
 1

A Framework for Constructing Multi-Agent
Applications and Training Intelligent Agents

Pericles A. Mitkas, Dionisis Kehagias, Andreas L. Symeonidis,
Ioannis N. Athanasiadis

Department of Electrical and Computer Engineering
Aristotle University of Thessaloniki,

54 124, Thessaloniki, Greece,
Tel.: +30-2310-996349, Fax: +30-2310-996398

mitkas@eng.auth.gr, {diok, asymeon, ionathan}@ee.auth.gr

Abstract. As agent-oriented paradigm is reaching a significant level of accep-
tance by software developers, there is a lack of integrated high-level abstraction
tools for the design and development of agent-based applications. In an effort to
mitigate this deficiency, we introduce Agent Academy, an integrated develop-
ment framework, implemented itself as a multi-agent system, that supports, in a
single tool, the design of agent behaviours and reusable agent types, the defini-
tion of ontologies, and the instantiation of single agents or multi-agent
communities. In addition to these characteristics, our framework goes deeper
into agents, by implementing a mechanism for embedding rule-based reasoning
into them. We call this procedure “agent training” and it is realized by the
application of AI techniques for knowledge discovery on application-specific
data, which may be available to the agent developer. In this respect, Agent
Academy provides an easy-to-use facility that encourages the substitution of
existing, traditionally developed applications by new ones, which follow the
agent-orientation paradigm.

1 Introduction

In the last years, agent technology has impressively emerged as a new paradigm for
software development [1], which is expected to gain even wider acceptance among the
software developers. One important contribution to this effort could be the provision
of such tools and development environments that will enable the deployment of agent-
based applications quickly and easily. As opposed to this envisioned situation, the
current landscape of agent constructing tools is characterized by a plethora of agent
development environments, which provide limited capabilities in terms of the level of
abstraction in the design and development process of agent-oriented applications. On
the other hand, the scope of agent tools and technologies, which dominate the main-
stream of development trends in this field, is now becoming clearer than in the past
years. In this respect, a quite desirable effort for agent developers is the creation of a
software product that combines all widely used mainstream technologies in one tool.

In Agent-Oriented Software Engineering at Autonomous Agents and Multi-Agent Systems (AAMAS 2003),
(Giorgini, P., Mueller, J. P., and Odell, J., Eds.), Melbourne, Australia, July 2003, pp.1-15.

 2

In order to fulfill this demand, we have developed Agent Academy (AA), [2] an inte-
grated framework for constructing multi-agent applications and embedding rule-based
reasoning into agents, at the design phase.

The framework presented in this paper is implemented upon the JADE [3] infra-
structure, ensuring a relatively high degree of FIPA compatibility, as defined in [4],
[5]. AA is itself a multi-agent system, whose architecture is based on the GAIA meth-
odology [6]. It provides an integrated GUI-based environment that enables the design
of single agents or multi-agent communities, using common drag-and-drop operations.
This capability of the AA development environment helps agent application develop-
ers to build a whole community of agents with chosen behaviour types and attributes
in a few minutes. Using AA, an agent developer can easily go into the details of the
designated behaviours of agents and precisely regulate communication properties of
agents. These include the type and number of the agent communication language
(ACL) messages exchanged between agents, the performatives and structure of mes-
sages, with respect to FIPA specifications [7], [8], [9], as well as the semantics, which
can be defined by constructing ontologies with Protégé-2000 [10].

All of the aforementioned characteristics of our development environment have
been viewed from an agent-oriented software-engineering perspective, since they
provide essential elements for the design and the construction of a multi-agent system
with pre-specified attributes. In addition to that, there is the AI perspective that deals
with the reasoning capabilities of agents. In this context, our system implements a
“training module” that embeds essential rule-based reasoning into agents. This kind of
reasoning is based on the application of data mining (DM) techniques on possible
available datasets. This methodology developed within AA, results in the extraction of
agent knowledge in the form of a decision model (e.g. a decision tree). The extracted
knowledge is expressed in Predictive Modeling Markup Language (PMML) [11]
documents and stored in a data repository, handled by our development framework.
The applied data mining techniques are, by definition, updateable as new data come
into the repository. Thus, it is easy to update the knowledge bases of agents, by per-
forming agent “retraining”. This capability can be especially exploited in environ-
ments with large amounts of periodically produced data. A characteristic example of
such an environment is encountered in almost all enterprise IT infrastructures, the vast
majority of which are implemented following traditional development paradigms. To
this end, our presented infrastructure is envisioned as a convenient tool that will en-
courage the development of new agent-based applications over the existing traditional
ones, by exploiting available data.

The paper is structured as follows. Section 2 briefly reviews related work. Section
3 describes the architecture of our framework and illustrates the development process
and the use of tools provided for the construction of a multi-agent system. In section 4,
a detailed presentation of the agent “training” mechanism is given. Finally, section 5
concludes the paper and outlines future work.

 3

2. Existing Tools and Applications

The growth in interest and use for agent technology motivated the development of
different frameworks and environment to support the implementation of multi-agent
systems. Most of them are Java-based applications that aim at facilitating rapid im-
plementation of agent-based applications, by providing mechanisms to manage and
monitor message exchanges between agents, and interface support for creating and
debugging multi-agent systems.

An advanced open-source tool-kit providing a library of software components and
tools that enable the rapid design, development and deployment of agent systems is
ZEUS [12]. Although this system is FIPA compliant, it does not support agent mobil-
ity, as opposed to AA. Another development environment [13] is implemented as a
multi-agent system, in a similar manner as AA, but it does not satisfy the requirements
for FIPA compliance.

As far as compliance to FIPA standards is concerned, there is a development
framework [14] that meets the FIPA specifications about Agent Management and
Agent Communication Language, among others, as well as AA does. Another tool
[15] for creating agent systems uses FIPA-ACL for agent messages, but implements
its own naming register service, ignoring the relative FIPA specifications.

All of the aforementioned development frameworks do not facilitate the use of any
particular reasoning tools, but they do not prevent the agent developers from using
other existing tools or implementing their own agent reasoning. In contrast, AA pro-
vides both a high-level, GUI-based environment for the design and development of
agent-based applications and a training facility that creates rule-based reasoning into
the developed agents. A survey of existing tools for creating rule-based reasoning for
agents is given in [16].

3. The development framework

Our development framework acts as an integrated GUI-based environment that fa-
cilitates the design process of a MAS. It also supports the extraction of decision mod-
els from data and the insertion of these models into newly created agents. Developing
an agent application using AA involves the following activities from the developer’s
side:

a. the creation of new agents with limited initial reasoning capabilities;
b. the addition of these agents into a new MAS;
c. the determination of existing, or the creation of new behaviour types for each

agent;
d. the importation of ontology-files from Protégé-2000;
e. the determination of message recipients for each agent.

 4

Fig. 1. Diagram of the Agent Academy development framework

In case that an agent application developer intends to create a reasoning engine for
one or more agents of the designed MAS, two more operations are required for each
of those agents:
− the determination of an available data source of agent decision attributes;
− the activation of the training procedure, by specifying the parameters of the train-

ing mechanism.

Figure 1 illustrates the Agent Academy main functional diagram, which represents the
main components and the interactions between them. In the remaining section, we
discuss the Agent Academy architecture, and we explain how the development process
is realized through our framework.

instantiated MAS

Agent Academy

database

DMM

ATM

Agent Factory (main GUI)

XML
 Application Data

Protégé-2000

Agent Types Definition

Behaviour Types Definition

MAS Creation Tool

Ontology definition

Extraction of
the decision

model

Insertion of the
decision model

into agents

Instantiation
of a new

MAS
Agent with
reasoning

Dummy
agents

Data
storage

Design of agent
application

 5

3.1 Architecture

The main architecture of AA is also shown in figure 1. An application developer
launches the AA platform in order to design a multi-agent application. The main GUI
of the development environment is provided by the Agent Factory (AF), a specifically
designed agent, whose role is to collect all required information from the agent appli-
cation developer regarding the definition of the types of agents involved in the MAS,
the types of behaviours of these agents, as well as the ontology they share with each
other. For this purpose, Agent Academy provides a Protégé-2000 front-end. The
initially created agents possess no referencing capabilities (“dummy” agents). The
developer may request from the system to create rule-based reasoning for one or more
agents of the new MAS. These agents interoparate with the Agent-Training Module
(ATM), which is responsible for inserting a specific decision model into them. The
latter is produced by performing DM on data entered into Agent Academy as XML
documents or as datasets stored in a database. This task is performed by the Data
Mining Module (DMM), another agent of AA, whose task is to read available data and
extract decision models, expressed in PMML format.

AA hosts a database system for storing all information about the configuration of
the new created agents, their decision models, as well as data entered into the system
for DM purposes. The whole AA platform was created as a MAS, which is executed
upon JADE.

3.2 Developing multi-agent applications

The main GUI of the development platform (Agent Factory) consists of a set of
graphical tools, which enable the developer to carry out all required tasks for the de-
sign and creation of a MAS, without any effort for writing even a single line of source
code. In particular, the Agent Factory comprises the Ontology Design Tool, the Be-
haviour Type Design Tool, the Agent Type Definition Tool, and the MAS Creation
Tool.

Creating Agent Ontologies

A required process in the creation of a MAS, is the design of one or more ontologies,
in order for the agents to interoperate adequately. The Agent Factory provides an
Ontology Design Tool, which helps developers adopt ontologies defined with the
Protégé-2000, a tool for designing ontologies. The RDF files that are created with
Protégé are saved in the AA database for further use. Since AA employs JADE for
agent development, ontologies need to be converted into special JADE ontology
classes. For this purpose, our framework automatically compiles the RDF files into
JADE ontology classes.

 6

Creating Behaviour Types

The Behaviour Type Design Tool assists the developer in defining generic behav-
iour templates. Agent behaviours are modeled as workflows of basic building blocks,
such as receiving/sending a message, executing an in-house application, and, if neces-
sary, deriving decisions using inference engines. The data and control dependencies
between these blocks are also handled. The behaviours can be modeled as cyclic or
one-shot behaviours of the JADE platform. These behaviour types are generic tem-
plates that can be configured to behave in different ways; the structure of the flow is
the only process defined, while the configurable parameters of the application inside
the behaviour, as well as the contents of the messages can be specified using the MAS
Creation Tool. It should be denoted that the behaviours are specialized according to
the application domain.

The building blocks of the workflows, which are represented by nodes, can be of
four types:

1. Receive nodes, which enable the agent to filter incoming FIPA-SL0 mes-
sages.

2. Send nodes, which enable the agent to compose and send FIPA-SL0 messages.
3. Activity nodes, which enable the developer to add predefined functions to

the workflow of the behaviour, in order to permit the construction of multi-agent
systems for existing distributed systems.

4. Jess nodes, which enable the agent to execute a particular reasoning engine,
in order to deliberate about the way it will behave.

Fig. 2 illustrates the design of the behaviour for an agent that receives a message
and, according to the content of the message, either executes a pre-specified function,
or sends a message to another agent.

Creating Agent Types

After having defined certain behaviour types, the Agent Type Definition Tool is
provided to create new agent types, in order for them to be used later in the MAS
Creation Tool. An agent type is in fact an agent plus a set of behaviours assigned to it.
New agent types can be constructed from scratch or by modifying existing ones. Agent
types can be seen as templates for creating agent instances during the design of a
MAS.

During the MAS instantiation phase, which is realized by the use of the MAS Crea-
tion Tool, several instances of already designed agent types will be instantiated, with
different values for their parameters. Each agent instance of the same agent type can
deliver data from different data sources, communicate with different types of agents,
and even execute different reasoning engines.

 7

Fig. 2. Creating the Behaviour of an agent through the Behaviour Design Tool

Deploying a Multi Agent System

The design of the behaviour and agent types is followed by the deployment of the
MAS. The MAS Creation Tool enables the instantiation of all defined agents running
in the system from the designed agent templates. The receivers and senders of the
ACL messages are set in the behaviours of each agent. After all the parameters are
defined, the agent instances can be initialized. Agent Factory creates default AA
Agents, which have the ability to communicate with AF and ATM. Then, the AF sends
to each agent the necessary ontologies, behaviours, and decision structures.

 8

4. Agent “Training”

The initial effort for the implementation of such a development framework as the
one presented in this paper, was motivated by the lack of an agent-oriented software-
engineering tool coupled with AI aspects, as far as we know. The ability to incorpo-
rate background knowledge into an agent’s decision–making process is arguably es-
sential for effective performance in dynamic environments. However, agent-oriented
software engineering methodologies deal with, both high-level, top-down iterative
approaches and design methods for software systems [17]. Thus, the lack of tools that
concern agent reasoning issues in most high-level software design approaches is ex-
cused when we examine these approaches from a pure software-engineering point of
view. Moreover, building a MAS with a large number of agents usually requires the
reasoning to be distributed in many agents of the MAS community, reducing the de-
gree of reasoning per agent. From our perspective, an agent-oriented development
infrastructure should both provide high-level design capabilities and deal with the
internals of an agent architecture, in order to be considered complete and generic.

For this reason, we have implemented, as a separate module of the overall agent-
oriented development environment a mechanism for embedding rule-based reasoning
capabilities into agents. This is realized through the ATM, which is responsible for
embedding specific knowledge into agents. This knowledge is generated as the out-
come of the application of DM techniques into available data. The other module,
whose role is to exploit possible available datasets in order to extract decision models,
is the DMM. Both ATM and DMM are implemented as JADE agents who act in close
collaboration.

These two basic modules, as well as the flow of the agent training process are
shown in figure 3. At first, let us consider an available source of data formatted in
XML. The DMM receives data from the XML document and executes certain DM
algorithms (suitable for generating a decision model), determined by the agent-
application developer. The output of the DM procedure is formatted as a PMML
document.

PMML is an XML-based language, which provides a rapid and efficient way for
companies to define predictive models and share models between compliant vendors'
applications. It allows users to develop models within one vendor's application, and
use other vendors' applications to visualize, analyze, evaluate or otherwise use the
models. The fact that PMML is a data mining standard defined by DMG (Data Mining
Group) [11] provides the Agent Academy platform with versatility and compatibility
to other major data mining software vendors, such as Oracle, SAS, SPSS and MineIt.

The PMML document represents a knowledge model that expresses the referencing
mechanism of the agent we intend to train. The resulted decision model is translated,
through the ATM, to a set of facts executed by a rule engine. The implementation of
the rule engine is provided by JESS [18], a robust mechanism for executing rule-based
reasoning. Finally, the execution of the rule engine becomes part of agent’s behaviour.

 9

Fig.3 Diagram of the agent training procedure

As shown in figure 3, an agent that can be trained through the provided infrastruc-
ture encapsulates two types of behaviours. The first is the basic initial behaviour pre-
defined by the AF module. This may include a set of class instances that inherit the
Behaviour class defined in JADE [5]. The initial behaviour is created at the agent
generation phase, using the Behaviour Design Tool, as described in the previous sec-
tion. This type of behaviour characterizes all agents designed by Agent Academy,
even if the developer intends to equip them with rule-based reasoning capabilities.
This essential type of behaviour includes the set of initial agent beliefs.

The second supported type of behaviour is the rule-based behaviour, which is
optionally created, upon activation of the agent-training feature. This type of
behaviour is dynamic and implements the decision model. In the remaining section,
we present the details of the data mining procedure and we describe the mechanism
for embedding decision-making capabilities into the newly trained agents.

Agent

JADE Behaviour

Rule-based Behaviour

Initial Beliefs

Data Mining Module (DMM)

Agent Training Module (ATM)

decision model

JESS Rule

Engine

XML data

PMML
document

 10

4.1 Mining background data for creating decision models

The mechanism for extracting knowledge from available data, in order to provide
agents with reasoning, is based on the application of DM techniques on background
application-specific data [19]. From our experience with the application of our frame-
work to an industrial scenario about supply chain management [20], we ascertained
that the enterprise IT infrastructures generate and manipulate a large amount of data
on a permanent basis, thus becoming suitable data providers that satisfy the purposes
of DMM.

In the initial phase of the DM procedure, the developer launches the GUI-based
wizard depicted in figure 4.a and specifies the data source to be loaded and the agent
decision attributes that will be represented as internal nodes of the extracted decision
model. In figure 4.b the developer selects the type of the DM technique from a set of
available options. In order to clarify the meaning of agent decision attributes, let us
consider the decision model in figure 5. A certain decision is made when some or all
input attributes are satisfied. In figure 5 we see an input vector of M attributes and an
output vector with N attributes, which comprises the overall decision that an agent
makes. One part of agent decision attributes is identical to the set of inputs that an
agent receives, while the remaining part represents the outputs (decision nodes) of the
agent.

Regarding the technical details of the DMM, we have developed the DM facility in
our framework, by incorporating a set of DM methods based on the WEKA [21] li-
brary and tools and we further extended the WEKA API in order for it to support
PMML (a later version of the WEKA API will have our extension included). Some
other new DM techniques have also been developed but we will not mention them
here, as this would be out of this paper’s scope. For further information on the devel-
oped DM algorithms, please see [22].

In figure 6.a, we present an XML document, while the respective PMML output,
which represents a cluster-based decision model, is shown in figure 6.b. In order to
generate the PMML output, we used the K-means algorithm to perform clustering on
selected attributes described in the XML document. The dataset illustrated in figure
6.a comes from the design of the formerly mentioned MAS [20] about supply chain
management. The XML document concerns customer-related data. The PMML output
shown in figure 6.b, contains, apart from the extracted decision model, some other
algorithm-specific details, such as the number of clusters produced, the attributes of
the data set and the document version.

4.2 Embedding intelligence into agents

We saw in figure 2 that the completion of the training process requires the transla-
tion of the DM resulted decision model into an agent-understandable format. This is
performed by the ATM, which receives the PMML output as an ACL message sent by
the DMM, as soon as the DM procedure is completed, and activates the rule engine.
Actually, the ATM converts the PMML document into JESS rules and communicates,
via appropriate messages, with the “trainee” agent, in order to insert the new decision

 11

(a)

(b)

Fig.4 The two first steps of the DMM wizard

Fig.5 Input and output attributes in a decision model

.

.

.

Input attribute 1
Input attribute 2

Input attribute M-1
Input attribute M

.

.

.

Output attribute 1
Output attribute 2

Output attribute N-1
Output attribute N

Decision model

 12

(a) (b)

Fig.6 XML input (a) and PMML output (b)

<Instances title="ALTEC Data" author="Kehagias Dionisis">
 <Attributes>
 <Attribute>
 <Name>AVG_Order_Freq</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>AVG_Order_Rev</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>AVG_Payment_Trms</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Crd_Limit</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Logistics Dif</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Order_Freq</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Order_Rev</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Payment_Terms</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Turnover</Name>
 <Type>numeric</Type>
 </Attribute>
 </Attributes>
 <Data>
 <Row>
 <Crd_Limit>-8.23599E-2</Crd_Limit>
 <Logistics_Dif>-6.69967E-2</Logistics_Dif>
 <Turnover>-0.138325</Turnover>
 <AVG_Order_Freq>-0.64769</AVG_Order_Freq>
 <STD_Order_Freq>-0.71325</STD_Order_Freq>
 <AVG_Order_Rev>-0.35288</AVG_Order_Rev>
 <STD_Order_Rev>-0.21821</STD_Order_Rev>
 <AVG_Payment_Trms>-1.32909</AVG_Payment_Trms>
 <STD_Payment_Terms> 0.50519</STD_Payment_Terms>
 </Row>
 </Data>
</Instances>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pmml_2_0.dtd>
<PMML>
 <Header copyright="CERTH" description=" Clustering Model of
ERP data">
 <Application name="Agent Academy" version="0.3" />
 </Header>
 <DataDictionary numberOfFields="9">

…
 </DataDictionary>
 <ClusteringModel modelName="ERP-
org.agentacademy.modules.dataminer.filters.ReplaceMissingValues
Filter" modelClass="centerBased" numberOfClusters="5">
 <MiningSchema>
 …
 </MiningSchema>
 <ClusteringField field="AB" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="CL" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="TO" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="AOP" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="STDAOP" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="AOI" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="STDAOI" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="APT" compareFunc-
tion="squaredEuclidean" />
 <ClusteringField field="STDAPT" compareFunc-
tion="squaredEuclidean" />
 <Cluster name="0">
 <Array n="9"> -1.825885 17.36695 18.23353 -0.55470 -0.47161
7.96735 14.47850 0.40154 0.92600</Array>
 </Cluster>
 <Cluster name="1">
 <Array n="9"> 0.06525-0.27008-0.12450-0.64679-0.71163-
0.35276-0.21816-1.32502-0.49305</Array>
 </Cluster>
 <Cluster name="2">
 <Array n="9"> 0.03786 0.04243 0.04831 -0.08052 -0.17864
0.16450 0.09465 0.63661 0.00631 </Array>
 </Cluster>

…
 </ClusteringModel>
</PMML>

 13

model into it. After the completion of this process, our framework automatically gen-
erates Java source code and instantiates the new “trained” agent into the predefined
MAS. The total configuration of the new agent is stored in the development frame-
work, enabling future modifications of the training parameters, or even the retraining
of the already “trained” agents.

5. Conclusions and Future Work

In this paper we have presented Agent Academy, a multi-agent development
framework for constructing multi-agent systems, or single agents. We argued that the
existing tools and infrastructures for agent development are especially focused on the
provision of high-level design methodologies, leaving out the details of agents’ deci-
sion-making abilities. In contrast, our framework can provide both a GUI-based, high-
level MAS authoring tool and a facility for extracting rule-based reasoning from
available data and inserting it into agents. The produced knowledge is expressed as
PMML formatted documents. We have presented the functional architecture of our
framework; we shortly demonstrated an indicative scenario for deploying a MAS and,
finally, we discussed the details of the agent “training” process.

Through our experience with Agent Academy, we are convinced that this develop-
ment environment significantly reduces the programming effort for building agent
applications, both in terms of time and code efficiency, especially for those MAS
developers who use JADE. For instance, one MAS, that requires the writing of almost
6,000 lines of Java code, using JADE, requires less than one hour to be developed
with Agent Academy. This test indicates that AA meets the requirement for making
agent programs in a quicker and easier manner. On the other hand, our experiments
with the DMM have shown that the completion of the decision model generated for
agent reasoning is highly dependant on the amount of available data. In particular, a
dataset of more than 10,000 records is adequate enough for producing high-
confidence DM results, while datasets with fewer than 3,000 records have yielded
non-consistent arbitrary output.

The AA framework is the result of a development effort, which begun two years
ago. Currently, a beta version exists, which is not yet publicly available. The first
stable implementation of AA is planned to come out on July 2003, as an open-source
product. Our near future work involves the finalization of the integration process for
AA, as well as the exhaustive testing of the platform, by implementing three large-
scale applications in the domains of real-time notification, web-based applications,
and supply-chain management, respectively.

Acknowledgements

Work presented in this paper is partially funded by the European Commission, un-
der the IST initiative as a research and development project (contract number IST-

 14

2000-31050, “Agent Academy: A Data Mining Framework for Training Intelligent
Agents”). Authors would like to thank all members of the Agent Academy consortium
for their remarkable efforts in the development of such a large project.

References

1. Lind J.: Issues in Agent-Oriented Software Engineering. In: First International Workshop
on Agent-Oriented Software Engineering (AOSE-2000), Limerick, Ireland (2000)

2. Agent Academy: http://agentacademy.iti.gr/
3. Bellifemine F., Poggi A., Rimassa G., Turci P.: An Object-Oriented Framework to realize

Agent Systems. In: Proceedings of WOA 2000 Workshop, Parma, Italy (2000), 52-57
4. Foundation for Intelligent Physical Agents, the: FIPA Developer’s Guide (2001) available

at: http://www.fipa.org/specs/fipa00021/
5. Bellifemine F., Caire G., Trucco T., Rimassa G.: JADE Programmer’s Guide. (2001)

available at: http://sharon.cselt.it/
6. Wooldridge, M, Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented

Analysis and Design. In: Journal of Autonomous Agents and Multi-Agent Systems. Vol.
3, No. 3. (2000) 285-312

7. Foundation for Intelligent Physical Agents, the: FIPA Communicative Act Library
Specification. (2001) available at: http://www.fipa.org/specs/fipa00037/

8. Foundation for Intelligent Physical Agents, the: FIPA SL Content Language Specification
(2002) available at: http://www.fipa.org/specs/fipa00008/

9. Foundation for Intelligent Physical Agents, the: FIPA ACL Message Structure Specifica-
tion (2002) available at http://www.fipa.org/specs/fipa00037/

10. Noy, N.F., Sintek, M., Decker S., Crubezy, M., Fergerson, R.W., & Musen, M.A.: Creat-
ing Semantic Web Contents with Protégé-2000. In: IEEE Intelligent Systems 16 (2):
(2001) 60-71

11. Data Mining Group, the: Predictive Model Markup Language Specifications (PMML),
ver. 2.0 available at: http://www.dmg.org

12. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: A Tool-Kit for Building Distributed
Multi-Agent Systems. In: Applied Artifical Intelligence Journal, Vol 13 (1) (1999) 129-
186

13. Gutknecht, O., Ferber, J.: Madkit: A generic multi-agent platform. In: 4th International
Conference on Autonomous Agents, Barcelona, Spain (2000)

14. Suguri, H., Kodama, E., Miyazaki, M., Nunokawa, H., Noguchi, S.: Implementation of
FIPA Ontology Service. In: Proceedings of the Workshop on Ontologies in Agent Sys-
tems, 5th International Conference on Autonomous Agents Montreal, Canada (2001)

15. Jeon, H., Petrie, C., Cutkosky, M.: JATLite: a Java agent infrastructure with message
routing. In: IEEE Internet Computing 4 (2) (2000) 87-96

16. Rahimi, S., Cobb, M., Ali, D., Paprzycki, M.: An Analysis of Intelligence-Enhancing
Techniques for Software Agents. In: Proceedings of the 5th World Multi-Conference on
Systemics, Cybernetics and Informatics, Orlando (2001)

17. Tveit, A.: A survey of Agent-Oriented Software Engineering. In: NTNU Computer Sci-
ence Graduate Student Conference, Norwegian University of Science and Technology,
Trondheim, Norway (2001)

18. Java Expert System Shell (JESS): http://herzberg.ca.sandia.gov/jess/
19. Symeonidis, A.L., Mitkas, P.A., Kehagias, D.: Mining patterns and rules for improving

agent intelligence through an integrated multi-agent platform. In: 6th IASTED Interna-

 15

tional Conference, Artificial Intelligence and Soft Computing ASC, Banff, Alberta, Can-
ada (2002)

20. Symeonidis A.L, Kehagias D., Koumpis A., Vontas A.: Open Source Supply Chain. In:
10th International Conference on Concurrent Engineering (CE-2003), Workshop on intel-
ligent agents and data mining: research and applications, Madeira, Portugal (2003) (ac-
cepted for publication)

21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann publishers, San Francisco, CA (2000)

22. Athanasiadis, I.N., Kaburlasos, V.G., Mitkas, P.A., and Petridis, V.: Applying Machine
Learning Techniques on Air Quality Data for Real-Time Decision Support. In: First Inter-
national NAISO Symposium on Information Technologies in Environmental Engineering
(ITEE'2003), Gdansk, Poland (2003) (accepted for publication) available at:
http://danae.ee.auth.gr/en/pdf/itee2003.pdf)

