y, z with |xz| ≤ n and |yz| ≤ n, if xz ∈ L and Suppn(x) = Suppn(y), then yz ∈ L. This is shown as
follows. Since Suppn(x) = Suppn(y), |wl(x|v) − wl(y|v)| ≤ δ(n)/|Sn| for all crossing sequences v ∈ Sn. Thus,
|pM (xz) − pM (yz)| =

∣

∣

∑

v∈Sn
(wl(x|v) − wl(y|v)) · wr(v|z)

∣

∣ ≤
∑

v∈Sn
|wl(x|v) − wl(y|v)| ≤

∑

v∈Sn
δ(n)/|Sn| =

δ(n). Since xz ∈ L, we obtain pM (xz) ≥ 1− ε(n), which yields pM (yz) > ε(n). Hence, we obtain yz ∈ L.
Note that NL(n) is bounded above by the number of distinct Suppn(x)’s for all strings x ∈ Σ≤n. Therefore,

NL(n) is at most 2|Sn|⌈|Sn|/δ(n)⌉, as requested. ✷

Let us focus our attention on the case where the error probability of a probabilistic 1TM is bounded away
from 1/2. For each language L and any probabilistic 1TM M , we say that M recognizes L with bounded-error
probability if there exists a constant ε > 0 such that M recognizes L with error probability at most 1/2 − ε.
We define 1-BPTime(T (n)) as the collection of all languages recognized by T (n)-time probabilistic 1TM with
bounded error probability. We also define 1-BPTime(T ) for any set T of time-bounding functions. The one-tape
bounded-error probabilistic linear-time class 1-BPLIN is 1-BPTime(O(n)).

Consider any language L recognized by a probabilistic 1TM M with bounded-error probability in time
o(n logn). Lemma 4.2 implies that the number of all crossing sequences of M is upper-bounded by a cer-
tain constant independent of its input. It thus follows from Lemma 6.1 that NL(n) is bounded above by an
exponential function of the machine’s error bound ε(n). Since ε(n) is bounded away from 1/2, we obtain
NL(n) = O(1), which yields the regularity of L. Therefore, REG = 1-BPTime(o(n log n)). The separation
REG 6= 1-BPTime(O(n log n)) follows from Proposition 3.1.

Theorem 6.2 REG = 1-BPTime(o(n logn)) $ 1-BPTime(O(n log n)).

Leaving from bounded-error probabilistic computation, we hereafter concentrate on unbounded-error proba-
bilistic computation. We define 1-PLIN to be the collection of all languages of the form {x ∈ Σ∗ | pM (x) > 1/2}
for certain linear-time probabilistic 1TMs M . Different from 1-BPLIN, 1-PLIN does not collapse to REG
because the non-regular set L> = {ambn | m > n} is in 1-PLIN.

The following theorem establishes a 1TM-characterization of SLrat. A similar characterization of SLrat was
given by Kaņeps [21] in terms of one-head two-way probabilistic automata with rational transition probabilities.
For simplicity, we write 1-synPLIN for the subset of 1-PLIN defined by linear-time probabilistic 1TMs that are
particularly synchronous.

Theorem 6.3 1-PLIN = 1-synPLIN = SLrat.
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The class 1-PLIN is easily shown to be closed under complementation and symmetric difference, where the
symmetric difference between two sets A and B is (A−B)∪(B−A). These properties also result from Theorem
6.3 using the corresponding properties of SLrat.

Now, let us prove Theorem 6.3. The theorem follows from two key lemmas: Lemmas 6.4 and 6.5. We begin
with Lemma 6.4 whose proof is based on a simple simulation of rational 1PFAs by synchronous probabilistic
1TMs.

Lemma 6.4 SLrat ⊆ 1-synPLIN.

Proof. Let L be any language in SLrat. There exists a rational 1PFA N = (S,Σ, π, {T (σ) |σ ∈ Σ}, η) with
a rational cut point for L. Without loss of generality, we can assume that (i) L = L(N, 1/2), (ii) S = [1, s]Z
for a certain number s ∈ N+, (iii) one entry of π equals 1, and (iv) there is a positive integer d satisfying the
following property: for any symbol σ ∈ Σ and any pair i, j ∈ S, the (i, j)-entry of the matrix T (σ), denoted
T (σ)i,j , is of the form ri,j(σ)/d for a certain number ri,j(σ) ∈ N. Write F for the set of all the final states of N .

Our goal is to construct a synchronous probabilistic 1TM M that simulates N in linear time with unbounded
error. The desired machine M works as follows. In case where the input is the empty string λ, M immediately
enters qacc or qrej depending on λ ∈ L or λ 6∈ L, respectively. Henceforth, assuming that our input is not λ,
we give an algorithmic description of N ’s behavior. Choose an integer m such that 2m−1 < d ≤ 2m. First, we
repeat phases 1)-2) until M finishes scanning all input symbols. Initially, M sets its decision value to be −1.

1) In scanning a symbol σ, M first generates 2m branches by tossing exactly m fair coins without moving
its head. The (lexicographically) first d branches are called useful; the other branches are called useless. The
useful branches are used for the simulation of a single step of N in phase 2.

2) First, we consider the case where the current decision value is −1. In the following manner, M simulates
a single step of N ’s moves. Assume that N is in internal state i. Note that, for any choice j ∈ S, N changes
the internal state i to j with the transition probability T (σ)i,j (= ri,j(σ)/d) while scanning the symbol σ. To
simulate such a transition, we choose exactly ri,j(σ) branches out of the useful d branches and then follow the
same transition of N . More precisely, along the ℓth branch generated by the coin tosses made in phase 1, M
simulates N ’s transition from the internal state i to j if

∑j−1
k=1 ri,k(σ) < ℓ ≤

∑j
k=1 ri,k(σ). We then force M ’s

head to move to the right-adjacent cell. Along the useless branches, M tosses a fair coin, remembers its outcome
(either 0 or 1) as a new decision value, and moves its head rightward. If the current decision value is not −1,
then we simply force M ’s head to step to the right.

3) When M finishes reading the entire input, its head must sit in the first blank cell. With the decision
value −1, if N reaches a final state in F , then M enters qacc; otherwise, M enters qrej . If the decision value is
either 0 or 1, M enters qrej or qacc, respectively. This completes the description of M .

By our simulation, the acceptance probability of N on input x is greater than 1/2 iff the acceptance prob-
ability of M on the same input is more than 1/2. Moreover, our simulation makes M ’s computation paths
terminate all at once. Therefore, L is in 1-synPLIN via M . ✷

The following lemma complements Lemma 6.4.

Lemma 6.5 For any probabilistic 1TM M running in linear time, there exists a rational 1GPFA N such that
pN (x) = pM (x) for any input x.

To lead to the desired consequence 1-PLIN ⊆ SLrat, take a language L in 1-PLIN and consider any linear-
time probabilistic 1TM M that recognizes L with unbounded-error probability. Lemma 6.5 guarantees the
existence of a rational 1GPFA N for which L = L(N, 1/2). Hence, L is in GSLrat, which is known to equal
SLrat. With Lemmas 6.4, we therefore obtain Theorem 6.3.

Proof of Lemma 6.5. Let M = (Q,Σ,Γ, δ, q0, qacc, qrej) be any linear-time probabilistic 1TM. In this proof,
we need the folding machine M ′ constructed from M . To simplify the proof, we further modify M ′ as follows.
When M ′ halts in a certain halting state, we force its head to move rightward and cross the left-boundary of
the original input by entering the same halting state as M does. Note that the accepting probability of this
modified machine is the same as that of M . For notational simplicity, we use the notation M to denote this
modified machine. For this new machine M , the crossing sequence at the left-boundary of any input should be
v0 = () and the crossing sequence at the right-boundary of any input is vf = (q1, q2, qacc) along every accepting
computation path of M .

We wish to construct a rational 1GPFA N = (S,Σ, π, {T (σ) |σ ∈ Σ}, η) satisfying that pN (x) = pM (x) for
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all inputs x ∈ Σ∗. The desired automaton N is defined in the following manner. Let S denote the set of all
crossing sequences of M . It follows from Lemma 4.2 that S is a finite set. Let σ be an arbitrary symbol in Σ.
For any pair (u, v) of elements in S, we define P (u;σ; v) to be the probability of the following event E .

Event E : Consider any computation tree of M where M starts on input yσz with the tape head initially
scanning the left-most symbol of the input yσz for a certain pair (y, z) of strings. In a certain computation
path of this computation tree, (i) u coincides with the crossing sequence at the left-boundary of σ, (ii)
v is the crossing sequence at the right-boundary of σ, and (iii) u →σ v.

Clearly, P (u;σ; v) is a dyadic rational number since M flips only fair coins. Let x = σ1 · · ·σn be any
nonempty input string, where each σi is in Σ. By the correspondence between a series of crossing sequences and
a computation path, the acceptance probability pM (x) equals

∑

~v

∏n
i=1 P (vi−1;σi; vi), where the sum is taken

over all sequences ~v = (v0, v1, . . . , vn) from S with vn = vf . For each tape symbol σ ∈ Σ, define T (σ) to be the
|S| × |S| matrix whose (u, v)-element is P (u;σ; v) for any pair u, v ∈ S. The row vector π has 1 or 0 in the vth
column if v = v0 or v 6= v0, respectively, for any v ∈ S. Letting F = {v0, vf} if λ ∈ L and F = {vf} otherwise,
we define η to be the column vector whose vth component is 1 or 0 if v ∈ F or v 6∈ F , respectively. Thus, we
have pN (x) = π T (x) η for every input string x.

By the above definition of N , it is not difficult to verify that, for each input x, pN (x) = π T (x) η =
∑

~v

∏n
i=1 P (vi−1;σi; vi) = pM (x), as requested. ✷

Macarie [28] showed the proper containment SLrat $ L, where L is the class of all languages recognized
by multiple-tape deterministic Turing machines, with a read-only input tape and multiple read/write work-
tapes, which uses O(log n) tape-space on all the tapes except for the input tape (and halting eventually on all
inputs). We thus obtain the following consequence of Theorem 6.3. Note that L * CFL since, for instance,
L3eq = {anbncn | n ∈ N} ∈ L− CFL.

Corollary 6.6 1-PLIN $ L, REG/n * L and L * REG/n.

Proof. The proper inclusion 1-PLIN $ L follows from Theorem 6.3 as well as the fact that SLrat $ L.
Since REG/n contains all non-recursive tally languages, it immediately follows that REG/n * L. To prove that
L * REG/n, we use the language Equal = {w ∈ {0, 1}∗ | #0(w) = #1(w)}. While Lemma 3.3 places Equal
outside of REG/n, Equal obviously belongs to L. We therefore obtain the last separation L * REG/n. ✷

Theorem 6.3 also provides us with separations among three complexity classes REG/n, CFL, and 1-PLIN.
We see these separation results in the next proposition.

Proposition 6.7 CFL ∩ REG/n * 1-PLIN, CFL * 1-PLIN ∪ REG/n, and REG/n * CFL ∪ 1-PLIN.

Earlier, Nasu and Honda [31] found a context-free language not in SLrat. More precisely, they introduced the

context-free language LNH = {aibaj1b . . . bajrb | r ∈ N+ & i, j1, . . . , jr ∈ N& i =
∑ℓ

k=1 jk for a certain number ℓ ∈ [1, r]Z}
and showed that, using the Cayley-Hamilton theorem, LNH cannot belong to SLrat. A similar technique can
show that SLrat does not contain the context-free language Center = {x1y | x, y ∈ {0, 1}∗, |x| = |y|}.

Proof of Proposition 6.7. It is easy to show that the context-free language Center falls into REG/n by
choosing advice of the form 0n10n whenever the length |x1y| is odd. Since Center 6∈ SLrat, the first separation
follows from Theorem 6.3.

For the second separation, let us consider the context-free non-stochastic language LNH . It is enough to
prove that LNH /∈ REG/n. This can be done in a similar fashion as in the proof of Lemma 3.3. Let us fix our
alphabet Σ = {a, b}. Assuming that LNH ∈ REG/n, choose a deterministic finite automaton M = (Q,Σ, q0, F )
and an advice function h mapping from N to Σ∗ such that, for every x ∈ Σ∗, x ∈ LNH if and only if [ x

h(|x|) ] ∈ B.

Let n = |Q|+2. For each number k ∈ [1, n−1]Z, define yk and zk to be the strings an+kban−kb and a2kba2(n−k)b
of length 2n+2, respectively. Obviously, ykzk belongs to LNH since |an+k| = |an−k|+ |a2k|. Choose two distinct
indices k, l ∈ [1, n−1]Z such that M enters the same internal state after reading yk as well as yl. Such a pair (k, l)
exists since n− 1 > |Q|. It thus follows that M should accept the input [ ykzl

h(|ykzl|)
]. This yields the membership

ykzl ∈ LNH . Clearly, this contradicts the definition of LNH . Therefore, we conclude that LNH 6∈ REG/n.
The third separation is rather obvious because REG/n contains a non-recursive language. ✷
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7 Counting Computation

Counting issues naturally arise in many fields of computer science. For instance, the decision problem of
determining whether there exists a Hamiltonian cycle in a given graph induces the problem of counting the
number of such cycles. In the late 1970s, Valiant [43] introduced the notion of counting Turing machines to
study the complexity of counting. Our goal is to investigate the functions computed by one-tape linear-time
counting Turing machines.

7.1 Counting Functions

A counting 1TM is a variant of a nondeterministic 1TM, which behaves like a nondeterministic 1TM except
that, when it halts, we take the number of all accepting computation paths as the outcome of the machine. Let
#M(x) denote the outcome of such a counting 1TM M on input x. In this way, counting 1TMs can compute
(partial) functions mapping strings to numbers. These functions are called counting functions.

Similar to Valiant’s function class #P [43], we use the notation 1-#LIN (pronounced “one sharp lin”) to
denote the collection of all total functions f , from Σ∗ to N, which are computed by certain linear-time counting
1TMs. This function class 1-#LIN naturally includes 1-FLIN by identifying any natural number n with the nth
string over alphabet Σ (in the standard order) and by constructing a linear-time nondeterministic 1TM, which
branches off into n computation paths, starting with the nth string as an input. Another useful function class
besides 1-#LIN is 1-GapLIN, which is defined as the class of all total functions whose values are the difference
between the number of accepting paths and the number of rejecting paths of linear-time nondeterministic 1TMs.
Such functions are conventionally called gap functions.

We can prove the following closure property. For convenience, write 1-NLINMVdis for the collection of
all partial multi-valued functions computed by certain nondeterministic 1TMs whose valid computation paths
always output distinct values.

Lemma 7.1 For any functions f, g in 1-GapLIN and any function h in 1-NLINMVdis, the following functions
all belong to 1-GapLIN: f · g, f + g, f − g, and λx.

∑

y∈h(x) f([
x

y ]).

Proof. We show the lemma only for the last function because the other cases are easily shown. For any
two functions f ∈ 1-GapLIN and h ∈ 1-NLINMV, let k(x) =

∑

y∈h(x) f([
x

y ]) for each input string x. Take a
nondeterministic 1TM Mh computing h in linear time and also a linear-time counting 1TM Mf that computes
f . Consider the counting 1TM N that behaves as follows. On input x, N produces [ x

x ] in the tape and runs
Mh using only the lower track. When Mh halts, by our output convention, it leaves [ x

y ], where y ∈ h(x),
in the output tape. Next, N simulates Mf on the input [ x

y ]. It follows that, for every x, #N(x) equals
∑

y∈h(x)#Mf([
x

y ]), which is exactly k(x). Hence, k belongs to 1-GapLIN. ✷

The above closure property implies that, for instance, 1-GapLIN = 1-#LIN − 1-#LIN, where the notation
F − G stands for the set {f − g | f ∈ F , g ∈ G}.

Lemma 7.2 1-GapLIN = 1-#LIN− 1-#LIN.

Proof. Let h be any function in 1-#LIN− 1-#LIN. Take two functions f, g ∈ 1-#LIN satisfying h = f − g.
Since f, g ∈ 1-GapLIN, the difference function f − g is also in 1-GapLIN by the closure property of 1-GapLIN.
Hence, h is in 1-GapLIN.

Conversely, let h be any function in 1-GapLIN. There exists a linear-time counting 1TM M that witnesses
h; that is, h(x) = #M(x) −#M(x) for all x, where #M(x) denotes the number of all rejecting computation
paths of M on input x. Define f(x) = #M(x) and g(x) = #M(x) for every x. Clearly, f is in 1-#LIN. It is
also easy to show that g is in 1-#LIN. Since h = f − g, h belongs to 1-#LIN− 1-#LIN. ✷

By 1GAFrat, we denote the set of all acceptance functions of rational 1GPFAs. Lemma 7.2 implies that
1-GapLIN is a proper subset of 1GAFrat.

Lemma 7.3 1-GapLIN $ 1GAFrat.

Proof. The inequality 1-GapLIN 6= 1GAFrat is obvious since certain functions in 1GAFrat can output
non-integer values whereas 1-GapLIN contains only integer-valued functions.

For inclusion, we first note that 1-#LIN ⊆ 1GAFrat, by re-defining the value P (u;σ; v) in the proof of
Lemma 6.5 to be the number of accepting computation paths instead of probabilities. By Lemma 7.2, we
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can write any given function in 1-GapLIN as a difference f1 − f2 of two functions f1 and f2 in 1-#LIN. The
desired inclusion now follows from the fact that 1GAFrat is closed under difference, in fact under any linear
combinations [29]. ✷

Theorem 6.3 and Lemma 7.3 build a bridge between counting computation and unbounded-error probabilistic
computation. Here, we show that 1-PLIN can be characterized in terms of 1-GapLIN.

Proposition 7.4 1-PLIN = {A | ∃f ∈ 1-GapLIN [A = {x | f(x) > 0}]}.

Proof. Assume that A = {x | f(x) > 0} for a certain function f in 1-GapLIN. Lemma 7.3 puts f into
1GAFrat. This makes A fall into GSLrat with the cut point 0. Since GSLrat = SLrat, Lemma 6.4 ensures that
A is indeed in 1-PLIN.

Conversely, let A be any language in 1-PLIN. By Theorem 6.3, A is also in SLrat. Following the proof of
Lemma 6.4, we can recognize A in linear time by a certain synchronous probabilistic 1TM M which tosses the
equal number of fair coins on all computation paths on each input. Let N be the machine obtained from M
by exchanging the roles of qacc and qrej . Now, we view M and N as counting 1TMs. Define f and g to be the
functions computed by the counting machines M and N , respectively. It follows from the definition that, for
every string x, x ∈ A if and only if f(x) > g(x). Since f(x) > g(x) is equivalent to (f − g)(x) > 0, we obtain
the characterization A = {x | (f − g)(x) > 0}. Since f − g is in 1-GapLIN by Lemma 7.2, this completes the
proof. ✷

In comparison, 1-NLIN can be characterized in terms of 1-#LIN as 1-NLIN = {A | ∃f ∈ 1-#LIN [A = {x |
f(x) > 0}]}.

We already know the inclusion 1-FLIN ⊆ 1-#LIN. Furthermore, Proposition 7.4 yields the separation
between 1-FLIN and 1-#LIN.

Corollary 7.5 1-FLIN $ 1-#LIN.

Proof. It is enough to show that if 1-FLIN = 1-#LIN then 1-DLIN = 1-PLIN. Since REG 6= 1-PLIN, it
immediately follows that 1-FLIN 6= 1-#LIN. Now, assume that 1-FLIN = 1-#LIN. Let A be any set in 1-PLIN
and we wish to show that A is also in 1-DLIN. By Lemma 7.2 and Proposition 7.4, there exist two functions
f, g ∈ 1-#LIN for which A = {x | f(x) > g(x)}. By our assumption, these functions fall into 1-FLIN. Using
deterministic 1TMs that compute f and g in linear time, we can produce [ f(x)

g(x) ] in binary in linear time from x.
We can further determine whether f(x) > g(x) by comparing f(x) and g(x) bitwise. This gives a deterministic
linear-time 1TM for A, and thus A belongs to 1-DLIN. Therefore, we obtain 1-DLIN = 1-PLIN, as requested.
✷

7.2 Counting Complexity Classes of Languages

The function classes 1-#LIN and 1-GapLIN naturally induce quite useful counting complexity classes. First,
we define the counting class 1-SPLIN to be the collection of all languages whose characteristic functions belong
to 1-GapLIN. Furthermore, let 1-⊕LIN (pronounced “one parity lin”) consist of all languages of the form
{x ∈ Σ∗ | f(x) ≡ 1 (mod 2)} for certain functions f in 1-#LIN. Obviously, REG ⊆ 1-SPLIN ⊆ 1-⊕LIN. More
generally, for each integer k ≥ 2 and each nonempty proper subset R of [0, k − 1]Z, we define the counting
class 1-MODk,RLIN to include all languages of the form {x ∈ Σ∗ | ∃ r ∈ R [f(x) ≡ r (mod k)]} for certain
functions f ∈ 1-#LIN. It follows that REG ⊆ 1-MODk,RLIN and, in particular, 1-⊕LIN = 1-MOD2,{1}LIN =
co-1-MOD2,{0}LIN.

Despite their complex definitions, these counting classes are no more powerful than REG. Hereafter, we
wish to prove the collapse of these classes down to REG. Our proof uses a crossing sequence argument.

Theorem 7.6 REG = 1-SPLIN = 1-⊕LIN = 1-MODk,RLIN for every integer k ≥ 2 and every nonempty
proper subset R of [0, k − 1]Z.

Proof. It suffices to show that 1-MODk,RLIN ⊆ REG. This can be shown by modifying the proof of Lemma
6.1. Here, we define wl(x|v) and wr(v|z) to denote the number of accepting computation paths instead of the
sum of probabilities. Recall that #M(u) denotes the outcome (i.e., the number of accepting paths) of M on
input u. For every pair x, z with |xz| ≤ n, it holds that #M(xz) =

∑

v∈Sn
wl(x|v)wr(v|z).

Now, let Suppn(x) be the set {(r, v) ∈ [0, k − 1]Z × Sn | wl(x|v) ≡ r (mod k)}. We wish to show that, for
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every x, y, z with |xz| ≤ n and |yz| ≤ n, if xz ∈ L and Suppn(x) = Suppn(y) then yz ∈ L. This is shown as
follows. Note that, for each v ∈ Sn, there exists a unique number r ∈ [0, k−1]Z satisfying that (r, v) ∈ Suppn(x).

This implies that #M(xz)−#M(yz) =
∑

v∈Sn
(wl(x|v)−wl(y|v)) ·wr(v|z) =

∑k−1
r=0

∑

(r,v)∈Suppn(x)
(wl(x|v)−

wl(y|v)) · wr(v|z). For each (r, v) ∈ Suppn(x), we have wl(x|v) ≡ r (mod k) and wl(y|v) ≡ r (mod k) since
Suppn(y) = Suppn(x). It therefore follows that wl(x|v) − wl(y|v) ≡ 0 (mod k). From this, we conclude
that #M(xz) − #M(yz) ≡ 0 (mod k). Since #M(xz) ≡ r0 (mod k) for a certain number r0 ∈ R, we have
#M(yz) ≡ r0 (mod k) for the same r0. This means that yz ∈ L.

Notice that NL(n) is bounded above by the number of distinct sets Suppn(x) for all strings x ∈ Σ≤n. As a
consequence, NL(n) is upper-bounded by 2k|Sn|, which is bounded above by a certain constant. Therefore, L
belongs to REG. ✷

We wish to show an immediate consequence of Theorem 7.6 regarding low sets. Note that the notion of
many-one 1-NLIN reducibility can be further expanded into other complexity classes (such a complexity class
is called many-one relativizable). We can naturally define the many-one relativized counting class 1-#LINA

m

relative to set A as the collection of all single-valued total functions f such that there exists a linear-time
nondeterministic 1TM M satisfying the following: on every input x, M produces an output yp along each
computation path p and f(x) equals the number of all computation paths p for which yp ∈ A. Similarly, the

many-one relativized class 1-GapLINA
m is defined using the difference |{p | yp ∈ A}|− |{p | yp 6∈ A}|. A language

A is called many-one low for a relativizable complexity class C of languages or of functions if CA
m ⊆ C. A

complexity class D is many-one low for C if every set in D is many-one low for C. We use the notation lowmC to
denote the collection of all languages that are many-one low for C. For instance, we obtain lowm1-NLIN = REG
since 1-NLINREG

m = 1-NLIN.

Corollary 7.7 REG = lowm1-#LIN = lowm1-GapLIN.

Proof. To prove the corollary, we first note that REG ⊆ lowm1-#LIN since 1-#LINREG
m = 1-#LIN.

Conversely, for any set A in lowm1-GapLIN, since χA ∈ 1-#LINA
m ⊆ 1-GapLINA

m, it follows that χA ∈ 1-GapLIN.
Thus, A is in 1-SPLIN, which equals REG by Theorem 7.6. Therefore, lowm1-GapLIN ⊆ REG. ✷

We further introduce another counting class 1-C=LIN (pronounced “one C equal lin”) as the collection of
all languages of the form {x | f(x) = 0} for certain functions f in 1-GapLIN. This class 1-C=LIN properly
contains REG because the non-regular language Leq = {0n1n | n ∈ N} clearly belongs to 1-C=LIN. Using the
closure property of 1-GapLIN, we can easily show that 1-C=LIN is closed under intersection and union. This
is shown as follows. Let A = {x | f(x) = 0} and B = {x | g(x) = 0} for certain functions f, g ∈ 1-GapLIN.
Obviously, A ∩B = {x | f2(x) + g2(x) = 0} and A ∪B = {x | f(x)g(x) = 0}. By Lemma 7.1, A∩B and A∪B
are in 1-C=LIN.

We wish to show robustness of the complexity class 1-C=LIN. For comparison, we introduce 1-synC=LIN
as the subset of 1-C=LIN defined by linear-time synchronous counting 1TMs. A similar argument to the proof
of Lemma 6.5 yields the simple containment 1-C=LIN ⊆ SL=

rat. Moreover, similar to Lemma 6.4, we can prove
that SL=

rat ⊆ 1-synC=LIN. Therefore, we obtain the following characterization of SL=
rat.

Theorem 7.8 1-C=LIN = 1-synC=LIN = SL=
rat

Earlier, Turakainen [39] proved that SLrat is closed under complementation and that SL=
rat is properly

included in SLrat. Symmetrically, co-SL=
rat is also properly included in SLrat. In addition, Dieu [10] showed

that SL=
rat is not closed under complementation. Dieu’s argument can also work to show that the language

L≥ = {ambn | m ≥ n} cannot belong to SL=
rat∪co-SL

=
rat. Since L≥ belongs to 1-PLIN, Theorem 7.8 immediately

leads to the following separation results.

Corollary 7.9 1-C=LIN * co-1-C=LIN, co-1-C=LIN * 1-C=LIN, and 1-C=LIN ∪ co-1-C=LIN $ 1-PLIN.

In the next lemma, we briefly summarize basic relationships between 1-C=LIN and 1-PLIN.

Lemma 7.10 1-C=LIN ⊆ 1-PLIN ⊆ 1-NLIN1-C=LIN
m = 1-NLIN1-PLIN

m .

Proof. Using Theorems 6.3 and 7.8, the well-known inclusion SL=
rat ⊆ SLrat yields the first containment

1-C=LIN ⊆ 1-PLIN. Next, we want to show that 1-PLIN ⊆ 1-NLIN1-C=LIN
m . Let A be any set in 1-PLIN.

By Proposition 7.4, choose a gap function f ∈ 1-GapLIN satisfying that A = {x | f(x) > 0}. To simplify
our proof, we assume that the empty string λ is not in A. Let N = (Q,Σ,Γ, q0, qacc, qrej) be any linear-time
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counting 1TM that witnesses f . Without loss of generality, we can assume that (i) at each step, N makes at
most two nondeterministic choices and (ii) f(x) 6= 0 for all strings x in Σ∗. Since N runs in linear time, let
k be the minimal positive integer such that TimeN (x) < k|x| for any nonempty string x. It thus follows that
−2k|x| < f(x) < 2k|x|.

For brevity, write ∆k for the set {0, 1}k and assume a standard lexicographic order on the set (∆k)
∗ of

strings. Let us define a reduction machine M as follows. On input x, guess a string, say s, over the alphabet ∆k

of length |x| and produce [ x

s ] on the output tape by entering an accepting state. Note that there are exactly

2k|x| nondeterministic branches. Note that the machine M is meant to guess the value f(x) + 1, if f(x) > 0,
and transfer this information to another machine N ′. For each string s ∈ (∆k)

|x|, let ls denote the positive
integer l for which s is lexicographically the lth string in (∆k)

|x|. Obviously, we have 1 ≤ ls ≤ 2k|x|.
Next, we describe the counting 1TM N ′. On input [ x

s ], N ′ guesses a string s′ in (∆k)
|x| in the third track.

In case where x = λ, N ′ rejects the input immediately and halt because λ 6∈ A. Hereafter, we assume that
x 6= λ. If s < s′, then N ′ produces both an accepting path and a rejecting path, making no contribution to the
gap function witnessed by N ′. Consider the case where s′ = s. In this case, N ′ simulates N on the input x.
At length, when s′ < s, N ′ rejects the input immediately and halt. Note that ls = |{s′ ∈ (∆k)

|x| | s′ < s}|+ 1.
Let g be the gap function induced by N ′. For any nonempty string x and any string s ∈ (∆k)

|x|, we obtain
g([ x

s ]) = f(x)− (is − 1).
With the gap function g, we define a set B = {x | g(x) = 0}, which is in 1-C=LIN. For each string x, if

f(x) > 0, then g([ x

s ]) = 0 for the f(x) + 1st string s; otherwise, since f(x) < 0, g([ x

s ]) is always negative for

any choice s ∈ (∆k)
|x|. This shows that A is many-one 1-NLIN-reducible to B via M ; namely, A is in 1-NLINB

m.
Therefore, A belongs to 1-NLIN1-C=LIN

m .
Finally, we want to show that 1-NLIN1-C=LIN

m = 1-NLIN1-PLIN
m . The inclusion 1-NLIN1-C=LIN

m ⊆ 1-NLIN1-PLIN
m

is obvious. Since 1-PLIN ⊆ 1-NLIN1-C=LIN
m , 1-NLIN1-PLIN

m is contained in the complexity class 1-NLIN1-NLIN1-C=LIN
m

m ,
which coincides with 1-NLIN1-C=LIN

m by Proposition 4.5. ✷

The next proposition demonstrates two separation results concerning two complexity classes 1-C=LIN and
1-PLIN. Notationally, lowm1-PLIN denotes the complexity class that is many-one low for 1-PLIN (i.e., lowm1-PLIN =
{A | 1-PLINA

m ⊆ 1-PLIN}).

Proposition 7.11 1. 1-PLIN $ 1-NLIN1-C=LIN
m ∩ co-1-NLIN1-C=LIN

m .

2. lowm1-PLIN $ 1-PLIN $ 1-PLIN1-PLIN
m .

Proposition 7.11 is a consequence of the following key lemma regarding the complexity of the language
Center = {x1y | x, y ∈ {0, 1}∗, |x| = |y|}.

Lemma 7.12 The language Center belongs to 1-NLIN1-C=LIN
m ∩ co-1-NLIN1-C=LIN

m .

With help of this lemma, we can prove Proposition 7.11 easily.

Proof of Proposition 7.11. We have seen in Section 6 that Center 6∈ SLrat. Assertion 1 follows directly
from Lemma 7.12. The second part of Assertion 2 follows from Assertion 1 because 1-NLINA

m ⊆ 1-PLINA
m for

any set A. Next, we want to show the first part of Assertion 2. Let A be any set in lowm1-PLIN, that is,
1-PLINA

m ⊆ 1-PLIN. Obviously, A ≤1-PLIN
m A, and thus A ∈ 1-PLINA

m. This implies that A ∈ 1-PLINA
m ⊆

1-PLIN. Therefore, we obtain lowm1-PLIN ⊆ 1-PLIN. The separation lowm1-PLIN 6= 1-PLIN follows from the
second part of Assertion 2 because lowm1-PLIN = 1-PLIN implies 1-PLIN = 1-PLIN1-PLIN

m by the definition of
lowness. ✷

To complete the proof of Proposition 7.11, we still need to prove Lemma 7.12. The lemma can be proven
by constructing many-one 1-NLIN-reductions from Center to sets in 1-C=LIN.

Proof of Lemma 7.12. As a target set, we use the set A = {0n#1n | n ∈ N}, where # is a special symbol
not in {0, 1}, which belongs to 1-C=LIN. First, we want to show that Center ≤1-NLIN

m A, since this implies that
Center ∈ 1-NLIN1-C=LIN

m . Let us consider the following nondeterministic 1TM N running in linear time.

Let x be any input. In Phase 1, determine whether |x| is odd and then return the head back to the
start cell. If |x| is even, output x and halt immediately. Now, assume that |x| is odd. In Phase 2,
choose nondeterministically either 0 or 1. If 1 is chosen, go to Phase 3; otherwise, overwrite 0 in
the scanning cell, move the head to the right, and then repeat Phase 2. Whenever the head reaches
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the first blank symbol, return it to the start cell and halt. In Phase 3, check whether the head is
currently scanning 1. If not, return the head back to the start cell and halt. Otherwise, change 1 to
# and then, by moving the head rightward, convert all the symbols on the right of # to 1s. Finally,
return the head to the start cell and halt.

We now prove that Center ≤1-NLIN
m A. Assuming that x ∈ Center, let x = u1v for two strings u and v of the

same length. Along a certain computation path, N successfully converts x to 0|u|#1|v|, which belongs to A.
On the contrary, assume that x 6∈ Center. When |x| is even, N outputs x, which is obviously not in A. In
case where x is of the form u0v with strings u and v of the same length, N never outputs 0|u|#1|v|. Hence, N
many-one 1-NLIN-reduces Center to A.

To show that Center ≤1-NLIN
m A, let us consider another nondeterministic 1TM N ′ that behaves as follows.

On input x, check if |x| is odd. If not, output 1#1 and halt. Otherwise, simulate Phase 2 of N ’s
algorithm. In Phase 3, check if the currently scanning cell has 1. If so, return the head to the start
cell and halt. Otherwise, overwrite # and convert the whole input x into a string of the form 0n#1m

as an output.

A similar argument for N can demonstrate that N ′ many-one 1-NLIN-reduces Center to A. Hence, we conclude
that Center ∈ co-1-NLIN1-C=LIN

m . This completes the proof. ✷

The complexity class that is many-one low for 1-C=LIN, denoted lowm1-C=LIN, satisfies the inclusion
relations lowm1-C=LIN ⊆ 1-C=LIN ∩ co-1-C=LIN $ 1-C=LIN. The first inclusion can be proven in a similar
fashion to the proof of Corollary 7.7 and the second proper inclusion follows from Corollary 7.9. Unlike Corollary
7.7, it is open whether REG = lowm1-C=LIN.

Lemma 7.13 lowm1-C=LIN ⊆ 1-C=LIN ∩ co-1-C=LIN $ 1-C=LIN.

Since 1-C=LIN ⊆ 1-PLIN, Proposition 6.7 immediately yields the following separations: CFL ∩ REG/n *
1-C=LIN, CFL * 1-C=LIN∩REG/n, and REG/n * CFL∪1-C=LIN. Other separations among three complexity
classes CFL, 1-C=LIN, and REG/n are presented in the following proposition.

Proposition 7.14 1-C=LIN ∩ CFL * REG/n, 1-C=LIN ∩ REG/n * CFL, and 1-C=LIN * REG/n ∪ CFL.

Proof. Let us consider the language Equal = {w ∈ {0, 1}∗ | #0(w) = #1(w)}, which stays outside of REG/n.
The first separation follows immediately since Equal belongs to CFL and 1-C=LIN. To prove the second claim,
recall the non-context-free language L3eq = {anbncn | n ∈ N}. We want to show that L3eq belongs to 1-C=LIN.
To see this, note that L1 = {anbncm | m,n ∈ N} and L2 = {ambncn | m,n ∈ N} are in 1-C=LIN. It is rather
easy to show that the intersection L1 ∩L2 is also in 1-C=LIN. Since L3eq = L1 ∩L2, L3eq belongs to 1-C=LIN.

The second separation follows from the fact that L3eq ∈ REG/n. For the third separation, consider the
non-context-free language 3Equal, given in Section 6. It is straightforward to show that 3Equal belongs to
1-C=LIN. With a similar argument for the first separation, we can argue that 3Equal cannot be in REG/n. ✷

8 Quantum Computation

The notion of a quantum Turing machine was introduced by Deutsch [9] in the mid 1980s and later reformulated
by Bernstein and Vazirani [5] to model a quantum computation. Within our framework of 1TMs, we use a general
model of one-tape quantum Turing machines, which allow their tape heads to stay still [45, 46].

A (measure-once) one-tape quantum Turing machine (abbreviated 1QTM) is similar to the classical 1TM
(Q,Σ,Γ, δ, q0, qacc, qrej) except that its transition function δ is a map fromQ×Γ to the vector space CQ×Γ×{L,N,R}.
The configuration space of M is the Hilbert space spanned by the set of all configurations of M as the computa-
tional basis. Any element of this configuration space is called a superposition of configurations, which is a linear
combination of configurations with complex coefficients (called amplitudes). A 1QTM M is said to be well-
formed if its time-evolution operator preserves the ℓ2-norm (i.e., Euclidean norm), where the time-evolution
operator for M is the operator that maps a superposition of configurations to another superposition of the
configurations resulting by an application of the quantum transition function δ of M . For any subset K of C, a
1QTM is said to have K-amplitudes if all amplitudes in δ are drawn from K. By ignoring its nonzero transition
amplitudes, δ can be viewed as a nondeterministic transition function. For clarity, we use the notation δ̂ to
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express this nondeterministic transition function. Similar to the classical case, a (classical) computation path
of a 1QTM is defined as a series of configurations, each of which is obtained from its previous configuration
by an application of δ̂. These classical computation paths form a classical computation tree. Any quantum
computation can be viewed as its corresponding classical computation tree in which each edge is weighted by
its associated nonzero amplitude.

Unlike classical Turing machines, there is a subtle but arguable issue concerning the definition of the halting
condition of a 1QTM. In accordance with the classical halting condition, we define the running time of a 1QTM
M on input x as the minimal nonnegative integer t such that, in the classical computation tree T representing
the quantum computation of M on the input x, all configurations in T become halting configurations at time t
for the first time. If such a t exists, we say that M halts‖ at time t. This halting condition makes us view time-
bounded 1QTMs as classical “synchronous” machines. A time-bounded 1QTM M is said to be well-behaved if,
when M halts, the tape head halts in the same cell (not necessarily the start cell) in all halting configurations
of the classical computation tree representing the quantum computation of M . Moreover, M is stationary if it
is well-behaved and the head always halts in the start cell.

The acceptance probability of a 1QTMM on input x, denoted pM (x), is the sum of all the squared magnitudes
of accepting configurations (i.e., configurations with the internal state qacc) in any superposition generated at
the time when M halts on the input x. Let K be any nonempty subset of C. We introduce the one-tape
bounded-error quantum linear-time class 1-BQLINK as the collection of all languages L that satisfy the following
condition: there exist a linear-time well-formed stationary 1QTM M with K-amplitudes and an error bound
ε > 0 such that, for every string x, (i) if x ∈ L, then pM (x) ≥ 1/2 + ε and (ii) if x /∈ L, then pM (x) ≤ 1/2− ε.

It is important to note that our linear-time 1QTMs may not simulate linear-time 2-way quantum finite
automata given in [26] mainly because of the synchronous condition of our 1QTMs. On the contrary, the
synchronous condition enables us to prove in Lemma 8.1 a strong connection between 1QTMs and 1-GapLIN.

We prove a key lemma, which shows how to compute the acceptance probability of a 1QTM with Q-
amplitudes. The lemma has a similar flavor to Theorem 3(4) in [46] (see also [15]). In the following proof, we
use the folding machine obtained from a given 1QTM.

Lemma 8.1 Let M be any well-formed stationary 1QTM with Q-amplitudes. If M always halts, then there
exist a constant d ∈ N+ and a function f in 1-GapLIN such that pM (x) = f(x) · d−TimeM (x) for every string x.

Proof. Given a 1QTM M , Since the construction of a folding machine, given in Section 4.2, is applicable
to any 1QTM, we can work on M ’s folding machine N = (Q,Σ,Γ, δ, q0, qacc, qrej), which simulates M in N ’s
tape using only the input area. Notice that N may violate unitarity and no longer be well-formed. Since N
uses rational amplitudes, we can choose the minimal integer c ∈ N+ satisfying that every amplitude of N has
the form r/c, where r is a certain integer. Fix x arbitrarily and let y be any (classical) computation path of
N on input x. When N halts, an accepting configuration of N depends only on the tape content because N ’s
internal state and its head position in the accepting configuration are predetermined. It thus suffices to consider
a final tape content of N . Let z be any final tape content of N . Note that |z| = |x| since N rewrites only
the contents of cells in the input area. We denote by ampN (x, y, z) the amplitude associated with accepting
computation path y of N on input x leading to the final tape content z. Since N is synchronous, the value
ampN (x, y, z) · cTimeM (x) is always an integer.

Now, we define the function f+ as f+([
x

z ]) = cTimeM (x) ·
∑

y ampN (x, y, z), where the sum
∑

is taken
over all accepting computation paths y of N on input x that leads to the final tape content z with positive
amplitude. We want to show that f ∈ 1-FLIN. For our purpose, we first translate the 1QTM N into a classical
nondeterministic 1TM N̂ in such a way that, whenever N makes a transition with a transition amplitude of
the form m/c for certain integers m, c with c > 0, N̂ produces exactly |m| nondeterministic branches. As
a result, for each of such y’s, we can generate exactly ampN (x, y, z) · cTimeM (x) branches leading to certain
accepting configurations. To determine the sign of the amplitude associated with each computation path of N ,
we further prepare two sets of internal states for N̂ and move one set to another whenever the amplitude sign
changes by an application of δ. The resulting machine witnesses that f+ is in 1-#LIN. Similarly, we define
f−([

x
z ]) = cTimeM (x) ·

∑′
y ampN(x, y, z), where the sum

∑′
is taken over all accepting computation paths of N

on input x that leads to the final tape content z with negative amplitude. We also conclude that f− ∈ 1-#LIN.
Recall that the acceptance probability pM (x) is the sum of (

∑

y ampN (x, y, z) −
∑′

y ampN (x, y, z))2 over

all possible final tape contents z of N ; in other words, c2TimeM (x) · pM (x) =
∑

z∈Γ|x|(f+([
x

z ]) − f−([
x

z ]))2.

‖This definition comes from Bernstein and Vazirani [5], who defined a quantum Turing machine to “halt” at time t if the
superposition of configurations at time t consists only of halting configurations and, at time less than t, the superposition contains
no halting configuration. See also [45, 46] for more discussions.
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From the closure property of 1-GapLIN (Lemma 7.1), the function appearing in the right-hand side of the last
equation clearly belongs to 1-GapLIN. For the desired constant d, we set d = c2. This completes the proof. ✷

A simple application of Lemma 8.1 shows the following proposition.

Proposition 8.2 REG ⊆ 1-BQLINQ ⊆ 1-PLIN.

Proof. Note that every (deterministic) reversible 1TM can be viewed as a well-formed 1QTM with Q-
amplitudes, which produces no computational error. From this, it follows that 1-revDLIN ⊆ 1-BQLINQ.
Proposition 3.2 therefore implies that REG ⊆ 1-BQLINQ.

We want to show the second inclusion. Let L be any language in 1-BQLINQ and choose a linear-time
well-formed 1QTM M that recognizes L with bounded-error probability. Moreover, M uses only rational
amplitudes. By amplifying the success probability (by, e.g., a majority vote technique), we can assume without
loss of generality that, for every x, either pM (x) ≥ 2/3 or pM (x) ≤ 1/3. By Lemma 8.1, we find a constant
d ∈ N+ and a function f ∈ 1-GapLIN such that f(x) = pM (x) · dTimeM (x) for every input x. Now, we define
g(x) = dTimeM (x) for each string x. It thus follows that x ∈ L implies 3f(x) > 2g(x) and that x 6∈ L implies
3f(x) < g(x). To complete the proof, we need to define h(x) = 3f(x) − 2g(x), which is also in 1-GapLIN by
Lemma 7.1. This h satisfies L = {x | h(x) > 0}. Hence, L is in 1-PLIN. ✷

A variant of quantum Turing machine, so-called a “nondeterministic” quantum Turing machine, which is
considered as a quantum analogue of a nondeterministic Turing machine, was introduced by Adleman et al. [1].
Let K be any nonempty subset of C. A language L is in 1-NQLINK if there exist a linear-time well-formed
stationary 1QTM M with K-amplitudes such that, for every x, x ∈ L if and only if M accepts input x with
positive probability.

We show that 1-NQLINQ can be precisely characterized by linear-time counting 1TMs. This result can be
compared with a polynomial-time case of NQPC = co-C=P [47].

Proposition 8.3 1-NQLIN{0,±3/4,±4/5,±1} = 1-NQLINQ = co-1-C=LIN.

Proposition 8.3 is obtained by combining two lemmas: Lemmas 8.4 and 8.5.

Lemma 8.4 1-NQLINQ ⊆ co-1-C=LIN.

Proof. Let L be any language in 1-NQLINQ. Choose a linear-time well-formed stationary 1QTMM satisfying
that L = {x | pM (x) > 0}. Applying Lemma 8.1, we obtain a constant d ∈ N+ and a function f in 1-GapLIN
such that f(x) = pM (x) · dTimeM (x) for any string x. It immediately follows that, for every x, x ∈ L if and only
if f(x) 6= 0. Therefore, L belongs to the complement of 1-C=LIN. ✷

Finally, we prove the remaining inclusion co-1-C=LIN ⊆ 1-NQLIN{0,±3/5,±4/5,±1}. From the fact 1-C=LIN =
SL=

rat, it suffices to show that co-SL=
rat ⊆ 1-NQLIN{0,±3/4,±4/5,±1}. In the proof of Lemma 8.5, we use the

following two unitary transformations U and V acting on {|s〉 | s ∈ [0, 3]Z}. Let U |0〉 = 3
5 |0〉 +

4
5 |1〉, U |1〉 =

− 4
5 |0〉 +

3
5 |1〉, and U |s〉 = |s〉 for s ∈ {2, 3}. Let V |s〉 = (1−s)4

5 |s〉 + 3
5 |(s + 2) mod 4〉 for s ∈ {0, 2} and

V |s〉 = 3
5 |s〉+

(s−2)4
5 |(s+ 2) mod 4〉 for s ∈ {1, 3}.

Lemma 8.5 co-SL=
rat ⊆ 1-NQLIN{0,±3/4,±4/5,±1}.

Proof. Let L be any set in co-SL=
rat. There exists a rational 1PFA N = (S,Σ, π, {T (σ) |σ ∈ Σ}, η) such that

L = L=(N, ǫ) for a certain rational cut point ǫ. Similar to the proof of Lemma 6.4, we can assume that (i)
L = {x ∈ Σ∗ | pN (x) 6= 1/2}, (ii) S = [1, ℓ]Z for a certain number ℓ ∈ N+, (iii) one component of π is 1, and
(iv) there is a positive integer m satisfying the following property: for any σ ∈ Σ and any i, j ∈ S, T (σ)i,j is of
the form ri,j(σ)/2

m for a certain number ri,j(σ) ∈ N. Let F be the set of all final states of N .
Hereafter, we wish to construct a linear-time well-formed stationary 1QTM M with {0,±3/5,±4/5,±1}-

amplitudes and show that, for any nonempty string x, pM (x) > 0 if and only if pN (x) 6= 1/2. From this, we
can conclude that L belongs to 1-NQLINQ. Let x = σ1 . . . σn be any string, where each symbol σj is in Σ and
n ≥ 0. Let ∆ = {0, 1}m be our new alphabet. Assuming a linear order on ∆, for each symbol k ∈ ∆, we define
lk to be the number satisfying that k is the lk + 1st symbol in ∆. Note that 0 ≤ lk < 2m for any k ∈ ∆.

1) Initially, M is in the initial state q0, scanning the start cell (indexed 0). If x = λ, then M immediately
accepts or rejects the input if λ ∈ L or λ 6∈ L, respectively. In the rest of the description of M , we assume that
|x| ≥ 1. In this preprocessing phase, M replaces each input symbol σ by its corresponding new symbol [ σ

0m ]
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by moving its tape head rightward. In the end, M returns the tape head to the start cell. In the subsequent
description of M , we pay our attention to the content of the cells indexed between 0 and n.

2) The machine M simulates a series of “coin flips” of N by generating a certain superposition of configura-
tions. By moving the tape head rightward again, M applies the transformation U⊗m to the symbol 0m given in

[ σ

0m ]: U⊗m|0m〉 =
∑

k∈∆

(

3
5

)#0(k) ( 4
5

)#1(k)
|k〉, where #i(k) denotes the number of i’s in k when k is viewed as

an m-bit string. When M reaches the first blank symbol (in the nth cell), it returns the tape head to the start
cell. On each (classical) computation path, the tape content must be in the form [ x

~k ] = [ σ1
k1

][ σ2
k2

] · · · [ σn
kn

],

where ~k = k1k2 · · · kn ∈ ∆n.
3) Assume that N ’s initial state is 0. Let p0 be a new internal state of M associated with N ’s. Now, we make

M simulate each step of N in such a way that, when N makes a transition from an internal state a to another
state b with transition probability ra,b for an input symbol σ, M generates exactly ra,b (classical) computation
paths. This can be done with new internal states pa and pb and by applying the following transition rule: for
every symbol k ∈ ∆, δ(pa, [

σ

k ]) = |p1〉|[
σ

k ]〉|R〉 if 0 ≤ lk < ra,1(σ) and δ(pa, [
σ

k ]) = |pb〉|[
σ

k ]〉|R〉 if b > 1 and
∑b−1

i=1 ra,i(σ) ≤ lk <
∑b

i=1 ra,i(σ).
4) After reaching the nth cell in internal state pa, M writes down the outcome 0 or 1 of the N depending

on a ∈ F or a 6∈ F , respectively, and then enters a new internal state sa. When [ x
~k ] is produced in phase 2, let

r~k denote this outcome written in the nth cell. Note that pN (x) = |{~k ∈ ∆n | r~k = 0}| · 2−mn.
5) In this phase, M first reverses phase 3. This brings the tape head back to the start cell and the internal

state to p0. By moving the head rightward again, M also applies U⊗m to each symbol k in [ σ

k ], just as in

phase 2, collapsing at most 2m branches to each configuration containing tape content [ x
~k ] r, where ~k ∈ ∆n and

r ∈ {0, 1}. In particular, we obtain the configuration with [ x

1mn ] r = [ σ1
1m ][ σ2

1m ] · · · [ σn
1m ] r with amplitude

amp(r) =
(

12
25

)mn
|{~k ∈ ∆n | r~k = r}|.

6) We need to make the accepting paths and rejecting paths of N interfere to each other. This is done by
applying the unitary transformation W = UV to the nth cell since W maps |0〉 and |1〉 to |0〉 with amplitude
12/25 and −12/25, respectively.

7) Finally, N checks if the cells indexed between 0 and n consists of [ x

1mn ] 0. If so, M enters qacc; otherwise,
M enters qrej . This phase can be done in a reversible fashion. This completes the description of M .

For any nonempty string x, a simple calculation shows that the acceptance probability pM (x) of M is

pM (x) =
(

12
25

)2
(amp(0)− amp(1))2, which equals

(

24
25

)2mn+2
(pN (x)−1/2)2. It therefore follows that pM (x) > 0

if and only if pN (x) 6= 1/2, as requested. ✷

9 Epilogue

By exploring the close relationships to automata theory, we have studied the computational complexity of one-
tape linear-time Turing machines of various machine types. Since these machines are relatively weak in power,
we have proven the collapses and separations of several complexity classes without any unproven assumptions.
Hennie’s crossing sequence arguments and various simulation techniques are proven to be viable tools throughout
this paper. Nonetheless, we have left numerous questions unsolved. Challenging these questions may bring in
new proof techniques.

For further research on the theory of one-tape linear-time Turing machines, we suggest five important future
directions of the research.

i) The model of Turing machines has significantly evolved over the past four decades. We have shown in this
paper that different machine types can alter the power of computation. There are many more machine
types that we have not yet discussed in this paper. Other types of Turing machines include metric Turing
machines, bottleneck Turing machines, and interactive Turing machines (see, e.g., [11, 17, 27]). We need
to explore the computational power of such models and study the properties of complexity classes induced
in terms of these models.

ii) Despite the ability to alter the tape content, we have shown that many Turing machines working as
language recognizers cannot be more powerful than their associated finite state automata. To study the
power of Turing machines, we need to explore their special ability to compute “functions” instead. In
the past, such functions have been studied extensively in terms of search problems, optimization problems,
and approximation problems. The study of these functions may present different perspectives to our
understandings of one-tape computation.
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iii) It is natural to ask what is the most complex language existing in a given complexity class. The theory of
NP-completeness, for instance, sheds light on this question using various polynomial-time reductions. On
the contrary, most one-tape linear-time complexity classes that we have studied in this paper are unlikely
to possess “complete” problems via many-one 1-DLIN-reductions. Is there any “weak” reducibility that
highlights the relative complexity of languages?

iv) We have considered advised computations; however, the role of advice has not been fully studied in this
paper. It is important to investigate how much extra power advice can give to an underlying computation.
Moreover, advised computations are often characterized by non-uniform computations. We also need to
study the non-uniformity of one-tape linear-time computations in connection to advice.

v) Relativization has had a great success in the polynomial-time complexity theory. Throughout this pa-
per, we have studied only many-one relativization since many-one relativization is of the simplest form.
The investigation of other types of meaningful relativization is also necessary for one-tape linear-time
complexity classes.

We hope that the further study of the above structural complexity issues on resource-bounded computations
will lead to the better understandings of the effect of bounded resources of Turing machines
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Appendix

We show the proofs of Lemmas 4.2 and 4.3 for completeness.

Proof of Lemma 4.2. Let M be given as in the lemma and let q be the number of internal states of M . By
its definition, M has at least three states (that is, q ≥ 3). Choose a number n0 ∈ N such that T (n) > 0 for

all numbers n ≥ n0. We define the function f from {n ∈ N | n ≥ n0} to R≥0 by f(n) =
√

n logn/T (n). Since
T (n) = o(n log n), it follows that limn→∞ f(n) = ∞. Choose the smallest number c ∈ N such that, for every
n ≥ 2,

3
(

q
log n
f(n)

+1 − 1
)

q − 1
≤ n

(

1−
1

f(n)

)

+
c · f(n)

logn
+ 1.

Such c exists because q
log n
f(n)

+1 = o(n).
Assume to the contrary that there exist a crossing sequence γ of length longer than c and an input x (|x| ≥ 2)

such that γ is a crossing sequence at a certain critical-boundary b of x along a certain (accepting or rejecting)
computation path s of M on x. Such a crossing sequence γ is called long, and other crossing sequences are
called short.

Let x0 denote lexicographically the first input string that has a long crossing sequence. Let n0 = |x0|.
Let s0 be the shortest computation path of M on the input x0 that generates a long crossing sequence. Note
that |s0| ≤ T (|x0|) by our assumption. Moreover, let b0 be the leftmost intercell boundary in the tape that
corresponds to a certain long crossing sequence, say γ0, along the computation path s0.

Let us consider all critical boundaries of x0 along the path s0 whose crossing sequences are of lengths at
most logn0/f(n0). Let h be the number of all such critical boundaries. Since the total computation steps
along the path s0 is equal to the sum of the lengths of any crossing sequences at intercell boundaries, we have
T (n0) > c+ (n0 + 1− h) logn0

f(n0)
. The inequality comes from the assumption that the length of γ0 is longer than

c. Thus, we have

h

3
>

1

3

(

n0 + 1−
n0

f(n0)
+

c · f(n0)

logn0

)

≥
q

log n0
f(n0)

+1
− 1

q − 1
≥

⌊log n0/f(n0)⌋
∑

i=0

qi,

which is at least the number of all crossing sequences of lengths at most logn0/f(n0). Hence, there exist at least
four distinct critical boundaries b1, b2, b3, b4 that have an identical crossing sequence in the path s0. Clearly, at
least two of them (say b1 and b2) are on the same side of b0.

Now, we delete the region between b1 and b2 from the tape. Let x′
0 be the input string obtained from x0

by this deletion. Clearly, |x′
0| < |x0|. Moreover, the new path obtained from s0 by this deletion is a valid

computation path of M on the input x′
0 and still has a crossing sequence whose length is greater than c. This

contradicts the minimality of x0. Therefore, the lemma holds. ✷

Proof of Lemma 4.3. Let n be any number in N. For each string x ∈ Σ≤n and each crossing sequence
v ∈ Sn, we say that x n-supports v if there exists a string z such that (i) |xz| ≤ n, (ii) xz ∈ L, and (iii) v is the
crossing sequence at the intercell boundary between x and z along a certain accepting computation path of M
on the input xz. Now, let Suppn(x) = {v ∈ Sn | x n-supports v }.

We want to show that, for any three strings x, y, z ∈ Σ∗, if |xz| ≤ n, |yz| ≤ n, xz ∈ L, and Suppn(x) =
Suppn(y), then yz ∈ L. This is shown as follows. Assume that xz ∈ L. Let v be any crossing sequence between
x and z along a certain accepting computation path of M on the input xz. Clearly, we have v ∈ Suppn(x).
Since Suppn(x) = Suppn(y), there exists a string z′ such that v is a crossing sequence between y and z′ along
an accepting computation path of M on yz′. Assume that the tape head halts in the left region of v. Consider
any computation of M on the input yz. By the nature of crossing sequences, yz has an accepting computation.
Thus, we conclude that yz ∈ L. Similarly, we obtain the same conclusion in the case where the tape head halts
in the right region of v.

Note that NL(n) should be at most the number of distinct sets Suppn(x) over all strings x ∈ Σ≤n. Therefore,
NL(n) is upper-bounded by 2|Sn|. ✷
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