
Building Blocks for Agent Design

 Hrishikesh J. Goradia José M. Vidal

Swearingen Engineering Center Swearingen Engineering Center
University of South Carolina University of South Carolina

Columbia, SC 29208 Columbia, SC 29208
 goradia@engr.sc.edu vidal@sc.edu

http://jmvidal.ece.sc.edu

Abstract. We present our Component-Based Agent Framework, which enables
a software engineer to design a set of agents by using a visual compo nent-based
toolkit (Sun’s BDK), and wiring together desired blocks of functionality. We
instantiate this framework in the RoboCup domain by implementing the neces-
sary components. The implementation also serves as a proof of the viability of
our framework. Finally, we use this implementation to build sample agents. The
proposed framework is a first step towards the merging of agent-based and
component-based design tools.

1 Introduction

As the Semantic Web [6] and Web services become increasingly ubiquitous we can
expect to see an increasing need for agents that can exploit these resources [9]. While
some of the agents will be highly complex, we expect that most of them will be sim-
ple agents of limited abilities, short lifespan, and built in order to solve temporary
problems. Software engineers that have to build these agents will, therefore, want
methods that allow them to very quickly develop agents that have the desired capa-
bilities. They will not want to spend time learning to use complex agent architectures
in order to build an agent that might only be used a dozen times. They will instead
prefer to use the tools that they have grown used to, such as visual component-based
development systems.

In this paper, we present our Component-Based Agent Framework (CBAF) along
with SoccerBeans—an example application of this framework for the RoboCup [13]
domain. CBAF builds on our previous work on an agent architecture for RoboCup [5,
14] by integrating parts of the architecture with the Java Beans component model.
The framework is our first step towards the merging of agent-based and component-
based design methodologies and tools. Once our framework is instantiated for a par-
ticular domain, the resulting system allows the user to build agents using a visual
component-based development program (BDK). In this way, the user does not need to
think about the domain-independent aspects of building an agent and can instead
focus solely on the domain-dependent aspects.

http://jmvidal.ece.sc.edu
jmvidal0
Proceedings of the Fourth International Workshop on Agent-Oriented Software Engineering, pp. 17-30, 2003

jmvidal0
This material is based upon work supported by the NSF under Grant No. 0092593

2 Hrishikesh J. Goradia José M. Vidal

2 The Component-Based Agent Framework Specifications

Despite the recent advances in the quality and the available features in current agent
frameworks, designing agent-based systems remains difficult. Both the rigid design
specifications of the framework and the necessity to understand the framework’s
implementation details have restricted the usability of current frameworks for design-
ing multiagent systems. The CBAF specifications enable a software engineer to de-
sign multiagent systems by simply wiring together the desired blocks of functionality
for each agent from a pool of available components, thereby circumventing the above-
mentioned problems. The frameworks based on the CBAF specifications are simple,
generic, and flexible, imposing minimal restrictions and providing a plethora of op-
tions for designing agents that will participate in a multiagent system.

The CBAF architecture is a component-oriented approach for designing agent sys-
tems. CBAF defines the specifications for a designer to create an agent framework
comprising a set of components that can be utilized by the user to develop sophisti-
cated agent behaviors and associate the behaviors with individual agents. Most of the
current agent frameworks implement a specific agent system, and a user of these
systems is expected to download the provided software and build his agents as exten-
sions to the system. The CBAF approach differs from such frameworks in that it adds
a layer of abstraction between the agent system implementation layer and the devel-
opment environment. The developed agent system will be domain-specific, but by
adding this restriction the learning curve for the user, before he can start building
applications using the system, becomes virtually non-existent. Figure 1 compares
CBAF with other current frameworks. CBAF does not provide any software libraries
for agent applications, just a set of rules to be followed by the designer while devel-
oping agent systems that can be used by the user for creating agent applications. We
show the usage, benefits, and applicability of the CBAF specifications by presenting
an implementation of a soccer simulation system based on the CBAF architecture.

Fig. 1. Comparison of agent frameworks.

Building Blocks for Agent Design 3

2.1 CBAF specifications

The CBAF specifications defining the necessary environment settings and the rules of
agent system design to be followed by the designer and the user of the system are as
follows:

CBAF assumes a discrete, stochastic and episodic environment that can also be
dynamic and partially observable with real-time requirements. Also, the set of ac-
tions that an agent can take must be bounded.

CBAF is a component-oriented approach. The development environment selected
for designing the agent system must support event-driven programming.

The agent framework based on the CBAF architecture must be designed as a set
of independent, self-contained, highly specialized components. A user must be
able to combine the components in various forms to create different plans or ac-
tivities for the agent. These activities will be associated to the individual agents.

The agent framework must include the following types of components:

Agent component(s):
The agent component represents an individual agent in the multiagent system.
The component must be able to represent the internal states of the agent and the
external states of the surrounding environment. The agent component must also
receive sensor input from the environment and produce action output to the envi-
ronment. The agent will be associated with one or more activity components rep-
resenting the plans for the agent at design time. The scheduling mechanism for
these activities and the internal control flow for the agent must be decided by the
agent component. All variations of the above mentioned mechanisms must be
represented as separate agent components in the framework.

Activity component(s):
The activity component is an interface between an agent component and the user-
defined activities or plans for the agent. The activity component must fully sup-
port the activity scheduling and agent communication mechanisms of the agent
component. The activity component must also allow the creation of plans involv-
ing complex, decision-making routines. A plan must be rooted by an activity
component and generated as a concatenation of rules based on the agent’s inter-
nal state. The rules can have a positive or a negative classification. For each clas-
sification, a new set of rules can be appended. This mechanism produces a data
structure like a decision tree. Each branch of the tree structure must be terminated
by an action to be performed by the agent when all the rules defined in the path
are satisfied. The activity component must be able to solve the plan by propagat-
ing events through the plan. The agent framework can have one or more activity
components satisfying all the above criteria.

Decision components:
The decision components represent the rules used in plan generation for an agent.
The rules can be defied as individual decision components or as a collection of
the components chained together in some order. The framework must include all

4 Hrishikesh J. Goradia José M. Vidal

the decision components, so that the user is able to devise any rule that he wants
to use in his plan.

Behavior components:
The behavior components represent the agent’s actions. Each rule set in a plan
has to be mapped to a behavior component. The framework must provide every
possible atomic action for an agent in the system as a behavior bean.

Figure 2 describes a sample CBAF architecture for the RoboCup domain.

Fig. 2. The CBAF architecture. The sample behavior and decision components are
shown for the RoboCup domain.

Building Blocks for Agent Design 5

2.2 Challenges for CBAF design

Some of the issues that need to be addressed for designing the framework described
above are:

Which are the best behavior and decision components to provide to achieve the
desired goals?

The components have to be functionally independent, but they also rely on each
other for accomplishing their tasks and hence should be interactive and cohesive.
How do we achieve that?

How should the components be combined to create new components?

How do we deploy the whole system with multiple agents?

2.3 CBAF implementation with JavaBeans

The JavaBeans technology [11] by Sun Microsystems seems to be the most suitable
development environment for creating agent systems using CBAF. Java supports the
delegation event model for event handling, where an event source generates an event
and sends it to a set of event listeners. The listeners must be registered with the source
to receive notifications about specific event types. JavaBeans leverages the strengths
of Java by providing a rich framework for manipulating events and the relationships
between event sources and event listeners at design time. The Bean Development Kit
(BDK) provided by Sun Microsystems for application development using beans pre-
sents a simple way of associating two beans with each other. Linking can be done by
simply selecting the method that fires a particular event in the source bean and fol-
lowing it up with selecting the method that needs to be invoked on the listener bean
each time that event is fired by the source. The BDK automatically creates the
Adapter [7] class for combining the source bean with the listener. Above all, the in-
trospection and reflection mechanisms supported by Java and extended by JavaBeans
open up a plethora of options for aiding complex decision-making by the agents. This
paves the way for enabling the creation of a diverse set of applications using the sys-
tem toolkit. Finally, with JavaBeans, the agent properties can be modified at run-time.
This feature can be extremely useful while testing out different strategies for individ-
ual agents.

Among the currently available technologies, only JavaBeans provides all of the
above-mentioned features. While other development environments like Visual Studio
with Visual Basic or Visual C++ can also be used for developing components as
DLLs (Dynamic Linked Libraries), they have limitations that add to the complexity of
the task of agent system development. While these environments support event han-
dling, combining the event source with the event listener is non-trivial. The Adapter
class invoking the appropriate method in the listener component for each event gener-
ated by the source component has to be hand-coded. A similar case can also be pre-
sented for other distributed computing technologies like CORBA and COM. Since the
above-mentioned technologies do not support introspection and reflection, the com-
ponents will be highly specialized and inflexible. Hence, these technologies would

6 Hrishikesh J. Goradia José M. Vidal

need a much higher number of components to support complex decision-making than
JavaBeans. Run-time modifications to agent properties would also be unavailable.

3 The SoccerBeans Framework

SoccerBeans is an implementation of the CBAF specifications for the RoboCup do-
main. The RoboCup domain is the world of simulated robotic soccer. The Soccer-
Beans agent system facilitates the creation of different soccer teams with minimal
effort on the user’s part. SoccerBeans is intended to be used as a pedagogical tool to
instigate research in multiagent systems. RoboCup proves to be an excellent test-bed
for study and research in multiagent systems’ design as it presents a complex, distrib-
uted, real-time, noisy, collaborative, and adversarial environment for extensive re-
search in agent based systems.

The RoboCup simulation system design is based on the client-server architecture.
The soccer server provides a virtual field and simulates all movements of a ball and
players, and controls a game according to rules. The multiagent system of soccer
players forms the client side. Each client controls the movements of one player.
Communication between the server and each client is done via UDP/IP sockets.

The SoccerBeans system consists of a pool of functional components developed as
JavaBeans (referred to from hereon as just beans). The PlayerFoundation bean is a
highly specialized agent component that represents an individual player in the multi-
agent system. The bean handles all the communication, knowledge representation,
and activity scheduling aspects of the represented player. The Activity bean is the
CBAF activity component that glues together the PlayerFoundation bean with the
different player activities designed from the various decision and behavior beans
provided in the system. Eight decision and behavior beans have been developed so far
and work is in progress for developing additional beans to further extend the capabili-
ties of the system. As will be shown later in this section, even with such a limited set
of components, the CBAF implementation using JavaBeans can support substantially
complex decision-making activities.

3.1 PlayerFoundation bean

The PlayerFoundation bean encapsulates all the low level details of the agent and
allows the user to concentrate on the real issues of planning and coordination. The
DatagramWrapper class handles the task of communicating with the soccer server.
The player and server configuration information is static and is preserved in the Con-
figurationData class of the bean. The dynamic information about the surrounding
environment received from the server at every simulation step is preserved in the
player’s WorldModel. The bean has a reference to the RobocupUtilities class,
which is a library of utility functions defining the various actions a player can take.
The activity scheduling mechanism of the PlayerFoundation bean supports both
the BDI and the Subsumption architectures. The design of the PlayerFoundation

Building Blocks for Agent Design 7

bean is very closely based on the Biter platform [5]. (Please refer to the paper on Biter
for further information about the above mentioned classes in the PlayerFoundation
bean.)

The PlayerFoundationBeanInfo class exposes many properties of the
PlayerFoundation bean. These properties differentiate the players from each other
and can be manipulated by the user at design time and, if required, also at run time.
The name and team properties define the player’s name and team. A value for
playerNumber is assigned to the player by the server when the initial connection is
established. The player’s starting position before kickoff and after every goal can be
set by the initialLocation property. Age defines the number of cycles for which
the ghost of a dynamic object is preserved in the world model. The display property
pops up a new window that graphically displays the player’s world model. This can
be very useful while debugging. If the debugFileName is not empty, then the
PlayerFoundation bean spits out the debug information into that file. The file
defining the player and server configuration information must be entered in the con-
figFileName field. Hostname and portNumber for the soccer server must be de-
fined in the corresponding fields for the bean. The version information is used in
establishing the initial connection with the server. This value must be set to 5.00 for
the SoccerBeans system. If the player is a goalie, then the goalie property must be
set to true. The player must be set online only after all the other properties are de-
fined and all the activities are added to it. This initiates the socket connection between
the server and the player.

As defined by the PlayerFoundationBeanInfo, the PlayerFoundation bean
acts as an event source for the ActivityEvent events. The bean provides methods
for adding and removing the listeners. The ActivityEvent events are fired to pass
references of the source bean and the current input to the listeners. The Activity
beans are the recipients of these event notifications in the SoccerBeans system. While
firing these events, the PlayerFoundation bean can invoke either of the addAc-
tivity, canHandle or handle methods on the listener bean. The addActivity
method is invoked on an activity at the instant when the activity is registered with the
player at design time. The references of both the activity and the player are exchanged
at that instant. The canHandle method determines if the concerned activity can han-
dle the current input to the player. As part of the PlayerFoundation bean’s activity
scheduling mechanism, the canHandle method is invoked for all registered activities
at every instant when a new input is received by the player from the server. The han-
dle method then executes the concerned activity. Exactly one matching, uninhibited
activity is selected for execution at each simulation step.

The PlayerFoundation bean is not a recipient of any event notification and
hence does not expose any methods for invocation.

8 Hrishikesh J. Goradia José M. Vidal

3.2 Activity bean

The design of every new plan or activity for an agent begins with the Activity bean.
The activities are generated as sets of rules with each branch of the resulting decision
tree terminated by an action to be performed by the agent. Thus, if a particular set of
rules defined in a path are valid for a player and its surrounding environment then the
player performs the action defined at the end of that path. The rules are designed by
combining the various decision beans, while the actions performed are defined by the
behavior beans. The root of each such path is an Activity bean.

The ActivityBeanInfo class exposes two properties for the Activity bean,
the name of the activity, and the inhibits property. The list of other activities that
are subsumed by this activity must be declared in the inhibits property. The activi-
ties must be referred to by their name, and delimited by commas.

As defined in the CBAF specifications, the Activity bean acts as glue for associ-
ating a player to one of its activities. The bean is an ActionEvent event listener and
implements the addActivity, canHandle and handle methods declared in the
ActivityListener interface. These methods are exposed for invocation by the
PlayerFoundation beans through the ActivityBeanInfo class. Each activity
comprises two decision trees. The tree associated with the canHandleListener in
the Activity bean determines if the current environment settings are favorable for
performing the activity. The other tree is associated with the handleListener in the
Activity bean and defines how the activity must be executed. The first tree is
solved by the canHandle method, while the second tree is executed by the handle
method.

The decision trees in the Activity bean comprise some decision and behavior
beans linked with each other in some sequence. For both canHandle and handle,
the Activity bean provides add and remove methods for decision and behavior
beans. The ActivityBeanInfo class exposes these methods. The structure of both the
methods for solving the trees is identical. A FunctionalityEvent event defining
the current state of the world is fired from the method and the notification is sent to
the decision or behavior bean adjacent to the Activity bean in the chain. Both De-
cisionListener and BehaviorListener interfaces listen to Functionali-
tyEvent events and are implemented by the decision beans and the behavior beans
respectively. If the next bean in the chain is a decision bean, the Activity bean
invokes the decide method on the decision bean. If it is a behavior bean, then the
behave method is invoked. The notification is propagated further in the appropriate
path by the decision beans until it hits the behavior bean where it is terminated. For
canHandle, the behavior bean sets the canHandle flag in the Activity bean either
directly or via an intermediate decision bean. This determines whether the activity can
be performed in the current cycle with the given environment. If the activity is appli-
cable then, as part of the SoccerBeans system’s scheduling mechanism, all other ac-
tivities applicable for the current cycle that are inhibited by this activity are elimi-
nated. The activity that is handled for the current cycle is selected from this new list

Building Blocks for Agent Design 9

of applicable plans. For handle, the behavior bean typically sends a message to the
soccer server describing the player’s action for the current cycle.

3.3 Decision beans

As described in the CBAF specifications, the decision beans enable a user to define
rules for generating plans. Every possible condition that the user might need to check
for making his/her decision must be encompassed by the published set of decision
beans in the framework. The user must be able to define any rule by using either a
single decision bean or combining a collection of them in some form. Plans are gener-
ated by chaining such rules with an Activity bean at the head and a behavior bean
at the tail.

For every path in a plan, a decision bean is preceded by either an Activity bean
or another decision bean, and is followed by a behavior bean or another decision
bean. Whenever a decision has to be made, a message has to be propagated through a
chain from the Activity bean towards the behavior bean via the intermediate deci-
sion beans. This is achieved in SoccerBeans by sending FunctionalityEvent
event notifications through the chain. The event object provides the listener with a
picture of the agent’s current internal state. Every decision bean implements the De-
cisionListener interface for listening to the FunctionalityEvent event notifi-
cations. The decide method for each decision bean performs the necessary computa-
tion and sets the decision flag appropriately. The path to be pursued is selected
based on the value of the flag, and the event notification is propagated further in that
path.

As discussed above, a decision bean can be linked to either another decision bean
or a behavior bean. Also, two different chains of beans will be connected to the deci-
sion bean, one for each possible value of the decision flag. For both chains, a deci-
sion bean provides add and remove listener methods for connecting to both types of
beans.

The following decision beans have been developed for the SoccerBeans system to
date:

3.3.1 DInputType bean
The input received from the soccer server is represented as SensorInput, while the
action event generated by the PlayerFoundation bean to elicit an action for the
current cycle is represented as Event input in the SoccerBeans system. The DInput-
Type decision bean can be used to classify player behaviors based on the type of
input propagated by the FunctionalityEvent. The DInputTypeBeanInfo class
exposes the inputType property of the DInputType bean. The valid entries for the
property are SensorInput and Event.

10 Hrishikesh J. Goradia José M. Vidal

3.3.2 DClosePlayers bean
The DClosePlayers bean can be used to create rules based on the number of other
players within some distance to the player represented by the PlayerFoundation
bean. The players considered can be from either team or irrespective of the team. A
user can also set the considered distance and the number of players considered at
design time. The DClosePlayersBeanInfo class exposes the properties team-
Name, distance and number for the above functions. The DClosePlayers bean
executes the playersInCone method defined in the RobocupUtilities class to
determine the result. The decision flag is set to true if the number of players
counted is less than the value of the number property, else it is set to false.

3.3.3 DBallDistance bean
The DBallDistance bean can be used for classifications based on the distance of the
ball from the player. The DBallDistanceBeanInfo class exposes the DBallDis-
tance’s distance property, which allows a user to specify the threshold distance.
The actual distance is determined from the player’s world model. The decision flag
is set to true if the determined distance is less than the value of the distance property,
else it is set to false.

3.3.4 DIfThenElse bean
The DIfThenElse bean is defined for classification based on a rule for which there is
no explicitly defined decision bean. The DIfThenElse bean can be linked to any
behavior bean or a chain of decision beans terminated by a behavior bean for defining
the rule. The DIfThenElse bean passes the FunctionalityEvent event notifica-
tion to the linked bean for determining the decision. The terminating behavior bean
must set the decision flag of the DIfThenElse bean to true or false. The DIfT-
henElseBeanInfo class provides an additional set of add and remove listener meth-
ods for the new chain.

3.4 Behavior beans

As described in the previous sections, plans are generated as sets of rules, with each
branch of the resulting tree structure terminated by an action to be performed by the
agent. These actions are defined as behavior beans. The actions typically include
setting a particular property of some object or executing a particular method for some
object. The agent framework must comprise all the behavior beans such that a user is
provided with the opportunity to perform any action deemed suitable for his/her plan.

The behavior beans are preceded by either an Activity bean or a decision bean.
Whenever a decision is to be made in SoccerBeans, a behavior bean receives a Func-
tionalityEvent event notification from the preceding bean. Every behavior bean is
defined as a listener of these events by implementing the BehaviorListener inter-
face. The behave method for each behavior bean performs the specified action for
the bean.

Building Blocks for Agent Design 11

The following behavior beans have been developed for the SoccerBeans system to
date:

3.4.1 BBoolean bean
The BBoolean bean can be used for setting a particular boolean property of an object
to the specified value. The BBooleanBeanInfo class exposes the className,
propertyName and value fields of the BBoolean bean. These fields can be used to
specify the property that needs to be modified with its new value and the class defin-
ing the property. The bean uses Java’s Reflection API to locate the set method for the
property in the specified object and invokes the method, passing the specified value as
the parameter. Thus, any boolean variable in the system can be modified at run time
by using this bean.

3.4.2 BIncorporateObservation bean
The BIncorporateObservation bean is meant for receiving the sensor inputs from
the soccer server and incorporating them into the player’s world model. There is no
property in the bean for a user to modify and the BIncorporateObservation-
BeanInfo class is defined accordingly.

3.4.3 BDribbleBallToPoint bean
The BDribbleBallToPoint bean allows the player to dribble the ball to the speci-
fied point on the field. A user can specify the point at design time through the final-
Position property. This feature can be useful for testing purposes, but has limited
applicability at run time as the desired final position for the ball in the soccer game
will almost always vary at different points in time. The user would rather like to exe-
cute some method for computing the desired final position for the ball at a given time.
The BDribbleBallToPoint bean provides this option by presenting other fields to
the user at design time. The BDribbleBallToPointBeanInfo class also exposes
the method, className, methodName and methodParams properties of the
bean. The className, methodName and methodParams properties can be used to
specify the appropriate method with parameters that should be executed for comput-
ing the desired final position of the ball. The method is invoked at runtime using the
Reflection API. The method flag is used to determine whether the ball’s final posi-
tion must be computed by executing the specified method or by considering the value
of the finalPosition field. The bean executes the dribbleBallToPoint method
defined in the RobocupUtilities class, passing the desired final position value as
the parameter.

3.4.4 BShootBallToPoint bean
The BShootBallToPoint bean is similar to the BDribbleBallToPoint bean
except that the latter dribbles the ball, while the former kicks it with maximum force.
The BShootBallToPointBeanInfo class provides similar options to the user as the
BDribbleBallToPointBeanInfo class. This bean executes the shootBallTo-
Point method in the RobocupUtilities class.

12 Hrishikesh J. Goradia José M. Vidal

4 Testing and Results

Using the developed components in SoccerBeans, we designed a basic soccer agent
that was capable of dribbling a ball to its goal. The agent could also shoot the ball to a
desired point in the soccer field if other players surrounded it. Figure 3 shows the
agent design on the BDK.

The agent can perform three activities: observe, dribble and shoot. These are
ordered from top to bottom in Figure 3. For every cycle in the agent’s scheduling
mechanism, if the player has received a new sensor input from the soccer server, then
the BDI part of the mechanism selects the observe activity for execution. For action
event inputs, the dribble and shoot activities are selected. The dribble activity is
eligible for all action event inputs, while the shoot activity is eligible only for cases
where other players are closing in on the agent. The subsumption part of the schedul-
ing mechanism breaks the tie for such cases. The shoot activity always inhibits the
dribble activity in the agent design.

The soccer game was played between two teams consisting of a single player, each
designed as shown in the above figure. Successful experiments were conducted also
for teams with a couple of players each, where the shoot activity was set to fire if any
opponent approached the agent. Work is in progress for developing more components
in SoccerBeans to enable the players to make non-trivial decisions for advanced
communication and coordination.

Fig. 3. Agent design using SoccerBeans. The red lines showing the connections be-
tween the components were added externally to the actual screenshot.

Building Blocks for Agent Design 13

5 Related Work

Over the years, researchers have developed many agent frameworks for creating mul-
tiagent systems. Some of the frameworks like JADE [2] and ZEUS [12] are domain-
independent, but they restrict their users to designing agents and agent systems in a
specific way. A user needs to learn the architecture of these tools before being pro-
ductive, which is not a trivial task considering the complexity of these frameworks.
The main objective of our work is to enable the user to design agent systems using
CBAF-compliant frameworks with minimal learning. SoccerBeans builds on our
previous work on Biter, an agent architecture for RoboCup. Biter implements a client
for the RoboCup simulator, providing the basic functionality to design RoboCup
teams. Some of its features include a world model with absolute coordinates, a
graphical debugging tool, a set of utility functions, and a generic agent architecture
supporting both reactive (subsumption) [4] and practical reasoning (BDI) [8] re-
sponses for scheduling activities. SoccerBeans inherits all of the above features from
Biter, and extends the architecture by integrating it with a component-based architec-
ture – JavaBeans. The University of Massachusetts’s JAF [10] project develops an
agent framework using the JavaBeans technology. The JAF framework also provides
components for designing disparate agents, but it is very restrictive in its methods for
designing agents. In addition, the JAF system works only with the Multi Agent Sur-
vivability Simulator, a special test bed developed at the University of Massachusetts.

6 Conclusions and Future Work

We have introduced our CBAF specifications for developing agent frameworks, along
with SoccerBeans—an implementation of CBAF for the RoboCup domain. The
CBAF-compliant frameworks are unique in that there is virtually no learning curve
for their users before they can start developing multiagent systems using the frame-
work. In addition, the integration of the agent architecture with a component-based
architecture like JavaBeans reduces the task of creating agents to that of visually
linking the agents to its activities. These activities are also created by visually linking
the necessary blocks of functionality from a pool of available components. Our sys-
tem allows the user to quickly design and deploy his agents without worrying about
the underlying architecture. CBAF seems ideal for research on applications such as
trading-agent systems and resource allocation problems where there is a need for
many agents with only slightly different functionality. We have demonstrated the ease
and the usefulness of CBAF specifications with our SoccerBeans implementation for
the simulated soccer application. We intend to complete the SoccerBeans framework
in the future by developing additional components to add versatility to the available
features for agent design. Finally, we view our system as a prototype for future agent-
development environments that will merge the best techniques from agent-based
software engineering and component-based design.

14 Hrishikesh J. Goradia José M. Vidal

References

1. Biter: A robocup client.: http://jmvidal.cse.sc.edu/biter/.
2. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing multi-agent systems with

JADE. In: Proceedings of the Seventh International Workshop on Agent Theories,
Architectures, and Languages, 2000.

3. Booch, G., Rumbaugh, J., and Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

4. Brookes, R.A.: Intelligence without representation. Artificial Intelligence, 47:139-
159, 1991.

5. Buhler, P., Vidal, J.M.: Biter: A Platform for the Teaching and Research of Multi-
agent Systems’ Design using Robocup. In: RoboCup 2001: Robot Soccer World Cup
V.LNCS/LNAI Lecture Notes Volume 2377. Springer Verlag, Berlin Heidelberg
New York (2002).

6. Berners-Lee, T.,Hendler, J., and Lasilla, O.: The Semantic Web. Scientific American,
2001.

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reus-
able Object-Oriented Software. Addison-Wesley, 1995.

8. Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M.: The Belief-
Desire-Intention model of agency. In: Proceedings of Agents, Theories, Architec-
tures, and Languages, 1999.

9. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems, (16)2, 2001.
10. Horling, B.: A Reusable Component Architecture for Agent Construction. In: Univer-

sity of Massachusetts/Amherst CMPSCI Technical Report 1998-49. October, 1998.
11. JavaBeans: The Only Component Architecture for Java Technology.

http://java.sun.com/products/javabeans/

12. Nwana, H., Ndumu, D., Lee, L., and Collins, J.: ZEUS: A tool-kit for building dis-
tributed multi-agent systems. Applied Artificial Intelligence Journal, 13(1): 129-186,
1999.

13. Soccer Server System.: http://sserver.sourceforge.net/

14. Vidal, J.M., Buhler, P.: Teaching Multiagent Systems using RoboCup and Biter. The
Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, (4)2,
2002.

http://jmvidal.cse.sc.edu/biter/
http://java.sun.com/products/javabeans/
http://sserver.sourceforge.net/

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

