Skip to main content

Robust Audio Watermarking Using Both DWT and Masking Effect

  • Conference paper
Book cover Digital Watermarking (IWDW 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2939))

Included in the following conference series:

Abstract

In this paper, we propose a new digital audio watermarking technique with the wavelet transform. The watermark is embedded by eliminating unnecessary information of audio signal based on human auditory system (HAS). This algorithm is an audio watermarking method, which does not require any original audio information in watermark extraction process. In this paper, the masking effect is used for audio watermarking, that is, post-temporal masking effect. We construct the window with the synchronization signal and we extract the best frame in the window by using the zero-crossing rate (ZCR) and the energy of the audio signal. The watermark may be extracted by using the correlation of the watermark signal and the portion of the frame. Experimental results show good robustness against MPEG1-layer3 compression and other common signal processing manipulations. All the attacks are made after the D/A/D conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kang, H.I., Choi, J.U., Kim, K.I.: A vector watermarking using the generalized square mask. In: International Conference on Information Technology: Coding and Computing, Proceedings, April 2001, pp. 234–236 (2001)

    Google Scholar 

  2. Foo, S.W., Yeo, T.H., Huang, D.Y.: An adaptive audio watermarking system. In: Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, TENCON, vol. 2, pp. 509–513 (2001)

    Google Scholar 

  3. Kii, H., Onishi, J., Ozawa, S.: The digital watermarking method by using both patchwork and DCT. In: 1999 IEEE International Conference on Multimedia Computing and System, vol. 1, pp. 895–899 (1999)

    Google Scholar 

  4. Cox, I., Kilian, J., Leighton, T., Shamoon, T.: Secure Spread Spectrum Watermarking for Multimedia. IEEE Transaction on Image Processing 6, 1673–1687 (1997)

    Article  Google Scholar 

  5. Kim, Y.-H., Han, S.-S., Kang, H.-I., Kim, K.-I.: A Digital Watermarking Using Two Masking Effects. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T. (eds.) PCM 2002. LNCS, vol. 2532, pp. 655–662. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Swanson, M.D., Zhu, B., Tewfik, A.H., Boney, L.: Robust audio watermarking using perceptual masking. Signal Processing 66, 337–355 (1998)

    Article  MATH  Google Scholar 

  7. http://www.microsoft.com

  8. http://www.vqf.com

  9. ISO/IEC IS I1I172, Information technology - coding of moving pictures and associated audio for digital storage up to about 1.5Mbits/s

    Google Scholar 

  10. Fletcher: Auditory Patterns. Re. Mod. Phys., 47–65 (January 1940)

    Google Scholar 

  11. Zwicker, E., Fastl, H.: Psychoacoustics Facts and Models. Springer, Heidelberg (1990)

    Google Scholar 

  12. Schroeder, M.: Optimizing digital speech coders by exploiting masking properties of the human ear. J. Axoust. Sco. Am., 1647–1652 (December 1979)

    Google Scholar 

  13. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE. Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  14. Daubechies, I.: Orthonormal Bases of Compactly Supported Wavelets. Communications on Pure and Applied Math. 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tzanetakis, G., Essl, G., Cook, P.R.: Audio Analysis using the Discrete Wavelet Transform. In: Proc. WSES Int. Conf. Acoustics and Music: Theory and Applications (AMTA 2001), Skiathos, Greece (2001)

    Google Scholar 

  16. http://www.sdmi.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hwang, W.Y., Kang, H.I., Han, S.S., Kim, K.I., Kang, H.S. (2004). Robust Audio Watermarking Using Both DWT and Masking Effect. In: Kalker, T., Cox, I., Ro, Y.M. (eds) Digital Watermarking. IWDW 2003. Lecture Notes in Computer Science, vol 2939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24624-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24624-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21061-0

  • Online ISBN: 978-3-540-24624-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics