
CERIAS Tech Report 2003-51
Resilient Information Hiding for Abstract Semi-Structures

 by Mikhail J. Atallah
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Resilient Information Hiding

for Abstract Semi-Structures ?

Radu Sion, Mikhail Atallah, Sunil Prabhakar

Computer Sciences Department and
The Center for Education and Research in Information Assurance,

Purdue University, West Lafayette, IN, 47907, USA,
[sion, mja, sunil]@cs.purdue.edu

Abstract. Most work on watermarking has resulted in techniques for different
types of data: image, audio, video, text/language, software, etc. In this paper
we discuss the watermarking of abstract structured aggregates of multiple
types of content, such as multi-type/media documents. These semi-structures

can be usually represented as graphs and are characterized by value lying both
in the structure and in the individual nodes. Example instances include XML
documents, complex web content, workflow and planning descriptions, etc. We
propose a scheme for watermarking abstract semi-structures and discuss its
resilience with respect to attacks. While content specific watermarking deals
with the issue of protecting the value in the structure’s nodes, protecting the
value pertaining to the structure itself is a new, distinct challenge. Nodes
in semi-structures are value-carrying, thus a watermarking algorithm could
make use of their encoding capacity by using traditional watermarking. For
example if a node contains an image then image watermarking algorithms
can be deployed for that node to encode parts of the global watermark. But,
given the intrinsic value attached to it, the graph that “glues” these nodes
together is in itself a central element of the watermarking process we propose.
We show how our approach makes use of these two value facets, structural and
node-content.

1 Introduction

Digital Watermarking, in the traditional sense [5] [8] can be summarized as a stegano-
graphic technique embedding un-detectable (un-perceivable) hidden information into
media objects (i.e. images, audio, video, text) with the main purpose of protecting
the data from unauthorized duplication and distribution by enabling provable owner-
ship. More recent results take on various other data domains such as natural language
processing [1], software [4] [10] and relational data [13], [11]. Here we introduce an
algorithm for watermarking abstract structured aggregates of multiple types of con-
tent that can be usually represented as graphs and are characterized by value lying

? Portions of this work were supported by Grants EIA-9903545, IIS-0325345, IIS-0219560,
IIS-0312357, IIS-9985019, IIS-9972883 and IIS-0242421 from the National Science Foun-
dation, Contract N00014-02-1-0364 from the Office of Naval Research, by sponsors of the
Center for Education and Research in Information Assurance and Security, and by Purdue
Discovery Park’s e-enterprise Center.

both in the structure and in the individual nodes (e.g. XML documents, complex Web
Content, workflow and planning descriptions).

Most media watermarking techniques make use of the inherent large noise-bandwidth
associated with Works that are to be “consumed” by the human sensory system with
its limitations. In the case of abstract semi-structures, watermarking bandwidth ap-
pears to be available from capacities associated to properties of both the graph and
the composing nodes. This introduces a whole new set of challenges and associated
trade-offs. The trade-off between a required level of mark resilience and the ability to
maintain guaranteed error bounds, structural equivalence and higher level semantics
needs to be explored. Our solution is based on a canonical labeling algorithm that self-
adjusts to the specifics of the content. Labeling is tolerant to a significant number of
graph attacks (“surgeries”) and relies on a complex “training” phase at watermarking
time in which it reaches an optimal stability point with respect to these attacks. We
perform attack experiments on the introduced algorithms under different conditions.

The paper is structured as follows. Section 2 is dedicated to a more in depth pre-
sentation of generic issues associated with watermarking in the framework of semi-
structures. We analyze associated challenges and discuss attacks. Section 3 introduces
important building blocks and concepts for the presented semi-structure watermark-
ing algorithm, such as tolerant canonical labeling and tolerant content summaries. It
presents and analyzes the main algorithm. Section 4.2 discusses experimental results.
The wmx.* package is introduced. Section 5 concludes.

2 Challenges

2.1 The Model

One fundamental difference between watermarking and generic data hiding resides in
the main applicability and descriptions of the two domains. Data hiding in general
and covert communication in particular, aims at enabling Alice and Bob to exchange
messages in a manner as stealthy as possible, through a medium controlled by evil
Mallory. On the other hand, digital watermarking (especially for rights assessment)
is deployed by Alice to prove rights over a piece of data, to Jared the Judge, usually
in the case when Mallory benefits from using/selling that very same piece of data or
maliciously modified versions of it.

In digital watermarking, the actual value to be protected lies in the Works them-
selves whereas information hiding usually makes use of them as simple value “trans-
porters”. Rights assessment can be achieved by demonstrating that a particular Work
exhibits a rare property (read “hidden message” or “watermark”), usually known only
to Alice (with the aid of a “secret” - read “watermarking key”). For court convince-
ability purposes this property needs to be so rare that if one considers any other
random Work “similar enough” to the one in question, this property is “very improb-
able” to apply (i.e. bound on false-positives). There is a threshold determining Jared’s
convince-ability related to the “very improbable” assessment. This defines a main dif-
ference from steganography: from Jared’s perspective, specifics of the property (e.g.
watermark message) are irrelevant as long as Alice can prove “convincingly” it is she
who embedded/induced it to the original (non-watermarked) Work.

It is to be stressed here this particularity of watermarking for rights assessment.
In watermarking the emphasis is on “detection” rather than “extraction”. Extraction
of a watermark (or bits of it) is usually a part of the detection process but just
complements the process up to the extent of increasing the ability to convince in court.
If recovering the watermark data in itself becomes more important than detecting
the actual existence of it (i.e. ’yes/no answer’) then this is a drift toward covert
communication and pure steganography.

2.2 Semi-structures

When dealing with graphs in general and semi-structures in particular, we are faced
with the issue of uniquely identifying and referencing nodes 1. In graph theory, this is
summarized under the term canonical labeling [2] [3] [6] [9] and no solution has been
provided with a high enough degree of generality.

Thus, before deploying any specific mark encoding techniques we have to ensure a
resilient labeling scheme, able to survive minor modifications and attacks on the actual
graph structure. We show how content specific watermarking techniques (for node
content watermarking) coupled with a technique of content summarization provide a
resilient labeling scheme, suited for our watermarking purposes. The value-carrying
nodes are solving the labeling issue in quite a surprising manner.

2.3 Attacks

Given a certain value carrying watermarked semi-structure several attack options
present themselves, including: elimination of value-“insignificant” nodes (A1), elimina-
tion of inter node relations (A2), value preserving graph partitioning into independent
usable partitions (A3), modification of node content, within usability vicinity (A4),
addition of value insignificant nodes aimed at destroying ulterior labeling attempts
(A5). One has to keep in mind the ultimate goal of any attack, namely eliminating
the watermark property, while preserving most of the attached value, within usability
limits 2.

In order to prevent success for A5, we propose a preliminary step of value prun-

ing in which all value-insignificant nodes are marked as to-be-ignored in the ulterior
watermarking steps. Another approach deploys structural changes to bring the semi-
structure to the limits of the usability space [12], increasing its fragility to further
modifications and thus the failure likelihood of any ulterior attempts to attack by
adding nodes. A4 mandates the ability of the labeling scheme to depend as little as
possible on node content or to provide for a mechanism of detecting altered-content
nodes at extraction time. Another possibility of defending against A4 would be to
actually alter the main considered nodes toward their allowed fragility limit, such
that any further un-knowledgeable changes will fail to provide a usable result. Attack

1 Especially if required to maintain consistency before and after attacks (e.g. possible struc-
tural changes).

2 Collusion attacks are not discussed in this paper as they are relevant when fingerprinting
is deployed. Although we envision extensions of this work for fingerprinting, we are not
considering these here.

A3 is one of the most powerful challenges. In order to survive it, meaning that the
watermark has to be preserved (maybe in a weaker form) also in the resulting graph’s
partitions, the watermarking scheme has to consider some form of hierarchical em-
bedding in such a way as to “touch” most of the potential partitions in the graph.
The issue becomes more complex if the usability domains of all possible graph parti-
tions are unknown, making it difficult to envision the attacker’s “cut”. Fortunately,
in many cases (see Scenarios) the number of available partitioning schemes that make
sense and the associated usability domains are limited. Cases A1 and A2 make it
necessary to devise a node labeling scheme that tolerates node and edge elimination
while preserving most of the other nodes’ labels. This is a must because of the ne-
cessity to reference nodes at extraction time. Even if there would exist a working
traditional canonical graph labeling algorithm it would need to be heavily modified
in order to provide for edge and node removal tolerance. We used the term “heavily”
to outline the fact that canonical labeling has always been linked to proofs of graph
isomorphism, whereas in this case the trend is aimed exactly toward the opposite,
namely preserving node labels in the context of admittedly slight graph changes.

3 Solution

3.1 Tolerant Canonical Labeling

The node labeling scheme is at the heart of watermarking semi-structures. The abil-
ity to identify and reference nodes within the to-be-watermarked structure is of
paramount importance and the labeling scheme has to take into account the specifics
of the case, in particular the requirement to be able to “recognize” all relevant nodes
in an attacked version of the graph, based on labels issued on the original one.

Although canonical labeling for graphs was known for a long time to be a hard
problem of graph theory, specific algorithms have been developed for some cases . In
particular, reasonable solutions have been proposed for tree canonical labeling and
apparently, many semi-structure watermarking applications (e.g. HTML) would fit
the assumption of tree structuring. One can partition existing value-carrying semi-
structures into a set of tree-shapes and remaining structural elements. Watermarking
only those partitions might provide enough power and reduce the problem to tree
shapes. Unfortunately the requirement of being able to label nodes consistently before
and especially after attacks, renders useless existing tree canonical labeling algorithms
due to their high fragility to any changes (e.g. attacks) made to the structure.

Fortunately, the dual nature of semi-structures enables a novel approach to label-
ing, the main idea being the use of a combination of structural and node content
information.

On the one hand, content is combined in computing a node’s label by using a
special “tolerant” summary (i.e. a function of the content with specific properties,
see Section 3.2) of its content. The assumption here is that content changes are small
and that we are able to construct a function of the node content that will basically
degrade gracefully with minor alterations to its input. On the other hand some node
topology information is necessarily involved in the relative position of the node versus
its neighbors and the entire graph. One simple solution that comes to mind is to use the

neighbors’ labels, which does capture the position of the current node in relationship
to its neighbors, and through the entire labeling scheme, applied recursively, to the
graph as a whole. Thus the primitive labeling algorithm can be summarized by the
following iterative formula:

l(node) = α ∗ l(node) + γ ∗
∑

nb∈neighbors(node)

l(nb)

Note: α determines the “weight” of the node content in the labeling scheme. If
essential content changes are unlikely in an attack, α is to be increased so as to provide
labeling stability. γ provides control over being able to more specifically localize the
node with respect to the neighbors and also to the entire graph. If structural changes
are highly unlikely in the course of an attack an increased γ provides for stability 3.

The algorithm starts with the initial labels as being the keyed tolerant content
summary values SUMMARY (key, content(node), key) (see section 3.2).

Step One. The first step performs a number of iterations i over the formula above
(this number being kept as part of the watermark detection key and used later on in
re-labeling the attacked graph), until the necessary labeling provisions are met. At
this stage we are mainly concerned with a minimal number of identical labels 4.

Step Two. In order to provide resilience to a certain number of graph modifications
(“surgery”), the next step is to artificially degrade the graph and re-perform step one
again.

Intuitively (for experimental results see Section 4.2), removing and/or adding nodes
and relations to the graph will result in changes in the initial labeling performed on
an un-modified graph. Control over those changes is enabled by specifying the α and
γ values. Experiments show that, given a graph, for certain α and γ value bounds,
labeling becomes controllable.

The result of step two, for each node, is a range of values for the corresponding
label, depending also on the three main control factors (step-one iteration number,
α, γ). The actual label of the node will be defined by the lower and upper bounds
of the resulting labeling range. This basically ensures that, when labeling the at-
tacked/modified version of the graph (i.e. by performing step one of this same algo-
rithm later on, in court), the resulting labels will fall within the corresponding node’s
label interval with a high likelihood. For a given set of surgeries, performing the label-
ing algorithm in the space of (α, γ, i) results in a “bounded space of labeling points”
(see Figure 1).

The next challenge is to identify an optimum in this “space”, given a certain ability
to compare two particular “points”. Remember that a “point” corresponds to a labeled
graph as a set of interval-labels for the graph’s nodes, given the particular (α, γ,
i) coordinates. Our initial comparison formula for two different graph interval-label

3 It might be interesting to note the fact that if γ is 0, this labeling scheme converges to a
simple intuitive content-based addressing scheme.

4 A number of iterations at least equal to the diameter of the graph are necessary in order
to localize a given node with respect to the entire graph. But this is sometimes not desired
nor required. The ability to set the number of performed iterations and make it part of
the recovery key is another point of control over the labeling scheme.

sets aims at capturing optimality in terms of both minimal number of label overlaps
within each set as well as minimal potential for future overlap. If the two considered
“points” are the actual interval-label sets A = {(a11, a12), ..., (an1, an2)} and B =
{(b11, b12), ..., (bn1, bn2)} (i.e. (ai1, ai2) is the label-interval corresponding to node i in
the graph labeling A) then the comparison formula is

compare1(A, B) = overlaps(B) × avg overlap(B) - overlaps(A) × avg overlap(A)
compare2(A, B) = closest inter label size(A) - closest inter label size(B)

compare(A,B) = compare1(A, B) + compare2(A,B)

where overlaps(X) is the number of overlapping interval-labels in labeling X ,
avg overlap(X) the average interval size of the overlapping portions and closest inter label size(X)
the size of the interval between the closest two interval-labels in X . Intuitively,
compare1() models and compares the current optimality of both labelings and compare2()
captures the potential for future overlap (i.e. because having very “close” interval-
labels hints to possible issues in labeling the graph in an attacked version of it).

0
0.2

0.4
0.6

0.8
1

alpha 0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

gamma

0
1
2
3
4
5
6
7
8

collisions

0 1 2 3 4 5 6 7 8
iterations 0

0.2
0.4

0.6
0.8

1

alpha

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

gamma

8

0

12 3

4

5

7

6

Fig. 1. (a) The surface defining the composite label collisions appearing after 4 stages of
training (i.e. i = 4) with a random generated set of surgeries applied to the graph. It is
to be noted that lower γ values seem to yield a lower number of composite label collisions
but in turn results in a lower resistance to structural attacks (i.e. as labeling will not be
as resilient to graph surgeries). (b) The zero-collision (for composite labels) surface in the
(iterations,alpha,gamma) space corresponding to the same set of surgeries. Its existence
proves the ability to label resiliently (to the considered surgeries) without colliding resulting
composite labels. Computed using the wmx.* package. (c) The considered graph.

What happens if overlapping labeling intervals (i.e. “colliding composite labels”)
occur ?

– If nodes are in virtually identical/indistinguishable positions and with similar
content then this is normal. The nodes are marked as such and treated identical
throughout the watermarking process.

– If nodes differ in content but positions are similar, or content is close but positions
are different, then variations in α, γ and the content summary key are performed
in such a way as to differentiate labels

– If nodes differ in both content and position, changing also the iteration number
in step one is required.

– If everything has been done and label intervals are still overlapping we can simply
“melt” the labels together and treats the nodes as in case 1 (i.e. identical).

In summary, the labeling process (i) collects all relevant labeling data over a number
of iterations in which all of (α, γ, numbers of step-one iterations (i), content summary
key and number of performed surgeries) are varied, and then (ii) decides upon a
certain point in this space (defined by α, γ, i, content summary key and number
of performed surgeries) which minimizes the number of overlapping label intervals
and the potential for future overlaps (in case of attacks). By adapting to the given
structure (i.e. through adjusting of α, γ, etc), the labeling algorithm allows for control
over the required trade-offs between label resilience and tolerated graph changes 5.

label(graph G)
foreach node n do label(n) = SUMMARY (key, n)
for (α = 0.1; α < 0.9; α = α + 0.1)

for (γ = 0.1; γ < 0.9; γ = γ + 0.1)
foreach artificial graph “surgery” (i.e. expected attacks) do

perform surgery (remove node/relation(s))
for (iteration = 1; iteration < diameter(G); iteration + +)

foreach node n do

label(n) = α × label(n) + γ ×
�

neighbors(n) label(nb)

foreach node n do store label(n)
foreach node n do store clabel(n) = [min(label(n)), max(label(n))]

choose (α, γ) minimizing the number of overlapping label intervals

Fig. 2. Labeling Algorithm.

3.2 Tolerant Content Summaries

Finding an appropriate (set of) content summary function(s) that satisfy the require-
ments above is not trivial and strongly tied to the type of semi-structure node content
and its associated transforms and envisioned attacks. The main requirements of the
content summary functions considered are the ability to be at the same time quite con-
tent specific while also degrading gracefully with minor changes in the content. The
idea is to capture and quantify certain global specific properties of the content that
are still preserved in the watermarking/attack process. Research by Ari Juels et. al.
[7] investigates a related notion, suggestively qualified as “fuzzy commitment”.

In our implementation we used a simple content summary, a linear combination of
the high order bits of the node content. The assumption here was that high order
bits are reasonably stable to changes and attacks. Other applications require different
consideration. In the case of JPEG content for example, frequency domain transforms
like the DCT could be considered. The tolerant summary of a JPEG file would be
a combination of the most significant bits of its significant DCT coefficients etc.

5 Special consideration needs to be offered to the case of an attack modifying all existing
nodes’ content in a similar fashion. Alteration to the labeling scheme can be prevented in
this case by introducing an additional final step of globally normalizing the labels (label
intervals).

Feature extraction algorithms (e.g. property histograms) should be also investigated
for multimedia content as a means to provide a tolerant content summary.

3.3 Watermarking Algorithm

The main idea behind our algorithm is to use the structural resilience of the labeling
scheme while leveraging content-specific one-bit watermarking methods for each node.
In other words, each node in the semi-structure is considered to be a potential recipient
of a one-bit watermark (using a traditional content-type specific marking method),
while the actual instances of these encodings are going to be determined in a secret
fashion by the node labels.

Let clabels() be the composite labeling intervals as computed above (see Section
3.1). Depending on the size of the intervals in clabels(), choose b as the maximal
number of most significant bits that can be considered in the numbers of every interval
such that ∀(x, y)j ∈ clabels(), msb(x, b) = msb(y, b), where msb(x, b) are the most
significant b bits of x. In other words we aim to discover an interval-specific invariant.
For each node j and corresponding interval (x, y)j by notation, let msbj = msb(x, b).

Let k be a seed to a b-bit random number generator RND and k1, ..., kn the first n

b-bit random numbers produced by RND after a secret initial warm-up run. We say
that node j is “fit” for encoding iff (msbj ⊕ kj) mod e = 0, where e is a adjustable
encoding parameter determining the percentage of considered nodes. In other words,
a node is considered “fit” if its label satisfies a certain secret criteria. On the one hand
this ensures the secrecy and resilience of our method, on the other hand, it effectively
“modulates” the watermark encoding process according to the actual graph structure.
This naturally provides a witness and rights “protector” for the structure itself.

embed(G, wm, k, e)
clabels() = label(graph)
b = {max(z)|∀(x, y)j ∈ clabels(), msb(x, z) = msb(y, z)}
initialize RND(k)
i = 0
sort clabels()
foreach (x, y)k ∈ clabels() do

kj = RND()
if ((msb(x, b) ⊕ kj) mod e = 0) then

content wm node(k,(wmi ⊕ lsb(kj , 1)),kj)
i = i + 1

detect(G, k, e, b)
clabels() = label(graph)
initialize RND(k)
i = 0
sort clabels()
foreach (x, y)k ∈ clabels() do

kj = RND()
if ((msb(x, b) ⊕ kj) mod e = 0) then

wmi = content det node(k,kj)
i = i + 1

Fig. 3. (a) Watermark Embedding Algorithm (b) Watermark Detection Algorithm

Each node considered fit is then watermarked with the one-bit watermark defined
by the XOR between the least significant bit of its corresponding kj and wmi, i ∈
(0, |wm|) the corresponding watermark bit. Because of the e factor we have an average
guaranteed bandwidth of n

e
. In case the watermark length |wm| is less than n

e
, we can

choose for example, the watermark bit (n
e

mod |wm|), effectively deploying a majority
voting scheme etc. The 1-bit watermark embedding uses traditional (node) content-
watermarking techniques. Because these do not constitute the main contribution of

this research, in our abstract watermarking suite we considered a simple place-holder,
in which each node contains a large integer value. A ”1” watermark bit is considered
to be present when the value is odd, a ”0” otherwise.

Note: The key used in the content-watermarking technique can be the same kj

or any other agreed upon secret. There might be some benefit associated with using
the same single key for all nodes as this could defeat inter-node collusion attacks (in
which the same node content is watermarked with different keys). It is also assumed
that the content watermarking method deployed is respecting the maximum allow-
able distortion bounds associated with the given content. In particular, these node
content-specific constraints are not impacting structural consistency. In other words,
slight modifications to the actual node content (e.g. JPEG images or natural language
text) do not alter global structural consistency constraints. This is subject to further
research.

In the decoding phase, the clabels() set is re-computed. The result should be iden-
tical (in case no alterations occurred) or fairly close (because of the inherent labeling
tolerance to alterations). We know k1, ..., kn, the secret node-selection keys and b.
Based on these values and the composite labels, the algorithm performs node-selection
and identifies a majority (or all in the case of some graph alterations occurring) of
the initial nodes that were watermarked. Content-specific watermark detection is then
applied to each node to retrieve each watermark bit.

In order to perform error correction, if enough bandwidth is available (e.g. n is
large enough), the algorithm embeds multiple copies of the watermark (or any other
error correction encoding). Upon detection, majority voting is deployed to increase
the likelihood of accurate detection.

3.4 Discussion

What happens if we cannot discover a “nice enough” b ? That is, what happens if
different label intervals in clabels() are behaving so “wildly” apart that b is going to
be really small. In other words, what if there exists a node whose composite label
interval has its endpoints very very far away such that the MSB common bits are just
a few, or even none.

We would argue that this is a highly unlikely scenario and experiments confirm
it. But if it is indeed the case then we have several options, one of which is simply
ignoring the label(s) that are having far-away endpoints. Another option would be
to introduce an initial normalizing step in which all the labels are normalized with
respect to a common “average” value (e.g. means of means).

In order to fight false-positive claims in court we ask: What is the probability of
a given watermark of length m to be detected in a random graph of size n. The
assumption is of course that m < n

e
. It is easy to prove that this probability is (1

2)m.
In case multiple embeddings are used (e.g. majority voting) and all available bits are
utilized, this probability decreases even more to (1

2)
n
e . For example, in the case of

a structure with 60 nodes and with e = 3, this probability reads one in a million,
reasonably low.

In the absence of additional information, Mallory, faced with the issue of destroy-
ing the watermark while preserving the value of the data, has only one alternative

available, namely a random attack. Two sub-types of attacks present themselves as
outlined in Section 2.3: structural and node-content altering.

Structural attacks are handled by the tolerant nature of the labeling scheme and
an experimental analysis is presented in Section 4.2. Here we are concerned with the
node-content alteration attacks. We ask: what is the probability of success of such an
attack ? In other words, if an attacker starts to randomly alter a total number of a

nodes and succeeds in each case to flip the embedded watermark bit with a success
rate p, what is the probability of success of altering at least r, r < a watermark bits
in the result, P (r, a) ? It can be shown that P (r, a) =

∑a
i=r [aCi] × pa × (1 − p)a−i.

Now, remember that only every e-th node is watermarked, thus the attacker ef-
fectively attacks only an average of a

e
nodes actually watermarked. If r > a

e
then

P (r, a) = 0. In the case of r < a
e

we have we have the corrected version

P (r, a) =

(a
e
)∑

i=r

[(
a

e
)Ci] × p(a

e
) × (1 − p)(

a
e
)−i

If r = 4, p = 10%, a = 20 (33% of the nodes are altered by the attacker !) and
e = 4, we have P (4, 20) ≈ 55× 10−6, again a reasonable figure, reading fifty-five in a
million. Space constraints do not allow for a more in-depth analysis.

4 Implementation and Experiments

4.1 The wmx.* package

wmx.* is our java software test-bed package for watermarking abstract semi-structures.
We developed and implemented the algorithms presented and experimented with var-
ious semi-structured shapes. The package allows for dynamic generation and storing
of graphs, graph surgeries and attacks, as well as for runtime customizable label-
ing and watermarking parameters (e.g. α, γ, iterations, collision bounds). In the
experiments, most of the nodes were defined as allowing for specific node content
watermarking that encodes one bit per node.

Given the low probability of attack and false-positives discussed above in Section
3.4, one thing we believe needs to be analyzed in more detail is the actual feasibil-
ity and resilience of the labeling method. Given its importance to the overall algo-
rithm, we implemented a test suite that allows experiments on abstract, dynamically
redefine-able structures composed of a customizable number of nodes with associated
random generated (or predefined) content. We then extended the package to allow for
watermarking of abstract define-able semi-structures. We performed experiments on
structures with varying number of nodes and levels of connectedness. The computa-
tions were conducted on a 500Mhz PC with 128MB RAM running Linux. Code was
written in Java.

4.2 Experiments

One of our main concern was labeling collisions, i.e. composite label sets clabels()
in which multiple labeling intervals are overlapping. These appear as a result of the

training surgery phase, in which modifications are performed to the graph to produce
the new label set. It is bad news as it creates potential ambiguity in the detection
process. Surprisingly, in most cases, by adjusting the labeling training parameters
α, γ, iterations we could obtain points that did feature zero collisions. In Figure 4 we
show the zero-collision surfaces (in the α, γ space, with 3 training iterations) for two
simple structures.

The considered set of training surgeries (i.e. the set of surgeries performed on the
original graph before each individual labeling iteration) was randomly computer-
generated from a set of global surgeries and included periferic node removals, edge
additions and removals. (To be noted that this is consistent with the assumptions
made in section 2.3 when discussing attack A5).

0
0.2

0.4
0.6

0.8
1

alpha 0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

gamma

0
1
2
3
4
5
6
7
8

collisions

8

0

1 2

4 5 6

3

7

0
0.2

0.4
0.6

0.8
1

alpha 0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

gamma

0
1
2
3
4
5
6

collisions

6

0

1 2

8

47

3

5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8

m
ar

k
lo

ss
 (

ha
m

m
in

g
%

)

attack surgeries

Fig. 4. Surfaces defining the composite label collisions appearing after 3 stages of training
with a random generated set of surgeries. (a) Tree shaped graph. Much of the web content
online is tree-shaped. Again, note that lower γ values seem to yield a lower number of
composite label collisions, with drawbacks as presented in figure 1 (b). (b) Star shaped graph.
Note the smoother shape and the lower collision bounds, compared to (a). The same nodes
were used, differently interconnected. Computed using the wmx.* package. (c) Averaged
watermark loss over 10 runs of an 8 bit watermark embedded into an arbitrary 32 node graph
with 64 edges. Surgery attacks are applied randomly (node removals 60%, link addition 20%,
link removal 20%). The labeling scheme was trained for 3 surgeries.

In Figure 4 (c) we show the watermark behavior in the case of a random artificially
generated structure with 32 nodes and 64 edges. The embedded watermark is 8 bits
long. The labeling scheme was trained for 3 surgeries, also e = 3 (average bandwidth
available is thus 10.6 bits, enough for the 8 bit watermark). It can be seen how
composite labeling training results in highly resilient labels. As the number of attack
surgeries increases, the watermark degrades slightly. The results are averaged over
10 runs on the same graph with different random attacks. When 8 attack surgeries
are applied to the graph we can still recover 60-65% of the watermark. One has to
consider also the fact that an attacker is bound not to modify the structure too much
as it will eventually distort.

5 Conclusions

We introduced an algorithm for rights protection watermarking of semi-structured
content. More specifically we are concerned with protecting the value inherent in the

structure itself. Various new challenges are associated with this new domain. Bene-
fiting from the dual nature of semi-structures, our algorithm makes use of both the
available node content as well as of the value-carrying structure, through the pro-
cesses of canonical labeling, node content summarization and content-specific mark
encoding. The idea behind content-specific mark encoding is to use traditional known
watermarking techniques, in encoding parts of the watermark in the node content.
Providing a canonical labeling scheme, “trained” to tolerance for a set of graph modi-
fications is essential in being able to later-on identify nodes selected in the 1-bit node
mark content-specific encoding process. Our algorithm does not require the original
un-watermarked object in order to perform mark detection. Further work is required
in improving content summarization and tolerant labeling. Different application do-
mains will require specific approaches. An alternative idea would be using bandwidth
available in the specifications of inter-node relations.

References

1. M.J. Atallah, V. Raskin, C. F. Hempelmann, M. Karahan, R. Sion, K. E. Triezen-
berg, and U. Topkara. Natural language watermarking and tamperproofing. In Lecture

Notes in Computer Science, Proc. 5th International Information Hiding Workshop 2002.
Springer Verlag, 2002.

2. L. Babai and L. Kucera. Canonical labeling of graphs in linear average time. In Proc.

20th IEEE Symposium on Foundations of Computer Science, 39-46., 1979.
3. L. Babai and E. Luks. Canonical labeling of graphs. In Fifteenth Annual ACM Sympo-

sium on Theory of Computing, pages 171–183. ACM, 1983.
4. Christian Collberg and Clark Thomborson. Software watermarking: Models and dynamic

embeddings. In Principles of Programming Languages, San Antonio, TX, January 1999.
5. I. Cox, J. Bloom, and M. Miller. Digital watermarking. In Digital Watermarking. Morgan

Kaufmann, 2001.
6. Faulon J. Automorphism partitioning and canonical labeling can be solved in polynomial

time for molecular graphs. In J. Chem. Inf. Comput. Sci. 38, 1998, 432-444., 1998.
7. Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM Conference

on Computer and Communications Security, pages 28–36, 1999.
8. S. Katzenbeisser and F. Petitcolas (editors). Information hiding techniques for steganog-

raphy and digital watermarking. Artech House, 2001.
9. Ludek Kucera. Canonical labeling of regular graphs in linear average time. In IEEE

Symposium on Foundations of Computer Science, pages 271–279, 1987.
10. J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang. Experience

with software watermarking. In Proceedings of ACSAC, 16th Annual Computer Security

Applications Conference, pages 308–316, 2000.
11. Radu Sion. Proving ownership over categorical data. In Proceedings of the IEEE Inter-

national Conference on Data Engineering ICDE, 2004.
12. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Power: Metrics for evaluating water-

marking algorithms. In Proceedings of IEEE ITCC 2002. IEEE Computer Society Press,
2002.

13. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Rights protection for relational data.
In Proceedings of ACM SIGMOD, 2003.

