Skip to main content

A DNA-Based Memory with In Vitro Learning and Associative Recall

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2943))

Abstract

A DNA-based memory was implemented with in vitro learning and associative recall. The learning protocol stores the sequences to which it is exposed, and memories are recalled by sequence content through DNA-to-DNA template annealing reactions. Experiments demonstrated that biological DNA could be learned, that sequences similar to the training DNA were recalled correctly, and that unlike sequences were differentiated. Theoretical estimates indicate that the memory has a pattern separation capability that is very large, and that it can learn long DNA sequences. The learning and recall protocols are massively parallel, as well as simple, inexpensive, and quick. The memory has several potential applications in detection and classification of biological sequences, as well as a massive storage capacity for non-biological data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Lipton, R.J.: DNA solution of hard computational problems. Science 268, 542–545 (1995)

    Article  Google Scholar 

  3. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-sat problem on a dna computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  4. Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr., S.E.: Good encodings for DNA-based solutions to combinatorial problems. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 247–258. American Mathematical Society, Providence (1998)

    Google Scholar 

  5. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. In: [25] 75–90 DIMACS Workshop, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  6. Deaton, R., Chen, J., Bi, H., Rose, J.A.: A software tool for generating noncrosshybridizing libraries of DNA oligonucleotides. In: Preliminary Proceedings of the Eighth Annual Meeting on DNA Based Computers, Sapporo, Japan, Hokkaido University Japan, pp. 211–220 (2002)

    Google Scholar 

  7. Brennenman, A., Condon, A.E.: Strand design for bio-molecular computation (2001), http://www.cs.ubc.ca/~condon/papers/wordsurvey.ps

  8. Hartmanis, J.: On the weight of computations. Bulletin of the European Association for Theoretical Computer Science 55, 136–138 (1995)

    MATH  Google Scholar 

  9. Baum, E.: Building an associative memory vastly larger than the brain. Science 268, 583–585 (1995)

    Article  Google Scholar 

  10. Mills, A.P., Yurke, B., Platzman, P.M.: DNA analog vector algebra and physical constraints on large-scale DNA-based neural network computation. In: [25] 65–74 DIMACS Workshop, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  11. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental construction of very large scale DNA databases with associative search capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards parallel evaluation and learning of Boolean μ-formulas with molecules. In: [24] 57–72 DIMACS Workshop, Philadelphia, PA

    Google Scholar 

  13. Sakakibara, Y.: Solving computational learning problems with boolean formulae on DNA computers. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 220–230. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  15. Landweber, L., Lipton, R.J.: DNA2DNA computations: A potential “Killer App”. In: [24] 161–172 DIMACS Workshop, Philadelphia, PA

    Google Scholar 

  16. Jiang, T., Li, M.: DNA sequencing and learning. Math. Syst. Theory 26, 387–405 (1996)

    MathSciNet  Google Scholar 

  17. Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers 14, 326–334 (1965)

    Article  MATH  Google Scholar 

  18. Haykin, S.: Neural Networks: A Comprehensive Foundation. MacMillan College Publishing Co., New York (1994)

    MATH  Google Scholar 

  19. SantaLucia Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95, 1460–1465 (1998)

    Article  Google Scholar 

  20. Brenner, S.: Methods for sorting polynucleotides using oligonucleotide tags. US Patent 5604097 (1997)

    Google Scholar 

  21. Reif, J.H.: Successes and challenges. Science 296, 478–479 (2002)

    Article  Google Scholar 

  22. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  23. Normile, D.: DNA-based computer takes aim at genes. Science 295, 951 (2002)

    Article  Google Scholar 

  24. Rubin, H., Wood, D.H. (eds.): DNA Based Computers III. American Mathematical Society, Providence (1997); DIMACS Workshop, Philadelphia, PA

    Google Scholar 

  25. Winfree, E., Gifford, D.K. (eds.): DNA Based Computers V. American Mathematical Society, Providence (1999); DIMACS Workshop, Massachusetts Institute of Technology, Cambridge, MA

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, J., Deaton, R., Wang, YZ. (2004). A DNA-Based Memory with In Vitro Learning and Associative Recall. In: Chen, J., Reif, J. (eds) DNA Computing. DNA 2003. Lecture Notes in Computer Science, vol 2943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24628-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24628-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20930-0

  • Online ISBN: 978-3-540-24628-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics