On Manageability and Robustness of
Open Multi-Agent Systems

Naftaly H. Minsky and Takahiro Murata

Department of Computer Science
Rutgers University, Piscataway, NJ, 08854 USA
{minsky,murata}@cs.rutgers.edu

Abstract. This paper addresses the manageability of large, open and
distributed multi-agent systems (MASs). Specifically, we are concerned
here with three critical elements of management: (a) the ability of the
manager to monitor relevant operations of its subordinates; (b) its abil-
ity to steer its subordinates; and (c) and the robustness of the agent-
community under certain unexpected adverse conditions, such as unpre-
dictable failure of the manager itself.

Using our own law-governed interaction (LGI) mechanism, we show how
one can build a scalable infrastructure that supports monitoring, steering
and a degree of robustness, in spite of the heterogeneous and dynamic
nature of the system being managed, and in spite of possible changes
and failures of the manager itself.

1 Introduction

Among the conditions underlying multi-agent systems (MASs), or multi-agent
communities, none is more critical than the ability of the disparate autonomous
agents of such a community to coordinate their activities. Coordination is, of
course, indispensable for effective cooperation between agents, as well as for
safe competition between them. A flock of birds, for example, must coordinate
its flight in order to stay in formation; and car drivers must coordinate their
passage through an intersection, if they are to survive this experience. Every such
coordination is based on a certain policy, i.e., a set of rules of engagement—such
as stopping at a red light, in the driving case—that must be complied with by
all community members, for the community to operate harmoniously and safely.

The implementation of a coordination policy is straightforward when dealing
with a close-knit community, whose members can all be carefully constructed to
satisfy the policy at hand. This is how birds of a feather flock together, having
their rules of engagement inborn. This is also how the processes spawned by a
single program coordinate their activities, by having their rules of engagement
built in, by the programmer, or by the compiler.

But the implementation of such policies is much more problematic when
dealing with large scale and open agent-communities, whose members are het-
erogeneous—possibly written in different languages, and constructed by differ-
ent organizations, without any knowledge of each other—and whose membership

2 Minsky and Murata

may change dynamically. Such open communities are increasingly common over
the Internet. Consider, for example, the agents of disparate institutions collabo-
rating under a grid agreement [4]; or a distributed committee of people [18] who
need to deliberate, and make communal decisions about certain issues, subject
to some version of the Robert’s Rules of Order.

In a previous work [15] by one of the authors (Minsky) it has been argued
that in order to ensure that all members of such an open community conform
to a given coordination policy, this policy needs to be stated explicitly—and not
be embedded in the code of the disparate agents—and that it must be enforced.
Moreover, we have argued that for large scale communities, such enforcement of
coordination policies needs to be decentralized, to be scalable. This thesis has
been the guiding principles behind the design [13] and implementation [15] of
the coordination and control mechanism called law-governed interaction (LGI).
This mechanism has already been used to support collaborative work, like the
decision making of a distributed committee [18]; and to enable safe competitive
interactions, via the imposition of access control policies.

In this paper we address an important mode of coordination: managerial
coordination', where one (or more) agent is managing certain operations of other
members of the community. Specifically, we will be concerned here with three
critical elements of management:

monitoring The ability of the manager to monitor relevant operations of its
subordinates, so that he, she, or it? knows the state of whatever is being
managed.

steering The ability of the manager to change the course of actions of its subor-
dinates, in response to the dynamically changing state of the activity being
managed.

robustness The ability of the community in question to recover from some
unexpected adverse conditions, such as unpredictable failure of the manager
itself. (Such an ability is also known as fault tolerance, and self-healing.)

The rest of this paper is organized as follows. We start in Sec. 2 with an
example, involving a team of buyers for a department store, intended to illus-
trate the nature of management in a distributed MAS, and the difficulties in
supporting such management in large and open communities whose individual
components may be unreliable. Sec. 3 is an overview of LGI, which provides
the computational foundation for this paper. We show how LGI can be used to
support management of multi-agent systems by applying it to our buying team
example, as follows: in Sec. 4 we show how the buying team can be monitored

! For a reader who doubts that there is any relationship between coordination and
management we note that Malone and Crowston defined coordination as “the man-
aging of dependencies between agents in order to foster harmonious interaction be-
tween them” [11].

2 Since the problem and the solution we present in this paper apply to both software
agents and to human agents operating with some software interface, we henceforth
use “it” in referring to an agent.

Manageability and Robustness 3

and steered by its manager, even though the identity of the manager itself may
change dynamically, but in an orderly fashion; and in Sec. 5 we show how an
unpredictable failure of the team’s manager can be recovered from. We discuss
related work in Sec. 6, and we conclude in Sec. 7.

2 On the Nature of Management in Open Multi-Agent
Systems: an Example

We will use here an example, to help illustrate the nature and the difficulties
of management in open multi-agent systems, and the kind of policies that can
support such management.

Consider a department store that deploys a team of agents, whose purpose
is to supply the store with the merchandise it needs. The team consists of a
manager, and a set of employees (or the software agents representing them)
authorized as buyers, via a purchasing-budget provided to them.

Let us suppose that under normal circumstances, the proper operation of
this buying team would be ensured if all its members comply with the following,
informally stated, policy, called BT

1. For an agent to participate in the buying team, it must authenticate itself
as an employee of the department store via a certificate issued by a specific
certification authority (CA), called here admin.

2. The buying team is initially managed by a distinguished agent called firstMgr.
But any manager of this team can appoint another agent authenticated as an
employee as its successor, at any time, thus losing its own managerial pow-
ers. The appointment of a new manager must be published via a designated
publish/subscribe (P/S) server [16] called psMediator, and every buyer, i.e.,
a team member with a purchasing budget, is required to subscribe to such
publications.

3. A buyer is allowed to issue purchase orders (POs), taking the cost of each
PO out of its own budget—which is thus reduced accordingly—provided that
the budget is large enough. The copy of each PO issued must be sent to the
current manager.

4. An employee can be assigned a budget by the manager, and it can give some
of his budget to other employees, recursively. Also, the manager can reduce
the budget of any employee e, as it sees fit, which freezes the budget of e,
preventing others from increasing e’s budget.

Discussion: First note the open nature of this community. A buyer can be
any agent properly authenticated by the CA admin, and is supposed to operate
autonomously in deciding what to buy, at which price, and from whom—Dbut they
are limited by their purchasing budget. Also, the budget may be assigned either
by the manager, or by anybody with a budget, obtained directly or indirectly
from the manager. Moreover, the manager itself can be changed in the middle
of the purchasing activity, as specified in Point 2 of this policy.

4 Minsky and Murata

In spite of the openness of the buying team, it would be manageable—that
is, its manager would be able to monitor and steer it— if this policy is complied
with by all team members. In particular monitoring is provided by Point 3 of this
policy, which requires a copy of every PO to be sent to the manager. And each
buyer should know the identity of the current manager, because by Point 2, all
buyers are required to subscribe to the announcement of management transfer.
(Note however, that there is a possible race condition here, when the manager is
replaced, which is not handled by this simplified policy, but is fully handled by
its treatment under LGI, in Sec. 4.) Also, the manager should be able to steer
the buying team, by sending messages to various agents, adjusting their budget
as it sees fit.

But how can one be sure that all members of an heterogeneous and dynam-
ically changing community will conform to this policy? In particular, how can
one be sure that all buyers will report to their manager about every PO they
issue; that they would limit themselves to the budget available to them; or that
they will obey their manager’s message intended to reduce their budget? We
maintain that such assurances can be provided only if some policy like BT is
enforced. In Sec. 4 we show how this can be done, scalably, under LGI.

Finally, we will show in Sec. 5 how one can ensure the recovery of this buying
team from a failure of its own manager, or from a breakdown of communication
between the manager and its team members.

3 Law Governed Interaction (LGI)—an Overview

LGI [13] is a message-exchange mechanism that allows an open group of dis-
tributed agents to engage in a mode of interaction governed by an explicitly
specified policy, called the interaction-law (or simply the “law”) of the group.
The messages thus exchanged under a given law L are called £-messages, and
the group of agents interacting via £-messages is called an £-community C. (or,
simply, a community C).

By agents, referring to participants of an £-community, we mean autonomous
actors that can interact with each other, and with their environment.®> An agent
might be an encapsulated software entity, with its own state and thread of con-
trol, or a human that interacts with the system via some interface; in either case,
no assumptions are made about its structure and behavior. A community under
LGI is open in the sense that its membership can change dynamically, and can
be very large, and its members can be heterogeneous. For more details about
LGI than provided by this overview, the reader is referred to[15, 3].

3.1 On the nature of LGI laws and their decentralized enforcement

The function of an LGI law L is to regulate the exchange of L-messages be-
tween members of a community C. Such regulation may involve (a) restriction

3 A similar notion of agents, particularly with their societal aspect, has also been
adopted by others, including [20].

Manageability and Robustness 5

of the kind of messages that can be exchanged between various members of C,,
which is the traditional function of access-control; (b) transformation of certain
messages, possibly rerouting them to different destinations; and (c) causing cer-
tain messages to be emitted spontaneously, under specified circumstances, via a
mechanism we call obligations.

A crucial feature of LGI is that its laws can be stateful. That is, a law £ can
be sensitive to some function of the history of the interaction among members
of Cr, called the control-state (CS) of the community. The dependency of this
control-state on the history of interaction is defined by the law L itself.

But the most salient and unconventional aspects of LGI laws are their strictly
local formulation, and the decentralized nature of their enforcement. This archi-
tectural decision is based on the observation that a centralized mechanism to
enforce interaction-laws in distributed systems is inherently unscalable, as it can
become a bottleneck, and a dangerous single point of failure. The replication
of such an enforcement mechanism, as seen in the Tivoli system [9], would not
scale either, due to the required synchronous update of CS at all the replicas,
when dealing with stateful policies.

The local nature of LGI laws: An LGI law is defined over a certain types of
events occurring at members of a community C subject to it, mandating the effect
that any such event should have. Such a mandate is called the ruling of the law
for the given event. The events subject to laws, called requlated events, include
(among others): the sending and the arrival of an L-message; the coming due of
an obligation; and the occurrence of an exception in executing an operation in
the ruling for another event. The agent at which a regulated event has occurred
is called the home agent of the event. The ruling for a given regulated event is
computed based on the local control state CS, of the home agent z—where CS, is
some function, defined by law L, of the history of communication between x and
the rest of the £-community. The operations that can be included in the ruling
for a given regulated event, called primitive operations, are all local with respect
to the home agent. They include: operations on the control-state of the home
agent, such as insertion (+t), removal (-t), and replacement (t<-s) of terms;
operations on messages, such as forward and deliver; and the imposition of an
obligation on the home agent.

To summarize, an LGI law satisfies the following locality properties: (a) a
law can regulate explicitly only local events at individual home agents; (b) the
ruling for an event e can depend only on e itself, and on the local control-state
CS, of the home agent x; and (c) the ruling for an event can mandate only local
operations to be carried out at the home agent x.

Decentralization of law-enforcement: The enforcement of a given law is car-
ried out by a distributed set {7, |z € C} of controllers, one for each member
of community C. Structurally, all these controllers are generic, with the same
law-enforcer, and all must be trusted to interpret correctly any law they might
operate under. When serving members of community C., however, they all carry
the same law L. And each controller 7, associated with an agent x of this com-
munity carries only the local control-state CS, of x, while every L-message ex-

6 Minsky and Murata

changed between a pair of agents and y passes through a pair of controllers,
7, and 7, (see Fig. 1).

communication
netwark

X
. sent

arrived deliver

agent agent
controller controller
Legend:
aregulated event--------- S _
a primitive operation ------ -------- —

Fig. 1. enforcement of the law

Due to the local nature of LGI laws, each controller 7, can handle events that
occur at its client z strictly locally, with no explicit dependency on anything that
might be happening with other members in the community. It should also be
pointed out that controller 7, handles the events at x strictly sequentially, in the
order of their occurrence, and atomically. These greatly simplify the structure of
the controllers, making them easier to use as our trusted computing base (TCB).

3.2 The implementation status

The LGI mechanism has been implemented (in Java) as a messaging middle-
ware called Moses.* For writing laws, LGI currently supports two languages: (a)
a Prolog-like language, introduced in [13], employed in the rest of the paper,
and (b) a restricted version of Java. The most recent version of the controller
evaluates a single regulated-event in less than 100us, on a Sun Ultra-10 (440
MHz), when a law is written in (b) above.

3.3 The deployment of LGI

As will be explained in Sec. 3.4, the trust between the members is immune to
the manner in which the text of the law is made available. Thus, having located
a controller via a controller-service described in Sec. 3.2, an agent supplies this
controller with the law L it wants to employ, by specifying the text of L or its
URL. After checking that law L is well-formed, the controller starts to serve
this client. Only through this hand-shake between a controller and an agent—
a procedure called adoption of law L—the agent can start to participate in
L-community Cg. All these kinds of communication between an agent and its

4 A public distribution version is being finalized as of the time of writing.

Manageability and Robustness 7

controller, including ones mentioned below, are facilitated by a Moses API, while
a graphical user interface is provided for human users.

Once z has adopted law L, it may need to distinguish itself as playing a
certain role, etc., which would provide it with some distinct privileges under
law L. This can be done by presenting certain digital certificates to the controller,
where law L specifies a trusted CA, and the kinds of attributes that need to be
certified in such certificates. A simple illustration of such certification is provided
by our example law B7 in Sec. 4, under which one may claim to be an employee
of the department store, or to possess the name of the designated manager, for
example.

3.4 The basis for trust between members of a community

Note that we do not propose to coerce any agent to exchange L-messages un-
der any given law L. The role of enforcement here is merely to ensure that any
exchange of L-messages, once undertaken, conforms to law L. In particular, the
enforcement mechanism ensures that a message received under law £ has been
sent under the same law; i.e., that it is not possible to forge L-messages. As
described in [3], this is assured by the following: (a) The exchange of £-messages
is mediated by correctly implemented controllers, certified by a CA specified
by law L£; (b) these controllers are interpreting the same law L, identified by a
one-way hash [17] H of law £; and (c) £-messages are transmitted over crypto-
graphically secured channels between such controllers. Consequently, how each
member = gets the text of law L is irrelevant to the assurance that all members
of C, operate under the same law.

Finally, note that although we do not compel anybody to operate under any
particular law, or to use LGI, for that matter, one may be effectively compelled
to exchange L-messages, if one needs to communicate with others that operate
only under this law. For instance, given law B7 in Sec. 4, which governs the
buying team, introduced in Sec. 2, if the manager is committed to interact via
BT -messages, then other employees will have to operate under law B7 as well,
if they are to become buyers, i.e., with any budget at all for purchases. This is
probably the best one can do in the distributed context, where it is impossible
to ensure that all relevant messages are mediated by a reference monitor, or by
any set of such monitors.

4 Providing for Monitoring and Steering of a Buying
Team

We are now in a position to establish a managerial infrastructure over the team
of buyers introduced in Sec. 2. We start, in this section, by formalizing pol-
icy BT via an LGI law, thus providing for the monitoring and steering of our
buyers team, under normal circumstances. In the following section we present a
modification of this law, which helps the team to recover from the failure of its
manager. Both laws have been fully implemented and tested.

8 Minsky and Murata

Law BT, displayed in its entirety in Figs. 2 and 3, consists of two parts: called
the preamble and the body. The preamble of B7 contains the following clauses:
First there is the cAuthority(pk1) clause that identifies the public key of the
certification authority (CA) to be used for the authentication of the controllers
that are to mediate B7 -messages. This CA is an important element of the trust
between the agents that exchange such messages. Second, there is an authority
clause, which provides the public key of the CA that would be acceptable under
this law for certifying employees, which are to be allowed to participate in this
buying mission; this CA is given a local name, admin in this case, to be used
within this law. Finally, alias clauses provide shorthand for the identifiers (ids)
of two specific agents: firstMgr and psMediator.

The body of this law is a list of all its rules, each often followed by a comment
(in italic), which, together with our discussion, should be understandable even
for a reader not well versed in our language for writing laws. Each rule has a
head, to the left of symbol :-, and a body, to its right. Recall that the same
law is interpreted individually by the controller associated to each agent in the
community. A regulated event occurring at this home agent triggers a rule that
has a matching head, if any (the matching is done in the order in which the rules
are written). The triggered rule proceeds to check if all the goals in its body are
attained, given the control-state of this agent.

In addition to the standard types of Prolog goals, the body of a rule may
contain two distinguished types of goals. These are the sensor-goals, to “sense”
the control-state of the home agent, and the do-goals that contribute to the rul-
ing of the law. A sensor-goal has the form t@CS, where t is any Prolog term.
It attempts to unify t with each term in the control-state of the home agent.
(A variant of this, t@L, does the same for an arbitrary list L.) A do-goal, which
always succeeds, has the form do (p), where p is one of the primitive-operations,
mentioned in Sec. 3.1. It appends the term p to the ruling of the law. Thus,
successful evaluation of a rule body with do-goals leads to a non-empty ruling,
and the execution of the primitive operations therein. In what follows, we may
speak of this effect as if the said rule itself were to execute the pertinent oper-
ations. (By default, an empty ruling implies that the event in question has no
consequences—such an event is effectively ignored.)

Before we present the specific aspects of law B7, some general remarks are
in order. First, terms in each agent’s control-state are used to represent the role
played by this agent. In particular, the control-state of the current manager
should contain a term, manager(V), while this manager remains in its power,
where V stands for this manager’s “version number”—which starts with 1 for
the initial manager, firstMgr (see Point 2 of policy BT'), incremented by 1 for
each new manager thereafter. Likewise, the presence of term budget (D) in the
control-state of employee = means that = has a budget of amount D, and is
entitled to act as a buyer. At the same time, x’s control-state should have a
term, mgr (M,V’), signifying that the most recent manager known to = is M,
under its version number V’, and thus used to send copies of POs issued by =z.

Manageability and Robustness 9

(Note, due to a race condition, such V and V’ may not always coincide, whose
handling shall be explained below.)

Second, a publish/subscribe (P/S) server, psMediator is used as the means for
announcing the appointment of a new manager. To ensure that these announce-
ments would actually be conveyed to each buyer acting at the time, law B7 en-
sures that an employee subscribes to such announcement when, and only when,
it becomes a buyer (i.e., by receiving some budget). Moreover, an acting man-
ager is forced to announce its identity periodically, for the purpose to be clarified
later.

We now describe law B7 in detail by focusing on the following aspects of
it: (a) establishing roles; (b) monitoring and steering of purchasing activities;
(¢) manager change; and (d) handling of race conditions. We will end this section
with some further discussion.

Establishing roles: First, policy BT, in its point 1, requires participants to be
certified as an employee by admin, the designated CA. The presentation of a
valid certificate by the subject of the certification (i.e., a self-certificate) leads to
triggering rule R2, where a specific term, employee, is inserted to the control-
state. Second, the control-state of firstMgr, distinguished by its name in Point 2,
is initialized by rule R1 with its designated term manager (1), when it joins the
community. The space limit prevents us from showing the following: (a) how to
ensure psMediator is available when firstMgr effectively starts acting; and (b) how
to prevent firstMgr from entering the community more than once throughout its
history.

Finally, in contrast to rather “static” roles seen above, the role of a buyer
is established through dynamic interaction of the agents involved; that is, when
an employee receives a budget for the first time, by rule R4, it will have a term,
budget (A), mentioned above.

Monitoring and steering of purchasing activity: Policy BT (in its Point 4) al-
lows the manager to steer the purchasing activities by adjusting the budget
held by the buyers. This provision is implemented by rules R3 through R6,
which allow the manager to send a message of the form of either giveBudget (A)
or removeBudget (A) to an employee, resulting in increasing or decreasing, re-
spectively, the recipient’s budget by amount A. Note that the budget freezing
provision is implemented as follows: term frozen is inserted to the control-state
of a buyer whose budget is being decreased (R6), and the presence of this term
prevents any budget from being added (R4); in such a case, the forwarded bud-
get is returned, and added back, as applicable (R7). Rules R3 and R4 also allow
a buyer to transfer its budget to another employee, as stipulated in the same
policy point.?

By Rule R3, when a manager sends a budget to some agent, a term of the
form mgr (M, V) is attached to the message, informing the buyer of the current

5 Syntax (P;Q) in the laws should read P or Q; similarly (P->Q;R) means if P then Q
else R.

10 Minsky and Murata

‘Preamble:
cAuthority(pk1).
authority(admin, pkAdmin).
alias(firstMgr, " firstMgr@host-a.somestore.com”).
alias(psMediator, " psMediator@host-b.somestore.com”).

R1. adopted(.)

:- Self=firstMgr,do(+manager(1)),do(imposeObligation(0,600)).
When entering the community, firstMgr gets its status token.

R2. certified([issuer(admin),subject(Self),attributes([employeel)])
:- do(+employee) .

An employee is required to present a certificate issued by CA admin.

R3. sent(X, giveBudget(A), B) :- A>0,
(manager (V) @CS,M=mgr (X,V)
;mgr (Y, V) @CS,M=mgr (Y,V) ,budget (D) @CS,D>=A,
do(decr (budget (D) ,A))),
do(forward(X,giveBudget (A,M),B)).

RA4. arrived(X, giveBudget(A,mgr(M,V)),B) :- employee@CS,

(mgr (M1,V1)@CS->V>V1,do (mgr (M1,V1)<-mgr(M,V)),
do(undelivered(L)<-undelivered([])),cleanUp(M,L)

;do (+mgr (M, V))),

(frozen@CS, do(forward(B,returnBudget(A),X))

; (budget (D)@CS,do (incr (budget (D) ,A)) ; do(+budget(A)),
do(forward(Self, subscribe(newMgr([])), psMediator))),

do(deliver)).

A manager, as well as a buyer, can give some budget to an employee.
R5. sent(M, removeBudget(A), B) :- manager(_)@CS, A>0, do(forward).

R6. arrived(M, removeBudget(A), B) :- budget(D)@CS, do(+frozen),
(D>=A,R=A;R=D), do(decr(budget(D),R)), do(deliver).

A manager can remove some budget from a buyer.
RT7. arrived(B, returnBudget(A), X)

:- (budget (D)@CS,do(incr(budget (D) ,A)); true), do(deliver).
Any returned budget is added back,

Fig. 2. law B7 of buying team

identity and version of its managerS; this term will replace the manager infor-
mation, of the same form, at the recipient, if it turns out to carry a more recent
version number. This manager information is used when a buyer issues a PO,

S This is really necessary for an agent that gets its first budget, thus becoming a buyer.

Manageability and Robustness 11

by rule R8 (Point 3), in order to address a copy of the PO to the manager. If
the recipient is in fact the current manager, by rule R9, such a copy is delivered,
fulfilling the monitoring requirement. The other case will be explained as part
of the handling of race conditions.

Note that by R8 an issued PO (bound to the Msg built-in variable) is delivered
remotely, causing no regulated event, at the chosen vendor, which is not expected
to be a member of this community. Such a message is possibly signed by the
controller, using its private key, allowing the recipient to verify the authenticity
of the message.

Manager change: According to Point 2 of policy BT, by rule R4 a subscription
of the form, newMgr ([]), is sent out to psMediator on behalf of an employee
receiving a budget for the first time, and is delivered by rule R14. Thus, every
buyer is bound to have a subscription to every newMgr event-notice.

When the manager wants to transfer its power to another member, according
to Point 2, it sends a transfer message with its version number, handled by
rule R10, where the manager term is removed, taking away its privileges. If the
forwarded transfer message arrives at an employee, by rule R11, the recipient
becomes the new manager under the succeeding version number, W, while a
newlMgr event-notice, carrying W, is published via psMediator (R14 and R15), and
disseminated to each subscriber of this kind of notices (R16). (If the recipient
of the transfer message is not an employee, a noTrans message is returned by
rule R11, and processed by rule R12, to reinstate the old manager.) Thus, a
buyer, whose subscription to such notices has been processed by psMediator in
time, gets notified of this transition, leading to an (possible) update of the recent
manager information. Cases where some buyers do not get such notices (at least
not in time for reporting POs) are explained immediately below.

Handling of race conditions: As seen in the implementation of the monitoring
and that of the manager change above, the consequence of race conditions arises
as potential staleness of the manager information, kept in term mgr(M,V) at
every buyer, to be used for forwarding a PO copy. Such a condition occurs, for
example, if the arrival of the newMgr notice is too late, or is entirely missed.

Law B7 has the following safety measures against such stale information:
When a PO copy arrives, unless the recipient is the current manager, a notMgr
message is returned, wrapping the copy (R9), which is appended to the list
argument of term undelivered at the buyer (R17). In addition, the law provides
three complementary ways to refresh stale manager information: (a) through the
event-notice of the manager transition (R16); (b) through additional budget,
carrying the most recent manager information known to the sender (R4); and
(c) through periodic announcement of the current manager, carried out via an
obligation named o, which comes due, in this cases every 10 minutes (R13), as
long as the manager is in power (R1, R10, R11, and R12). Once the manager
information is refreshed at a buyer carrying undelivered PO copies as above,
their delivery to the new manager is attempted (R18 and R19). Note that the
staleness of this refreshed information would be handled in the same manner as
described here.

12 Minsky and Murata

R8. sent(B, po(S,A), V)
:— mgr(M,_)@CS, budget(D)@CS, A>=0,D>=A, do(decr(budget(D),A)),
do(deliver(B,Msg,V)), do(forward(B,po(S,A,V),M)).

R9. arrived(B, po(S,A,V), M)
:- (manager(_)@CS, do(deliver); do(forward(M,notMgr(Msg),B))).

A buyer can issue a PO, within its budget, which is monitored by the manager.

R10. sent(M, transfer(V), N) :- manager(V)@CS, do(-manager(V)),
do(forward), do(repealObligation(o)).

R11. arrived(M, transfer(V), N) :-
(employee@CS, W is V+1, do(+manager(W)), do(deliver),
do(forward(N, publish(newMgr(id(N),ver(W))), psMediator)),
do (imposeObligation(o0,600)) ; do(forward(N,noTrans(V),M))).

R12. arrived(N, noTrans(V), M)
:— do(+manager(V)), do(deliver), do(imposeObligation(o,600)).

The manager can transfer its power to one of the buyers.

R13. obligationDue(o) :- manager(V)@CS, Self=M,
do(forward(M, publish(newMgr(id(M),ver(V))), psMediator)),
do (imposeObligation(o,600)) .
When obligation o comes due, the manager’s info is published.

R14. arrived(A, R, psMediator) :- do(deliver).
R15. sent(psMediator, N, A) :- do(forward).
Messages at the P/S server receive no further ado.

R16. arrived(psMediator, notify(newMgr(id(M),ver(V))), A)
:- mgr(M1,V1)eCs, V>V1, do(mgr(M1,V1)<-mgr(M,V)),
do(undelivered(L)<-undelivered([])), cleanUp(M,L).
When the notice of the new manager is received by a buyer, the id of this
manager is stored in the control-state, replacing a previous one, if any.

R17. arrived(M,notMgr(P0),B)
:— undelivered(L)@CS, do(undelivered(L)<-undelivered([PO|L])).

R18. cleanUp(-,[1).
R19. cleanUp(M, [PO|R]) :- do(forward(Self,PO,M)), cleanUp(M,R).
An undelivered PO copy is kept, and sent to the new manager.

Fig. 3. law B7 of buying team (cont’d)

Discussion: A comment about our use of P/S for dissemination of global in-
formation is in order. First, we could have relied on “gossip” mechanism among

Manageability and Robustness 13

the buyers to disseminate the manager information. We chose P/S instead be-
cause its greater predictability. Second, we did not use the P/S server to pass
copies of POs to the manager, since we are concerned with information security.
That is, communication via P/S would be more vulnerable than via (possibly
encrypted) unicast channel, and is less preferred in dealing with highly sensitive
information, such as POs.

5 Recovering from Unexpected Failures of a Manager

Although law B7 allows for the manager to be changed dynamically, while the
team being managed is operating, such changes are to be well organized: the
current manager appointing its successor. In this section we will build an in-
frastructure that would allow our buying team to recover from an unpredictable
failure of its manager.

More specifically, we will consider two kinds of failures: (a) the failure of the
manager itself; and (b) the failure of the LGI-controller (i.e., part of our own
infrastructure) that serves the manager, mediating all interaction between the
manager and members of its team. In both cases we assume the failure to be of a
fail-stop kind. We also assume that the underlying network, and the rest of our
infrastructure, including the P /S servicer, does not fail. For a broader perspective
on such treatment of failures, as part of work on self-healing, see [12].

Every failure recovery mechanism must have two elements: the detection of
the failure, and its handling. For the handling of failures we adopt here the no-
tion of guardian originally proposed by Tripathi et al. [19]7. That is, we assume
that there exist an agent called guardian, which, when notified that the current
manager failed, would appoint another employee to this post. Part of our contri-
bution here is that we ensure—via a law described below—that the designated
guardian will have the power to appoint new managers, that he would be the
only one who has that power, and that the various buyers would obey the new
managers, thus appointed by the guardian—all this despite the openness of the
community in question. Such assurances are, of course, critical to the effective
recovery of the team, and its proper operation.

The other critical part of our contribution is that we can ensure that a failure
would, in fact, be detected, and that the designated guardian will be duly notified
of it. These assurances are provided differently for failures of types (a) and (b)
above, by law B7' as we shall see below.

Law B7’, a modification of our original law BT, is defined in Figs. 4 and 5.
It contains all of B7, including the preamble and the rules—some of which are
modified and are labeled with primed numbers in these figures—and adds six
new rules. The new parts of the modified rules appear in bold letters.

Law BT’ adds guardian as a designated agent in its preamble; the state of this
guardian is initialized by R1’. Among others, this law ensures that the guardian
is always informed of the current manager and its version number, representing

" A similar concept has been studied by Klein et al. [10].

14 Minsky and Murata

‘Preamble:
alias(guardian, " guardian@host-x.somestore.com”).

R1'. adopted(.) :- (... ; Self=guardian->do(+currentMgr(firstMgr,1)))

RY'. arrived(B, po(S,A, V), M)
:— (manager(_)@CS, do(deliver),
do(imposeObligation(po(S,A,V),60))
;do (forward(M,notMgr (Msg) ,B))) .
When the manager receives a PO copy, an obligation is imposed.

R20. sent(M, ack(P0), _) :- PO=po(S,A,V), do(repealObligation(P0)).
When the manager acknowledges the receipt of a PO copy, the corresponding
obligation is repealed.

R21. obligationDue(po(S,A,_)) :- manager(V)@CS, do(-manager(V)),
do(forward(Self ,mgrFailed(V),guardian)).
If the receipt of a PO copy is not acknowledged timely, the corresponding
obligation comes due, which takes away the power of the manager, and sends a
message to this effect to guardian.

R22. arrived(M, mgrFailed(V), guardian) :- do(-currentMgr(_,.)),
do (+readyToAppoint (V)), do(deliver(Self,appoint,Self)).

R23. sent(guardian, appoint(B), _)
:- readyToAppoint (V)@CS, do(-readyToAppoint(V)), V1 is V+1,
do (+currentMgr(B,V1)), do(forward(Self,transfer(V),B)).

A report of a failed (current) manager leads to having guardian appoint a new
manager of its choice.

Fig. 4. law BT’ to handle failures at the manager

this information via a term currentMgr (Id,V) in its control-state. This law is
discussed in some details below.

Handling of failure of kind (a): This is the case where the manager itself fails,
but its controller does not. This would allow us to employ this controller, as
governed by law BT, to detect the failure of the manager. For this purpose, we
assume that the manager is supposed to acknowledge (by being programmed or
otherwise) the receipt of every copy of a PO delivered to it. Therefore, in the
absence of such a timely acknowledgement, the manager is determined to have
failed by its controller. Such detection works as follows under law B7":

First, whenever a copy of a PO arrives at the controller of the manager,
rule R9" imposes an obligation, marked with that PO copy, which will become
due in 60 seconds. This obligation would be repealed, by rule R20, when the
manager acknowledges the receipt of the PO copy, within 60 seconds. Other-
wise, the obligation comes due, and triggers rule R21, which removes the term,

Manageability and Robustness 15

R10'. sent(M, transfer(V), N) :- manager(V)@CS, do(-manager(V)),
do(forward(M,transfer(V,N),guardian)).

R24. arrived(M, transfer(V,N), guardian)
:— do(-currentMgr(_,_)), V1 is V+1, do(+currentMgr(N,V1)),
do (+byMgr (N,M)), do(forward(guardian,transfer(V),N)).

R12'. arrived(B, noTrans(V), X) :- (V1 is V+1,
currentMgr(B,V1)@QCS -> do(-currentMgr(B,V1)),
(byMgr(B,M)@CS -> do(forward(X,noTrans(V),M))
; do(+readyToAppoint(V))) ;

do(+manager(V))), do(deliver).

A message to transfer the manager’s role is now routed through guardian.

R25. exception(forward(B,PO,M),_)
:= PO=po(S,A,V), do(undelivered(L)<-undelivered([POIL])),
(mgr (M,V)@CS->do (forward (M,mgrFailed(V) ,guardian)); true).
If forwarding of a PO copy fails (due to the failure of the controller associated
with the manager), a report to this effect is sent to guardian.

Fig. 5. law B7’ to handle failures at the manager (cont’d)

manager (V), from the control state, effectively depriving the manager of its
power, and sends a mgrFailed message to guardian. Once this message arrives at
guardian, by rule R22, the currentMgr term that corresponds to this manager is
removed from the control state, and a prompt to appoint a new manager is de-
livered to guardian; this state of guardian is characterized by the presence of term
readyToAppoint (V) with V bound to the version of the current, failed manager.

Now, when guardian sends in a message to appoint some member as the new
manager, by rule R23, a new currentMgr term for this appointee is inserted,
while a transfer message is sent to the appointee, and the manager’s role is
transferred, as seen in Sec. 4, if the appointee is a legitimate employee. Otherwise,
rule R12’" allows guardian to try appointing another member, by removing the
currentMgr term for this appointee, and re-inserting the readyToAppoint term.

The revision of the orderly management transfer: As opposed to rule R10 of
law BT allowing the current manager to send a transfer message directly to a
member, N, of its choice, to appoint N as its successor, rule R10’ forwards the
message to guardian. Rule R24 reflects the change of the manager in a proper
currentMgr term at guardian before forwarding the transfer message to N. No-
tice that a noTrans message to signal illegitimacy of the appointee would be
sent back to guardian. Thus, in order to give the retiring manager, M, a chance
to adjust the choice of its successor, a term byMgr (B,M) is inserted into the
control-state of guardian by R24, and used by R12’ to propagate the message
back to M.

16 Minsky and Murata

Handling of failure of kind (b): If the controller associated with the current
manager fails, any message forwarded to it, particularly the copy of a PO issued
by a buyer, causes a regulated event of type exception at its sender. Such
an exception is handled by rule R25, which adds the PO copy to the list of
undelivered copies. Moreover if this exception has happened with the current
manager known to this buyer, a mgrFailed message is sent to guardian, which is
handled in the same manner as in the case of failure of kind (a) above.

Finally, other failures can be dealt with adequately as well, but we only
outline some of them for brevity: (a) a failed member or its controller that is
supposed to receive a transfer (or noTrans) message, sent by guardian above,
should be handled similarly to the above; (b) PO copies that do not receive
acknowledgement from the manager can be accumulated in its control-state,
and sent to guardian upon the determination of the manager’s failure, for further
delivery to the new manager to be appointed; and (c) a failure of guardian or its
controller can be addressed by replicating the service of guardian, which would
not sacrifice the scalability of the MAS very much, considering the failures at
managers and those at such guardians are relatively rare.

6 Related Work

There has been a growing interest in coordination in recent years, and a variety
of different, and quite powerful, coordination mechanisms have been devised. We
provide here a short overview of these mechanisms, and conclude with relevant
work on exception handling in MAS.

Most current coordination mechanisms have been devised for close-knit groups,
generally written in a single language, and spawned by a single program. This
is certainly true for Linda [6], one of the first, and most influential, explicit at-
tempts at coordination. Linda features very powerful and elegant coordination
primitives, but it provides for no explicit statement of a policy. So, if a group of
agents are to coordinate effectively via a tuple-space (a basic Linda concept) they
all need to internalize some kind of common policy. (Many Linda-based mech-
anisms, like Sonia [5], for example, share this property of Linda.) Of course, no
such internalization can be relied on in an open group—which is what concerns
us in this paper.

There is a collection of mechanisms that do provide for an explicit coordi-
nation policy, but only for groups of agents spawned by a single program or, at
least, written in a specific language. These techniques are not applicable to open
groups, in our sense of this term, where the group members may have been writ-
ten independently, possibly in different languages. Some of these mechanisms,
including Actors [1], Contracts [8], and Composition Filters [2], do not depend
on centralized control and are thus, potentially scalable.

Perhaps the closest work to this paper is programmable tuplespace [7], called
LuCe. Like us, they call for an explicit formulation of a policy, which is to be
written in a formal language. The programmability is achieved by triggering a
reaction whenever a communication event occurs. A reaction, similar to our rule,

Manageability and Robustness 17

consists of a set of primitive operations to be executed when the event occurs.
A major difference between LGI and LuCe is that the latter is based on the
fundamentally centralized Linda model, while LGI is entirely decentralized. A
decentralized treatment, under LGI, of interaction via Linda tuplespaces, which
pushes much of the control to the client-side, is described in [14].

Regarding exception handling, or the treatment of failures, in MASs: Tripathi
et al. [19] introduces the notion of guardian, which is a dedicated agent that
consolidates the handling of exceptions that other “ordinary” agents do not deal
with. A similar notion has been proposed by Klein et al. [10]. This is an important
concept which we adopted, adding to it several critical elements, such as: (a) the
formal, and enforced, specification of what powers should such a guardian have,
and who could serve as such a guardian; and (b) the assurances that a guardian
would be invoked when the exceptions in question happen. A broader perspective
from the point of view of self-healing is presented in [12].

7 Conclusion

The issue discussed in this paper is the management of large, open, and dis-
tributed multi-agent systems, where by “open” we mean that the system con-
sists of an heterogeneous group of agents, whose membership may change dy-
namically, in an unpredictable fashion. We are particularly concerned with two
critical elements of management: (a) the ability of the manager to monitor rel-
evant operations of its subordinates; and (b) the ability of the manager to steer
its subordinates.

Using our own law-governed interaction (LGI) mechanism, we have shown
how one can build a scalable infrastructure that provides for both monitoring and
steering, in spite of the heterogeneous and dynamic nature of the system being
managed, and in spite of possible changes of the identity of the manager itself.
Moreover, we have shown how such a system can recover from some unexpected
failures, such as a failure of the manager itself.

Although this management infrastructure has been designed specifically for
our buying team example, many of its elements are quite general, and it can
therefore be applied to a wide range of multi-agent systems.

References

1. G. Agha. Abstracting interaction patterns: A programming paradigm for open
distributed systems. In E. Najm and J.-B. Stefani, editors, Formal Methods for
Open Object-based Distributed Systems, IFIP Transactions. Chapman and Hall,
1997.

2. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object
interactions using composition filters. In ECOOP’93, LNCS 791, pages 152-184,
1993.

3. X. Ao, N. Minsky, and V. Ungureanu. Formal treatment of certificate revocation
under communal access control. In Proc. of the 2001 IEEE Symposium on Security
and Privacy, May 2001, Oakland California, May 2001.

18

4.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Minsky and Murata

X. Ao and N. H. Minsky. Flexible regulation of distributed coalitions. In LNCS
2808: the Proc. of the European Symposium on Research in Computer Security
(ESORICS) 2003, October 2003.

M. Banville. Sonia: an adaptation of Linda for coordination of activities in orga-
nizations. In P. Ciancarini and C. Hankin, editors, Coordination Languages and
Models, Lecture Notes in Computer Science, pages 57—74. Springer-Verlag, 1996.
Number 1061.

N. Carriero and D. Gelernter. Coordination languages and their significance. Com-
munications of the ACM, 35(2):97-107, February 1992.

E. Denti and A. Omicini. An architecture for tuple-based coordination of multi-
agent systems. Software—Practice & Ezperience, 29(12):1103-1121, 1999.

I.M. Holland. Specifying reusable components using contracts. In ECOOP’92,
Lecture Notes in Computer Science, pages 287—-308. Springer-Verlag, 1993. Number
615.

G. Karjoth. The authorization service of tivoli policy director. In Proc. of the
17th Annual Computer Security Applications Conference (ACSAC 2001), Decem-
ber 2001.

M. Klein, J.A. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent
exception handling services to enable robust open multi-agent systems: The case
of agent death. Autonomous Agents and Multi-Agent Systems, 7(1):179-189, July
2003.

T. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Computing Surveys, 26(1):87-119, March 1994.

N. H. Minsky. On conditions for self-healing in distributed software systems. In
In the Proceedings of the International Autonomic Computing Workshop Seattle
Washington, June 2003. (To be published by IEEE Computer Society).

N.H. Minsky. The imposition of protocols over open distributed systems. IEEE
Transactions on Software Engineering, February 1991.

N.H. Minsky, Y.M. Minsky, and V. Ungureanu. Safe tuplespace-based coordination
in multiagent systems. Journal of Applied Artificial Intelligence (AAI), 15(1):11—
33, January 2001.

N.H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and
control mechanism for heterogeneous distributed systems. TOSEM, ACM Trans-
actions on Software Engineering and Methodology, 9(3):273-305, July 2000. (avail-
able from http://www.cs.rutgers.edu/ minsky/pubs.html).

D.S. Rosenblum and A.L. Wolf. A design framework for internet-scale event obser-
vation and notification. In Proc. of the Sixth European Soft. Eng. Conf.; Zurich,
Switzerland; LNCS 1301, pages 344-360. Springer-Verlag, September 1997.

B. Schneier. Applied Cryptography. John Wiley and Sons, 1996.

C. Serban, X. Ao, and N.H. Minsky. Establishing enterprise communities. In
Proc. of the 5th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2001), Seattle, Washington, September 2001. (available from
http://www.cs.rutgers.edu/ "minsky/pubs.html).

A. Tripathi and R. Miller. Exception handling in agent-oriented systems. In
A. Romanovsky et al., editors, Advances in Exception Handling Techniques, volume
2022 of LNCS, pages 128—-146. Springer Verlag, 2001.

M Wooldridge, N.R. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems,
3(3):285-312, 2000.

