Computer
Sciences
Department

Symbolic Implementation
of the Best Transformer

Thomas Reps

Mooly Sagiv

Greta Yorsh

Technical Report #1468

January 2003

UNIVERSITY OF

WlSCONSlN

M A D S O N

Symbolic Implementation of the Best Transformer

Thomas Reps!, Mooly Sagiv?, and Greta Yorsh?

! Comp. Sci. Dept., University of Wisconsin; reps @cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; {msagiv,gretay } @post.tau.ac.il

Abstract, This paper shows how to achieve, under certain conditions, abstract-interpretation algorithms that enjoy the best
possible precision for a given abstraction. The key idea is a simple process of successive approximation that makes repeated
calls 1o a theorem prover, and obtains the best abstract value for a set of concrete stores that are represented symbolically,
using a logical formula.

1 Introduction

Abstract interpretation [8] is a well-established technique for automatically proving certain program properties. In
abstract interpretation, sets of program stores are represented in a conservative manner by abstract values. Each pro-
gram statement is given an interpretation over abstract values that is conservative with respect to its interpretation
over corresponding sets of concrete stores; that is, the result of “executing” a statement must be an abstract value that
describes a superset of the concrete stores that actually arise. This methodology guarantees that the results of abstract
interpretation overapproximate the sets of concrete stores that actually arise at each point in the program.

In [9], it is shown that, under certain reasonable conditions, it is possible to give a specification of the most-precise
abstract interpretation for a given abstract domain. For a Galois connection defined by abstraction function « and
concretization function -, the best abstract post operator for transition 7, denoted by Postu{r], can be expressed in
terms of the concrete post operator for 7, Post[7], as follows:

Post![7] = a0 Post[r] 0. ‘ (1)

This defines the limit of precision obtainable using a given abstraction. However, Eqn. (1) is non-constructive; it does
not provide an algorithm for finding or applying Post?[7].

Graf and Saidi [13] showed that theorem provers can be used to generate best abstract transformers for abstract
domains that are fixed, finite, Cartesian products of Boolean values. (The use of such domains is known as predicate
abstraction; predicate abstraction is also used in SLAM [1] and other systems [10].) The work presented in this
paper shows how some of the benefits enjoyed by applications that use the predicate-abstraction approach can also be
enjoyed by applications that use abstract domains that are not amenable to the use of predicate abstraction. In particular,
this paper’s results apply to arbitrary finite-height abstract domains, not just to Cartesian products of Booleans. For
example, it applies to the abstract domains used for constant propagation and common-subexpression elimination [16].
When applied to a predicate-abstraction domain, the method has the same worst-case complexity as the Graf-Saidi
method.

To understand where the difficulties lie, consider how they are addressed in predicate abstraction. In general, the
result of applying 7 to an abstract value [is an infinite set of concrete stores; Graf and Saidi sidestep this difficulty by
performing « symbolically, expressing the result of () as a formula . They then introduce a function that, in effect,
is the composition of o and Post[r]: it applies Post[r] to ¢ and maps the result back to the abstract domain. In other

it s
words, Eqn. (1) is recast using two functions that work at the symbolic level, 5 and aPost,? such that aPost[r] o7 =
aoPost[r]o.
To provide insight on what opportunities exist as we move from predicate-abstraction domains to the more general
class of finite-height lattices, we first address a simpler problem than oPost[7], namely,

How can & be implemented? That is, how can one identify the most-precise abstract value of a given abstract
domain that overapproximates a set of concrete stores that are represented symbolically?

We then employ the basic idea used in @ to implement our own version of o/zﬁo\st[r].

The remainder of the paper is organized as follows: Sect. 2 motivates the work by presenting an @ procedure for
a specific finite-height lattice. Sect. 3 introduces terminology and notation. Sect. 4 presents the general treatment of
& procedures for finite-height lattices. Sect. 5 discusses symbolic techniques for implementing transfer functions (i.e.,
(m['r]). Sect. 6 discusses how to extract information from an abstract value by evaluating a query. Sect. 7 makes
some additional observations about the work. Sect. 8 discusses related work. App. A contains a proof of one of the
results. (Other proofs have been omitted to conserve space.)

? In general, the diacritic ~ on a symbol indicates an operation that either produces or operates on a symbolic representation of a
set of concrete stores.

2 Motivating Examples

This section presents a sequence of examples at a semi-formal level to motivate the work. A formal treatment is given
in later sections. The examples concern a familiar pair of concrete and abstract domains, namely, the pair used in
the constant-propagation problem: let Var denote the set of variables in the program being analyzed; the concrete
domain is 2V% 2, the abstract domain is (Var — Z 7). The abstract value L represents §; an abstract value such
as [x = 0,y = T,z — 0] represents all concrete stores in which program variables x and z are both mapped to 0.*

Predicate Abstraction A predicate-abstraction domain is based on some predicate set {B; = wi |1 <7<k}
however, the abstract domain (Var - Z ') cannot be captured by a fixed, finite set of predicates, even if there is
a Boolean predicate B = (z = c¢) for each x € Var and each distinct constant c that appears in the program. For
instance, if the program is

y =3

X = 4xy+1 @
the predicate-abstraction domain based on the predicate set { B “(y=1),B = (y = 3), Bs £ (y = 4),
By ¥ (z =1), Bs £ (z = 3), Bs = (z = 4)} does not provide an exact representation of the final state that arises,
[— 13,y — 3]. The best that can be done is to use the monomial®

—-B1{ A By A—=B3z A-By A -Bg A\ —Bg,

which provides limited information about the value of z.

The phenomenon illustrated here is well known: the predicate-abstraction domain in which there is a Boolean
predicate B o (z = c) for each x € Var and each distinct constant ¢ that appears in the program is sufficient
for copy-constant propagation, in which the only statements interpreted exactly are of the form x := ¢ and x 1=y
[12]; however, this domain is not sufficient for versions of constant propagation in which statements of the form
x 1= a*y + b and x := y * z are interpreted exactly [20].

The o Function for Predicate-Abstraction Domains One of the virtues of the predicate-abstraction method is that
it provides a procedure to obtain a most-precise abstract value (i.e., a monomial over the Bj), given (a specification of)
a set of concrete stores as a logical formula 1 [13]. We will call this procedure dipa :6 it relies on the aid of a theorem
prover, and can be defined as follows:

ft if 1 is unsatisfiable

~) & [B; ify = jisvalid

apa(¥) = /\ -B; ify = —p; is valid otherwise)
j=1 | tt otherwise

For instance, suppose that 9/ is the formula (y = 3) A (¢ = 4 * y + 1), which captures the final state of program
(2). For aipa((y = 3) A (z = 4 xy + 1)) to produce the answer =By A By A 7Bz A =By A =Bs A =B, the theorem
prover must be capable of demonstrating that the following formulas are valid:

(y=3)A(z=4dxy+1)=(y=1) y=3)A(z=4%y+1)=>-(z=1)
(y=3)Alz=4xy+1)=(y=23) (y=3)A(z=4xy+1)=~(z=3) 4)
(y=3)A(z=4dxy+1)=(y=4) (y=3)A(z=4%xy+1)=>-(z=4)

This is depicted in Fig. 1.

Going Beyond Predicate Abstraction We now show that the ability to implement the o function of a Galois connec-
tion between a concrete and abstract domain is not limited to predicate-abstraction domains.

4 We write abstract values in Courier typeface (e.g., [x = 0,y = T,z — 0]), and concrete stores in Roman typeface (e.g., [z —
0,y 43,z — 0]).

5 A monomial over By, ..., By is a conjunction of B;’s, -B;’s, and occurrences of tt in which each B; appears at most once.
The term ff is also a monomial.

® We refer to operations like &pa as “procedures” rather than as “algorithms” because they make calls to a theorem prover.
Depending on the logic employed, and the power of the theorem prover being used, GipA may or may not terminate. It yields an
algorithm in cases where the logic is decidable (e.g., weak monadic second-order logic and decidable fragments of first-order
logic) and the theorem prover incorporates a decision procedure for the logic.

(—B1, B2,~-B3,
—B4,~B5,—B6),

Concrete Abstract
Values Formulas Values
Fig. 1. Gpa ((y = 3) A (¢ = 4% y + 1)) produces the abstract value (- By, By, ~Bs, =By, ~Bs, = Bs), which denotes
the monomial =B; A By A =Bs A =By A =Bs A =Bg, by using a theorem prover to establish the formulas given in
Eqn. (4). Note that @pa makes no direct use of the space of concrete values (cf. Figs. 3(a)-3(d)).

In contrast to the predicate-abstraction domain {Bi, B3, B3, By, Bs, Bg}, the constant-propagation domain
(Var — Z7) | does allow the final state of program (2) to be represented exactly, and the procedure that we give,
which we call @cp, is capable of finding it. Gcp is actually an instance of the general procedure for implementing a
functions of Galois connections presented in Fig. 2: &cp is the instance in which the return type L is (Var — 29,
and “structure” in line [5] means “‘concrete store”.

[11 L a(formula 7) {

(2] ans := 1

(31 w =

[4] while (¢ is satisfiable) {

[5] Select a structure S such that Sk
[6] ans := ans U ((5)

[71 = @ A—-7(ans)

[8] }

(9] return ans

(101 }

Fig. 2. An algorithm to obtain, with the aid of a theorem prover, a most-precise abstract value that overapproximates
a set of concrete stores. In Sect. 2, the return type L is (Var — Z 7)1, and “structure” in line [5] means “concrete
store”.

As with procedure Gpa, Gcp is permitted to make calls to a theorem prover (see line [5] of Fig. 2). We make one
assumption that goes beyond what is assumed in predicate abstraction, namely, we assume that the theorem prover is
a satisfiability checker that is capable of returning a satisfying assignment, or, equivalently, that it is a validity checker
that returns a counterexample. (In the latter case, the counterexample obtained by calling Provevalid(—y) is a
suitable satisfying assignment.)

The other operations used in procedure &cp are 3, U, and 7:

— The concrete and abstract domains are related by a Galois connection defined by a representation function 3 that
maps a concrete store S € Var — Z to an abstract value §(S) € (Var — ZT).. For instance, 3 maps the
concrete store [z ~+ 13,y = 3] to the abstract value [x — 13,y + 3].

— U is the join operation in (Var — Z 1) . For instance,

[x 0,y +> 43,2 0] LU [x > 0,y — 46,2+ 0] = [x = 0,y = T,z +> 0].

— There is an operation 7 that maps an abstract value [to a formula 5(I) such that [and 5([) represent the same set
of concrete stores. For instance, we have

x>0,y T,z 0)) = (2 =0)A(z=0).

The resulting formula contains no term involving y because y = T does not place any restrictions on the value of
y.
Operation 5 permits the concretization of an abstract store to be represented symbolically, using a logical for-
mula. This allows sets of concrete stores to be manipulated symbolically, via operations on formulas.

Given a specification of a set of concrete stores as a logical formula 1), both &pa () and &cp (1) find most-precise
abstract values in their respective domains. In contrast to procedure apya, the call dcp((y = 3) A (z = 4+ y + 1))
finds an abstract value that is an exact representation of the final state of program (2), namely, [x + 13,y = 3]. This
value is arrived at by the following sequence of operations:

Initialization: ans = L
pi=(y=3)A(z=4*y+1)
Iteration 1: S = [z 13,y > 3] /I A satisfying concrete store

ans := L U B[z~ 13,y — 3])
[x++ 13,y > 3]

Y(ans) = (z=13) A (y = 3)
p=(y=3)A(z=4xy+1)A~((z=13)A(y =3))
=(y=3)A(@=4+y+ Az #13) V (y # 3))
= ff
Iteration 2: is unsatisfiable
Return value: [x > 13,y — 3]

The loop terminates and Gcp returns the abstract value x 13,y 3].
This example is a somewhat degenerate one because only one iteration of the loop body is performed. To illustrate

dcp on a slightly more challenging example, consider the program

z:=0 (s)

X 1= y*2Z

and suppose that 1 is the formula (2 = 0) A (z = y * 2), which captures the final state of program (5). The following
sequence of operations would be performed during the invocation of &cp((z = 0) A (z =y * 2)):

Initialization: ans := L
' pi=(2=0)A(z=y*z)
Iteration 1: Si=[z+ 0,y 43,z 0] // Some satisfying concrete store

LUB(z = 0,y 43,2z —0])

ans =
=[x+ 0,y — 43,z ++ 0]
Y(ans) = (2 =0) A (y=43) A (2 =0)
p:=(z=0)A(z=y*z)A=((z=0)A(y=43) A (z=0))
=(z=0)A(z=y*2)A((z#0)V(y#43) V(2 #0))
= (z=0)A(z=yx2z)A(y#43)
Iteration 2: S:=[z+ 0,y 46,z — 0] /I Some satisfying concrete store
ans := [x =+ 0,y —+ 43,z = O] U A({z — 0,y +— 46,z > 0])
=[x+ 0,y 43,z 0] U [x— 0,y = 46,2 + 0]
=[x 0,y T,z 0]
F(ans) = (z=0)A(z=10)
90:=gfz=0)/\(w=y*2)/\(y#43)/\((m¢O)V(Z#0))
Iteration 3: is unsatisfiable
Return value: [+ 0,y = T,z 0]

In effect, &cp has automatically discovered that in the abstract world the best treatment of the multiplication operator
is for it to be non-strict in T. That is, 0 is a multiplicative annihilator that supersedes T: 0 = T % 0.

Fig. 3 presents a sequence of diagrams that illustrate schematically algorithm & from Fig. 2. In general, a(y)
carries out a process of successive approximation, making repeated calls to the theorem prover. Initially, ¢ is set to]
and ans is set to L. On each iteration of the loop in @, the value of ans becomes a better approximation of the desired
answer, and the value of ¢ describes a smaller set of concrete stores, namely, those stores described by 1 that are not,
as yet, covered by ans. For instance, at line [7] of Fig. 2 during Iteration | of the second example of Gcp (¥), ans has
the value [x - 0,y — 43,z + 0], and the update to ¢, := pA—7(ans), sets p to (z = 0)A(z = y*z) Ay # 43).
Thus, @ describes exactly the stores that are described by v, but are not, as yet, covered by ans.

Each time around the loop, & selects a concrete store S such that S = . Then & uses # and U to perform what can
be viewed as a “generalization” operation: 8 converts concrete store S into an abstract store; the current value of ans is
augmented with 5(S) using U. For instance, at line [6] of Fig. 2 during Iteration 2 of the second example of acp (¥),
ans’s value is changed from [x — 0,y + 43,2~ 0] to [x = 0,y > 43,z 0] U B([z = 0,y — 46,z — o)
= [x = 0,y = T,z ~ 0]. In other words, the generalization from two possible values for y, 43 and 46, is T, which
indicates that y may not be a constant at the end of the program.

ans,

ans .
: I [9, A ~ilans,)] Abstract
Concrete Abstract Concrete Formulas strac

Values Formulas Values Values Values

(a) (b)

[v(ans)]

ans, L) B{S5)

ans, LI 3(S;)

ansy . ansy

(92 A~ ans;)] Abstract

Abstract Concrete [[(Pg A —w“?(anSJ)]]
Formulas Values

Concrete
Formulas Values

Values Values

() (d)

ans

Concrete Abstract Concrete Abstract
Values Formulas Values Values Formulas Values

(e) (f)

Fig. 3. Schematic diagrams that illustrate the process carried out by algorithm a(y) from Fig. 2; ¢;, S;, and ans;
denote the values of ¢, S, and ans during the it" iteration. (a) Initially, @, is set to 7 and ans; is setto L; S isa
structure such that Sy k= ;. (b) ans, is set to ans; U S(S1) = B(S1); g2 is set to g1 A =F(anss); S is a structure
such that Sy |= . Note that Sy belongs to [gs] = [¢1 A —Y(ans2)]. (c) ans; is set to ans; LI B(S2); ws is set to
w2 A—7(anss); Ss is a structure such that Sz |= 3. (d) ansy is set to ansg LB(S3); g is setto w3 A= (ansy); Sy is
a structure such that Sy = 4. (€) anss is set to ansg LI B(Sy); s is set to @4 A —%{anss). In the case portrayed here,
the loop terminates at this point because @5 = ff. The desired answer is held in anss. (f) @()) obtains the most-precise
abstract value ans that overapproximates [1].

Sect. 4 presents a general framework for implementing « functions of Galois connections, formalized in terms of
logic, that generalizes the foregoing examples.
3 Terminology and Notation

3.1 Representing Concrete States using Logical Structures
For us, concrete stores are logical structures. The advantage of adopting this outlook is that it allows potentially infinite
sets of concrete stores to be represented using formulas.

Definition 1. Let P = {p1,...,pm} be a finite set of predicate symbols, each with a fixed arity; let P; denote the set
of predicate symbols with arity i. Let C = {c1, . .., cn} be afinite set of constant symbols. Let F' = { f1, fa, ..., fp}be

a finite set of function symbols each with a fixed arity; let F; denote the set of function symbols with arity 1. We denote

the vocabulary of the analyzed program by V = (P, C, F). A concrete store over V is a tuple S = (U, tp, tc, Lf) in

which

U is a (possibly infinite) set of individuals.

— up is the interpretation of predicate symbols, i.e., for every predicate symbol p € P, 1,(p) C U* denotes the set of
i-tuples for which p holds.

— 1. is the interpretation of constant symbols, i.e., for every constant symbol ¢ € C, te(c) € U denotes the individual
associated with c.

~ iy is the interpretation of function symbols, i.e., for every function symbol f € Fy, 14(f): U ¢ — U maps i-tuples
into an individual.

We denote the (infinite) set of structures by ConcreteStruct|[V).

Example 1. In Sect. 2, we considered concrete stores to be members of Var — Z. This is a common way to de-
fine concrete stores; however, in the remainder of the paper concrete stores are identified with logical structures. A
store in which program variables are bound to integer values is a logical structure (Z, LintPreds» L Var > bintPuncs) OVET
vocabulary {IntPreds, Var, IntFuncs), where

- IntPreds = {<, <, =,%#,2,>,.. }: tinipreas gives these symbols their usual meanings.

—~ Ly IS a mapping of program variables to integers.

— IntFuncs = {+,—,*,/,...}; LintFuncs gives these symbols their usual meanings.
For instance, an example concrete store for a program in which Var = {z,y, z} is

<Z, LintPreds, ['L =0,y 2,20 O]; "IntFuncs>~ (6)

Because Z, LiniPreds, A0d niFuncs are common to all our examples, henceforth we abbreviate a store such as (6)
by tc = [z + 0,y — 2,2+ 0].

3.2 Syntax and Semantics of First-Order Logic

To manipulate sets of structures symbolically, we use formulas of first-order logic with equality, whose syntax is
defined as follows:

Definition 2. The languages of terms and formula over vocabulary V = (P, C, F') are defined by

t € Terms ceC @€ Formulas tu=vl|c| f(ty,... t)
v € Variables f€F pelP pu=1E]] p(ty,. .., tx) | (01 = t2) | (~1) | (o1 Vp2) | (For = 1)

The sets of free variables of terms and formulas are defined as usual. A formula is closed when it has no free variables.

We use several shorthand notations: (£; # t2) & =(t; = ta2); @1 = 2 = (=1 V@2); 01 A2 = (=1 Vos);
0L @ vr = (01 = P2) Apa = p1);and Vo @ £ —3Ju : ~¢. The order of precedence among the connectives,
from highest to lowest, is as follows: =, A, V, V, and 3. We drop parentheses wherever possible, except for emphasis.

The standard Tarskian semantics for first-order logic is defined as follows:

Definition 3. Let S = (U, ip, tc, Ly) be a concrete structure over V. An assignment Z is a function that maps free
variables to individuals (i.e., an assignment has the functionality 7 : {v1,vs, ...} — U). An assignment that is defined
on all free variables of a formula y is called complete for ¢. (We will assume that every assignment Z that arises in
connection with the discussion of some formula @ is complete for ¢.)

We define the meaning of term t (denoted by [t] (5.2)) inductively, as follows: (i) For a constant symbol ¢, [c] (5.2) =
te(e). (ii) For a variable v, {[v]](s*z) = Z(v). (iii) If t1, 2, ..., 4 are terms, and f € F is a function of arity l, then

[F(trs - 0157 = (D], [0]S2).

S and Z satisfy @ (denoted by S, Z =) when one of the following holds:
- = tt
— @ =plty, ..., tx) and ([t1]S52), .. [t:]52) € tp(p).
- = (t; = ta) and i[tl]](s’z) = {[tg]](S’Z>.
~- = - and S, Z = o does not hold.
- @ =1 V g, and either S, Z = ¢, or S, Z = ps.
- @ = vy : @1 and there exists an individual w € U, such that S, Z[vy = u] | 1.

For a closed formula p, we omit the assignment in the satisfaction relation, and merely write S |= . We also use
the notation] to denote the set of concrete structures that satisfy @: [p] = {S | § € ConcreteStruct[V],S = ¢}

Example 2.

o v Je=lzm 0,y 0,2 0]t =[x 0,y 1,2+ 0],
H(i—o)/\(zwo)ﬂ_{Acz[wr—)O,yH2,zHO],...

3.3 Lattices

Definition 4. A complete join semilattice L. = (L, T, | |, L} is a partially ordered set with partial order C. For every
subset X of L, the least upper bound of X, denoted by | | X, must be a member of L.
The minimal element 1. € L is | |0. We use z Uy as a shorthand for | [{z,y}. We write x T y when z & y and

The powerset of concrete stores g ConcreteSiruct[V] i » complete join semilattice, where (i) X C Y iff X C Y,

(i) L = 0, and (iii) | | = U.

Definition 5. Let I = (L,C,|], L) be a complete join semilattice. A strictly increasing chain in L is a sequence of
values Iy, la, . .., such that I; T ;1. We say that L has finite height if every strictly increasing chain is finite.

3.4 Abstract Domains

We now define an abstract domain by means of a representation function [21].

Definition 6. Given a complete join semilattice L = {L,C,| |, L) and a representation function 8: ConcreteStruct[V] —
L such that for all S € ConcreteStruct[V] B(S) # L, a Galois connection 260mereteStructlV1 & [is defined by ex-
hl

tending B pointwise, i.e., for XS C ConcreteStruct[V]andl € L,

a(XS)= | | B(S) v(1) = {S | S € ConcreteStruct[V],5(S) T 1}
SeXs

It is straightforward to show that this defines a Galois connection, i.e., (i) o and vy are monotonic, (ii) o distributes
over U, (iii) XS C v(a(XS)), and (iv) a(y()) T 1

We say that | overapproximates a set of concrete stores XS if v(I) 2 XS. It is straightforward to show that
a(XS) is the most-precise (i.e., least) abstract value that overapproximates XS.

Example 3. In our examples, the abstract domain will continue to be the one introduced in Sect. 2, namely, (Var —
ZT)1. As we saw in Sect. 2, maps a concrete store like o = [z = 0,y — 2,z > 0] to an abstract value
[x = 0,y = 2,2 +— 0]. Thus,

<{Lc=[mHO,y+—>O,z»—)O],
!

o= [0,y 3 2,2 15 0] }) =Bte=[z 0,y 0,z 0)) UL =[x+ 0,y 2,20

=[x 0,y 0,z 0]U[x+— 0,y — 2,2+ 0]
=[x 0,y T,z 0]

Suppose that abstract value [is [x + 0,y — T,z + 0]. Because y = T does not place any restrictions on the
value of y, we have

(1) = te=[z— 0,y 0,20, .=z~ 0,y— 1,z 0],
n= te =[x 0,y—2,2+0],...

4 Symbolic Implementation of the o Function

This section presents a general framework for implementing o functions of Galois connections using procedure & from
Fig. 2. a(+) finds the most-precise abstract value in a finite-height lattice, given a specification of a set of concrete
stores as a logical formula . & represents sets of concrete stores symbolically, using formulas, and invokes a theorem
prover on each iteration.

The assumptions of the framework are rather minimal:

— The concrete domain is the power set of ConcreteStruct|[V].

- The concrete and abstract domains are related by a Galois connection defined by a representation function 3 that
maps a structure S € ConcreteStruct[V] to an abstract value 5(S).

— It is possible to take the join of two abstract values.

— There is an operation 7 that maps an abstract value [to a formula 5([) such that

YOI =~ @) (7

Operation 7 permits the concretization of an abstract value to be represented symbolically, using a logical formula,
which allows sets of concrete stores to be manipulated symbolically, via operations on formulas. (In this paper, we use
first-order logic; in general, however, other logics could be used.)

Example 4. As we saw in Sect. 2, because y — T does not place any restrictions on the value of y, we have
Y¥([x = 0,y = T,z = 0]) = (z = 0) A (z = 0). From Exs. 2 and 3, we know that

o v Jte=lzm 0y 0,20, =z 0,y 1,2 0],
ﬁ(l_o)/\(z—o)}]‘{ch[ar»——)O,yMQ,z»—éO],... ,

=y([x+ 0,y = T,z 0]),

and thus Eqn. (7) is satisfied. For [€ (Var — Z7) 1, 5(l) is defined as follows:

ft ifl=1
(1) = /\ (v=1I(v)) otherwise

v € Var,

o) # T

Specification of Alpha Procedure @ is to implement a, given a specification of a set of concrete stores as a logical
formula 1. Therefore, & must have the property that for all ¢, &(¢) = a([¢]).

Note that a logical formula 1 represents the set of concrete stores [¢]; thus, a([1]) (and hence ci(¢)), as well) is
the most-precise abstract value that overapproximates the set of concrete stores represented symbolically by .

Implementation of Alpha Procedure & is given in Fig. 2.

Example 5. Two examples of calls on & for the constant-propagation domain (Var — 2 Ty, were given in Sect. 2. In
generalizing the idea from Sect. 2, concrete stores have been identified with logical structures, so instead of writing,
e.g,S =[x+ 0,y ~ 43,2 = 0], we would now write S := 1. = [z 0,y — 43,2 = 0].

Theorem 1. Suppose that the abstract domain has finite height of at most h. Given input 1), 6:() has the following
properties:
(i) The loop on lines [4]~[8] in procedure @ is executed at most h times.
(i) a() = a([¥]) (i.e, a(y) computes the most-precise abstract value that overapproximates the set of concrete
stores represented symbolically by).

Proof. See App. A.

5 Symbolic Implementation of Transfer Functions

5.1 Transfer Functions for Statements

If Q is a set of predicate, constant, or function symbols, let ' denote the same set of symbols, but with a ' attached to
each symbol (i.e., g € Q iff ¢’ € Q").

The interpretation of statements involves the specification of transition relations using formulas. Such formulas
will be over a “two-store vocabulary” VUV’ = (P U P',C U C', F U F'}), where unprimed symbols will be referred
to as present-state symbols, and primed symbols as next-state symbols. If S and .S’ are structures over vocabularies
V = (P,C,F)and V' = (P',C', F'), respectively, the satisfaction relation for a two-store formula 7 will be written
as (5,5 = 7.

Example 6. The formula that expresses the semantics of an assignment x := y * z with respect to stores over vocabu-
lary (P, C, F), denoted by Ty.=y«z, can be specified as

Tomyez = (@' =y* 2) A (Y =y) A (2 = 2).

For parallel form, we will also assume that we have two isomorphic abstract domains, L and L', and associated
variants of 7 and 7y

B: ConcreteStruct[V] — L B': ConcreteStruct[V'] — L'
¥: L — Formula[V] ' L' = Formula[V']

For the constant-propagation domain, this just means that a next-state abstract value produced by one transition, e.g.,
[x' + 0,y = T,2' + 0] € L/, can be identified as the present-state abstract value [x = 0,y = T,z + 0] € L for
the next transition.

Specification Given a formula 7 for a statement’s transition relation, the result of applying 7 to a set of concrete stores
XS is
Post[7](XS) = {S' | exists S € XS such that (S, S') = 7}.

(Note that this is a set of structures over vocabulary V'.) aPost[7](l) is to return the most-precise abstract value in I/
that overapproximates Post[7](-y(1)).

Implementation c’zl?cgt[r](l) can be computed by the procedure presented in Fig. 4. After ¢ is initialized to 5([) A T
in line [3], aPost operates very much like @, except that only abstractions of the S’ structures are accumulated in
variable ans’ (see lines [5] and [6]). On each iteration of the loop in aPost, the value of ans’ becomes a better
approximation of the desired answer, and the value of ¢ describes a smaller set of concrete stores, namely, those
V U V' stores that are described by 5(I) A 7, but whose range (i.e., projection on the next-state symbols) is not, as yet,
covered by ans’.

(11 L' aPost(two-store-formula 7 over vocabulary VUV', L 1) {
[2] ans’ := .1’

(3] @ = F)AT

[4] while (¢ is satisfiable) {

[5] Select a structure pair (5,5') such that (5,5 k¢

[6] ans’ := ans’ U f'(S")

[7] p:=@pA-7y(ans’)

(8] }

[9] return ans’

e,

Fig. 4. An algorithm that implements aPost[7]({).

Example 7. Suppose that! = [x + T,y + T,z > 0], and the statement to be interpreted is x := y * z. Then 7([) is
the formula (z = 0), and 7x.=y« is the formula (z' = y * 2) A (y' = y) A (2' = 2). Fig. 5 shows why we have

e —

aPost[re=ysz)(x = T,y = T2 0])) =[x = 0,y = T,2' = 0].

Space precludes us from discussing other operators that can also be handled by techniques similar to Fig. 4, such
as Pre[7].

5.2 Transfer Functions for Conditions

Specification The interpretation of a condition ¢ with respect to a given abstract value ! must *“pass through” all
structures that are both represented by I and satisty ¢, i.e., those in y(1) N []. Thus, the most-precise approximation
to the interpretation of condition ¢, denoted by Assume?[](1), is defined by

Assume![)(1) = a(y(1) N [¢])-
Implementation Assume’[i](I) can be computed by the following method:

Assume?[](1) = 3(F(1) A).

Initialization: ans’ = 1’
pi=(z=0)A(c' =yr2)A (Y =y) A (2 =2)
[mr—)f),yr—} 17,2+ 0

Iteration 1: (8,8 : ; p /
-0y — 17,2 — 0

il
i

} // Some satisfying structure

ans’ =[x = 0,y > 17,2" 13 0]
F'(ans’) = (' =0 A(y = 1T)A (' =0)
p=(z=0AE"=yx2) Ay =y A =2)A(2" £0)V () £17) V(2 #£0))
— = 0)A =ys DAY =) A =2) A £17)

Iteration 2: (5,8 =1 = // Some satisfying structure

2 =0,y =992 0
X'+ 0,y = 17,2 = O] U [+ 0,y = 99, 2" 3 0]
= [x' =0,y + T,2' + 0]

F(ans') = (z' =0) A (z' =0)
p=(@E=0A@E =yx) AW =AE =2)AY #IT)A (& #0)V (' #0))
= ff
Iteration 3: is unsatisfiable
Return value: =0,y T,2 =0

Fig. 5. Operations performed during a call (;I;o\st[rx::y*z]([x = T,y T,z 0]).

Example 8.

Q)

Assumel[(y < 2)]([x = 0,y = 2,2 > 7]) (z=0Ay=2)A(z=T)A{y < 2))
=0,y 2,2 7]

(z=0Aly=2A(z=T7)A(y = 2))

i

"

Assumef[(y > 2)]([x = 0,y — 2,2 = 7))

i
D=L

Assumet[(y < 2)]([x = 0,y = T,z — 7)) ({z=0)A(z=T)A(y < 2))
—=0,y— T,z 7]
(e=0)A(E=T)A(y=2)

=0,y 7,27

It
ey

Assume[(y = 2)](x = 0,y —= T,z = 7))

£

6 Querying Abstract Values

For clients of abstract interpretation, such as verification tools, program optimizers, program-understanding tools, etc.,
an abstract value in the fixed-point solution may not provide information in exactly the form that the client needs. For
instance, the information that the abstract value at p in the fixed-point solution is [x + 0,y + T] may not itself be the
information that a client needs. Therefore, a fundamental issue for clients of abstract interpretation is how to extract
information from an abstract value.

Information extraction means query evaluation. For instance, if a program optimizer poses the query “Does pro-
gram condition x == 0 evaluate to true in all stores that arise at program point p?” and the answer is tt (for instance,
because the abstract value at p in the fixed-point solution is [x ++ 0,y — T}]), then it has sufficient information to
make the simplification

p: if (x==0) then S; else Sy fi = p: S;.

The observation that information extraction is query evaluation allows us to establish what it means to give the
most-precise conservative answer to a query. An abstract value [represents a set of concrete stores X.S; ideally, a query
 should return an answer that summarizes the result of posing ¢ against each concrete store 5§ € XS

— If ¢ is true for each S, the summary answer should be tt.
— If ¢ is false for each .S, the summary answer should be ff.
— If @ is true for some S € X but false for some S' € X, the summary answer can only be “unknown”.

This section addresses the problem of extracting information from an abstract value, and gives a procedure for
determining the most-precise conservative answer to a query.

Specification This paper harnesses the tools of 2-valued logic for program analysis. However, the operation of ex-
tracting information from an abstract value is inherently 3-valued; to specify the extraction of information from an
abstract value, it is convenient to introduce a third truth value, ?, to denote uncertainty. We say that the values ff and tt
are definite values and that ? is an indefinite value.

Using this notation, the most-precise conservative value that can be reported for the value of formula ¢ in the
concrete structures represented by [, denoted by (@) (1), is

tt if S = pforall S € ~(l)
LN () =< tf if S Eeforall S € ~(l) (8)
? otherwise

Eqn. (8) can also be written as

tt if (1) C [¢]
ffif (1) C [l)
? otherwise

{eh (D)

Example 9. Suppose that [is [x + 0,y + T,z + 0] so that, as in Ex. 3,

(1) = te=[z—0,y—= 0,2 0], =[z— 0,y 1,2z 0],
= te=[zm 0,y 2,2 0],...

Now suppose that p = (y = 1).

ch["t;HO,ya——)l,zHO],Lc—[mHlyHlzHO]
[y =1)] = te=[zm 2,y 1,z 0],..
Y = - LCZ[’LHO,’!}HLZF—}].],LC [lLy— 1,2 1],
te=[zm 2,y 1z 1], ..

Therefore, neither of the following hold:

Helly=1)] v € [y # 1]
and thus {((y = D))([x = 0,y — T,z = 0]) = ?. Now suppose that p = (z = y * z).

Lc——{flil—)OJ*—)OZF—-)O],LC—[iLF——)OyF“)lZP—)O]
=z 0y—2,2-0]..

o _ LC»-['L’—)O,yi—)O,ZHl},LC [x— 1y 1,z 1],
[(z=y+2)] = e =z 2,y— 2,z 1], ..

Le {’EHO,]]HO,ZH2],LC [z 2,y 1,2z 2],
=[x dym2,z2-2], ..

Thus, v(1) C [(z = y *)], and hence {((z =y * 2))([x = 0,y = T,z — 0]) = tt.

Implementation Using symbolic techniques, {(¢)) (1) can be computed as follows:

tt if () = ¢ is valid
{en() = < fF if5(l) = —pis valid (10)
? otherwise

Example 10. Suppose that [is [x — 0,y = T,z > 0] so that, as in Ex. 4, 5(l) = (z = 0) A (2 = 0).
— When ¢ = (y = 1), neither of the following two formulas is valid:

@=0A(z=0==1) @=0A(=0)=(y#1)

Therefore, the value for {(y = 1)))([x = 0,y — T,z = 0]) computed according to Eqn. (10) is ?.
— When ¢ = (z = y * z), the formula (z = 0) A (z = 0) = (z = y * z) is valid; therefore, the value for
{((z = y*2))([x + 0,y = T,z > 0]) computed according to Eqn. (10) is tt.
Each of these answers agrees with the corresponding answer obtained in Ex. 9.

Relationship to Supervaluational Semantics The role of ? in Eqns. (8), (9), and (10) is different from the situation
that arises with most abstract-interpretation algorithms when they return an indefinite answer [21,23]. For instance, in
our past work on program-analysis methods based on 3-valued logic [23], a query on an abstract value [that results in
? provides no information about the values that the query would have in the concrete stores that [represents: the query
could evaluate to tt in all such stores, ff in all such stores, or tt in some stores and ff in others.

In contrast, in the approach followed in this paper, ? does provide a certain amount of definite information: when
the result of a query is ?, we know that

- [definitely represents at least one concrete store on which the query evaluates to tt.
— | definitely represents at least one concrete store on which the query evaluates to ff.

This notion is related to the notion of supervaluational semantics (25,4, 3,22], which has also been called thorough
semantics [5]. This concept arises in the context of partial logic and 3-valued logic, which are formalized in terms of
logical structures in which the value of a predicate can be one of three values, tt, ff, or 2, and truth values are ordered
by the information order: Iy C 5 iff Iy =y orly = 2.

For instance, the supervaluational semantics of propositional logic is defined as follows: a 2-valued assignment
a is a (finite) function from propositional variables to {ff, tt}; [](a) denotes the value of formula ¢ with respect to
assignment a. A 3-valued assignment A is a (finite) function from propositional variables to {ff, tt,?}; A represents
all 2-valued assignments a = A (where C is lifted pointwise from truth values to assignments).

Definition 7. Given a formula @ and assignment A, the 3-valued supervaluational meaning of ¢ with respect to A,
denoted by {p))(4) is the truth value in {ff, tt,?} defined by

tt ifalgpforallaC 4
(Ay=< ff ifaleforallaC A (11
14
? otherwise

Eqn. (1 1) has the same form as Eqn. (8) if we think of 3-valued assignments as abstractions of 2-valued assignments,
with v(4) £ {a | o T A}.

Bruns and Godefroid considered supervaluational semantics in the context of model checking partial Kripke struc-
tures [5]. The definition that they give for the supervaluational semantics also has a close resemblance to Eqn. (8):

Let ¢ be a formula of any two-valued logic for which a satisfaction relation |= is defined on complete Kripke

structures. The truth value of ¢ in a state s of a partial Kripke structure A under the thorough interpretation,
written [(M, s) = ¢}t is defined as follows:

(e if (M, s") = ¢ forall (M',s")inC(M,s
(M, s) |= @) = { ffif (M',s') & ¢ forall (M',s') inC(M, s
? otherwise

~— —

(12)

C(M, s) denotes the “completions” of state 3 of a partial Kripke structure M; C(M, s) is the set of all states s’ of a
complete Kripke structure M’ such that s < s', where s < s’ with respect to M and M is a kind of “‘near bisimilarity”
relation, except that the atomic propositions that hold in s may be more indefinite than those that hold in 5.’

Bruns and Godefroid give automaton-based decision procedures that can be used to implement the two tests needed
in Eqn. (12), for the temporal logics CTL. and LTL.

A difference between Eqns. (10) and (12) is that Eqn. (10) uses 7 to translate an abstract value to a formula in some
logic. Eqn. (10) represents a reductionist strategy for providing a supervaluational evaluation procedure for an abstract
domain by using existing logics and theorem provers/decision procedures. It shows how to obtain a supervaluational
evaluation procedure whenever an appropriate logic, ¥ function, and theorem prover/decision procedure are available.

7 Discussion

' Theorem provers such as MACE [19], SEM [27], and Finder {24] can be used to
int x, y, z implement the procedures presented in this paper because they return counterexam-
Bool BL, B2 ples. Such tools also exist for logics other than first-order logic; for example, MONA

i - i v e 1 [17] can generate counterexamples for formulas in weak monadic second-order logic.
l’e:’;ld(z Y Constraint-solving tools, such as [LLOG Studio [15], can be used as well: the con-
Bl := 2 < 29 straint problem to solve consists of the negation of the formula that is to be tested
B2 := z < 27 for validity; a feasible solution provides the counterexample. Simplify [11] provides
if Bl then y := 5 counterexamples in symbolic form. (The details of how to adapt our algorithms when
if B2 then x := y + 8 counterexamples are provided in symbolic form are beyond the scope of this paper.)

.) With the aid of Simplify, we have verified the constant-propagation examples in
Fig. 6. A program with corre- hig paper, as well as examples that combine the constant-propagation domain with a
lated branches. predicate-abstraction domain. This is an additional benefit of our approach: it can be

" Eqn. (12) has been adapted to use the truth values tt, ff, and ? employed in this paper.

used to generate the best transformer for combined domains, such as reduced cardinal product and those created using
other domain constructors [9]. For example, the best transformer for the combined constant-propagation/predicate-
abstraction domain determines that the variable x must be 13 at the end of the program given in Fig. 6.

It is usually the case that best transformers are non-compositional, i.e., the composition of the best transformers of
two transitions may not be as precise as the best transformer of the composition of the transitions. One of the potential

applications of aPost is to develop more precise transformers for basic blocks: first create a formula that represents
the compound transition for a basic block, and then apply aPost.

8 Related Work

This paper is most closely related to past work on predicate abstraction, which also uses theorem provers to implement
most-precise versions of the basic abstract-interpretation operations. Predicate abstraction only applies to a family of
finite-height abstract domains that are finite Cartesian products of Boolean values; our results generalize these ideas to
a broader setting. In particular, our work shows that when a small number of conditions are met, most of the benefits
that predicate-abstraction domains enjoy can also be enjoyed in arbitrary abstract domains of finite height, and possibly
infinite cardinality. However, as illustrated in Figs. 1 and 3, our techniques are fundamentally different from the ones
used in predicate abstraction. Although both &pa and the general procedure & of Fig. 2 use multiple calls on a theorem
prover to pass from the space of formulas to the domain of abstract values, &pa goes directly from a formula to an
abstract value, whereas & of Fig. 2 makes use of the domain of concrete values in a critical way: each time around the
loop, @ selects a concrete value S such that S = ; & uses § and U to generalize from concrete value S to an abstract
value.

We have sometimes been asked “How do your techniques compare with predicate abstraction augmented with
an iterative-refinement scheme that generates new predicates, as in SLAM [2] or BLAST [14]?”. We do not have a
complete answer to this question; however, a few observations can be made:

~ For the simple examples used for illustrative purposes in this paper, iterative refinement would obtain suitable
predicates with appropriate constant values in one iteration. Our techniques achieve the desired precision using
roughly the same theorem-proving support, but do not rely on heuristics-based machinery for changing the abstract
domain in use.

— Qur results extend ideas employed in the setting of predicate abstraction to a more general setting. In a companion
paper [26], we have shown how to apply the approach presented here to a non-trivial abstract domain—essentially
the one used in our past work on shape analysis [23] and in the TVLA system [18]). In particular, {26] shows how
to define ¥ for shape-analysis abstractions; the other two required operations, § and L1, carry over from {23].

In on-going work, we are investigating the feasibility of actually applying the techniques from this paper using
the ¥ from [26] to perform abstract interpretation for shape-analysis abstractions. This approach could be more
precise than TVLA because it would use best abstract transformers. (We are also investigating the feasibility
of using this approach to develop a more precise and scalable version of TVLA by using assume-guarantee
reasoning. The idea is to allow arbitrary first-order formulas with transitive closure to be used to express pre- and
post-conditions, and to analyze the code for each procedure separately.)

— This paper studies the problem “How can one obtain most-precise results for a given abstract domain?”. Iterative
refinement addresses a different problem: “How can one go about improving an abstract domain?” These are
orthogonal questions.

The question of how to go about improving an abstract domain has not yet been studied for abstract domains
as rich as the ones in which our techniques can be applied. This is the subject of future work, and thus something
about which one can only speculate. However, we have observed that our approach does provide a fundamental
primitive for mapping values from one abstract domain to another: suppose that L; and L, are two different
abstract domains that meet the conditions of the framework; given [; € L, the most-precise value [y € Ly that
overapproximates -y, (I1) is obtained by Iy = &2 (%1 (1))

The domain-changing primitive opens up several possibilities for future work. For example, counterexample-
guided abstraction-refinement strategies {7, 6] identify the shortest invalid prefix of a spurious counterexample
trace, and then refine the abstract domain to eliminate invalid transitions out of the last valid abstract state of
the prefix. The domain-changing primitive appears to provide a systematic way to salvage information from the
counterexample trace: for instance, it can be invoked to convert the last valid abstract state of the prefix into
an appropriate abstract state in the refined abstract domain. Moreover, it yields the most-precise value that any
conservative salvaging operation is allowed to produce.

In summary, because our results enable a better separation of concerns between the issue of how to obtain most-
precise results for a given abstract domain and that of how to improve an abstract domain, they contribute to a better
understanding of abstraction and symbolic approaches to abstract interpretation.

References

1.

2.

T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate abstraction of C programs. In Conf on Prog.
Lang. Design and Impl., New York, NY, 2001. ACM Press.

T. Ball and S.K. Rajamani. The SLAM toolkit. In Proc. Computer-Aided Verif., Lec. Notes in Comp. Sci., pages 260264,
2001.

S. Blamey. Partial logic. In D.M. Gabbay and F. Guenthner, editors, Handbook of Phil. Logic, 2nd. Ed., Vol. 5, pages 261-353.
Kluwer Acad., 2002,

S.R. Blamey. Partial-Valued Logic. PhD thesis, Univ. of Oxford, Oxford, Eng., 1980.

G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial state spaces. In Proc. CONCUR. Springer-
Verlag, 2000.

E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement using ILP and machine learning tech-
niques. In Proc. Computer-Aided Verif., 2002.

E.M. Clarke, O. Grumberg, S. Jha, Y. Ly, and H. Veith. Counterexample-guided abstraction refinement. In Proc. Computer-
Aided Verif., pages 154169, July 2000.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction of
approximation of fixed points. In Symp. on Princ. of Prog. Lang., pages 238-252, New York, NY, 1977. ACM Press.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Symp. on Princ. of Prog. Lang., pages
269-282, New York, NY, 1979. ACM Press.

S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In Proc. Computer-Aided Verif., pages 160-171.
Springer-Verlag, July 1999.

11. D. Detlefs, G. Nelson, and J. Saxe. Simplify. Compagq Systems Research Center, Palo Alto, CA, 1999.

15.
16.

17.
. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Static Analysis Symp., pages 280-301, 2000.
19.
20.

21

22.

24,
25.
. G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical characterizations of heap abstractions. Submitted for publication, 2003.
27.

——
EGP

C.N Fischer and R.J. LeBlanc. Crafting a Compiler. Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1988.
S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc. Computer-Aided Verif., pages 72-83, June 1997.
T A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Symp. on Princ. of Prog. Lang., pages 5870, New
York, NY, January 2002. ACM Press.

ILOG. ILOG optimization suite: White paper. ILOG S.A., Gentilly, France, 2001

G.A. Kildall. A unified approach to global program optimization. In Symp. on Princ. of Prog. Lang., pages 194-206, New
York, NY, 1973. ACM Press.

N. Klarlund and A. Mgller. MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Univ. of Aarhus, January 2001.

W. McCune. MACE User Manual and Guide. Argonne Nat. Lab., May 2001.

M. Miiller-Olm and H. Seidl. Polynomial constants are decidable. In Static Analysis Symp., pages 4-19, 2002.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag, 1999.

T. Reps, A. Loginov, and M. Sagiv. Semantic minimization of 3-valued propositional formulae. In Proc. Symp. on Logic in
Comp. Sci., July 2002.

. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on Prog. Lang. and Syst., 24(3):217-

298, 2002
J. Slaney. Finder — Finite Domain Enumerator, Version 3.0. Aust. Nat. Univ., July 1995.
B.C. van Fraassen. Singular terms, truth-value gaps, and free logic. J. Phil., 63(17):481-495, September 1966.

J. Zhang and H. Zhang. Generating models by SEM. In Int. Conf. on Auto. Deduc., volume 1104 of Lec. Notes in Art. Intell.,
pages 308-312. Springer-Verlag, 1996.

A Proof of Thm. 1
Lemma 1. If S = o, then B(S) C a(]v])-
Proof. If S |= ¢, then S € []; therefore,

afe) = |] B(T) 2 B(S).

Tele]

Theorem 1 Suppose that the abstract domain has finite height h. Given input 1, (1) has the following properties:

(1) The loop on lines [4]-[8] in procedure & is executed at most h times.
(i) a(y) = a([¥]) (ie, a{y) computes the most-precise abstract value that overapproximates the set of concrete
stores represented symbolically by).

Proof. Proof of (i): If the loop terminates after 0 iterations of the loop body, then (i) holds trivially. For the loop
to terminate after 0 iterations, (p—and hence —must be unsatisfiable, in which case the set of concrete structures
represented by 1) is §; in this case, (ii) holds because L is the most precise value that represents (.
Now suppose that the loop executes at least once. Let ansg = L and, for ¢ > 1, let ans; denote the value of ans
after the it iteration. Similarly, let @; and S; denote the values of @ and S, respectively, after the ¥ iteration.
The ans; form a chain
L CansyCansps C...Cans; L ...

From Defn. 6, 8(S1) cannot equal L; hence L ans;.
We will show that the ans; actually form a strictly increasing sequence. Because the lattice is of finite height h,
this implies that (a) the chain ans; is of length k < h + 1, and (b) the loop is executed at most h times.
For the sake of argument, suppose that the ans; do not form a strictly increasing sequence; let ans; = ans;; be
the first repetition:
L Cans; Cansy C ... [C ans; = ans 4.

By lines [5] and [6], ans;y; = ans; U 3(S;+1), where Si1 = @i A —¥(ans;). Thus, ans; = ans; U B(Si41), which
means that
ans; 2 B(Siy1)
= a({Sit+1})-

Applying -y to both sides, we have

v(ans;) 2 (yo) ({Si+1})
2 {Sit1}-

This implies that S;; € y(ans;), from which we conclude that

Siv1 F 7(ans;).
However, this contradicts

Siv1 @i A —7(ans;),

and thus the assumption that the ans; do not form a strictly increasing sequence cannot be true.

Proof of (ii): Let k > 0 be the iteration on which the loop terminates. This part of the proof will be handled in two
cases, in which we show (a) ans;, C a([#]) and (b) ans;, 2 a([¥]).

Part (a): Show that ansy T a([4]).

We will show that ans; T «([v]) holds on each execution of line [4].

Base case (i = 0): L C a([¥]).

Induction step: Assume that ans; C a([¥]) holds on each execution of line [4]; show that ans;1 T a([¢]) holds.

By line [5], Si+1 = ;. However, p; is of the form) A =5(ans;) A ... A =7(ans;). Thus,

Siv1 EY
B(Sit1) E a([¥]) byLem.1

Consequently, ans; 41 = ans; U £(Si+1) € a([¢]).

Part (b): Show that ansy 3 a([¢]).

Suppose for the sake of argument that ans;, 2 «([¢]) does not hold (*). Then by Part (a), we must have ans;, [
a([4]), which means that there must exist T" |= 1 such that 8(T") € ansy. Because the ans; form a chain,

B(T) Z ans;, for1 < j <k. ()

From Part (i), we know that the loop terminates, and so ¢, is unsatisfiable at the end of procedure @. In the remainder
of the proof, we will show that T' = @y, which is a contradiction (because it implies that the loop did not terminate on
iteration k), and hence assumption (*) must be incorrect.

We demonstrate the contradiction by showing that T' = ¢; holds for each execution of line [4]:
Base case (i = 0): wo = v, and therefore T |= p.
Induction step: Assume that T' = ;; show that T = ;41
Because @i+1 = @; A 7y(ans;41), we need to show that T = —%(ans;1). Suppose, on the contrary, that T' |=

B(T) C af[¥(ansi41)]) by Lem. 1
= a(y(ans;y1)) by the definition of 5

C ans;4 because a o~y id
This contradicts (**), which means that (***) cannot hold. Therefore, T' = ~%(ans;¢1).

o

