

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Computational Linguistics and Intelligent Text Processing: 5th International Conference,
CICLing 2004 Seoul, Korea, February 15-21, 2004. Proceedings. Lecture Notes

in Computer Science, Volumen 2945. Springer, 2004. 360-370.

DOI: http://dx.doi.org/10.1007/978-3-540-24630-5_44

Copyright: © 2004 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/978-3-540-24630-5_44

A plug and play spoken dialogue
interface for smart environments

Germán Montoro, Xavier Alamán and Pablo A. Haya

Universidad Autónoma de Madrid
Departamento de Ingeniería Informática

Ctra. de Colmenar Km. 15. Madrid 28049 Spain
{German.Montoro, Xavier.Alaman, Pablo.Haya}@ii.uam.es

Abstract. In this paper we present a plug and play dialogue system for smart
environments. The environment description and its state are stored on a domain
ontology. This ontology is formed by entities that represent real world
contextual information and abstract concepts. This information is
complemented with linguistic parts that allow to automatically create a spoken
interface for the environment. The spoken interface is based on multiple
dialogues, related to every ontology entity with linguistic information. Firstly,
the dialogue system creates appropriate grammars for the dialogues. Secondly,
it creates the dialogue parts, employing a tree structure. Grammars support the
recognition process and the dialogue tree supports the interpretation and
generation processes. The system is being tested with a prototype formed by a
living room. Users may interact with and modify the physical state of this living
room environment by means of the spoken dialogue interface.

1 Introduction

In the last years, computational services have abandoned a centralized structure, based
on the desktop metaphor, to be omnipresent in our environments. Following these
changes, interfaces are transforming very fast to adapt to the new user necessities [1].
Leaving behind some old command line and graphical interfaces, systems have
changed to provide new user-friendly approaches. The new interfaces have to adapt to
the users, so that users may communicate with the system as naturally as possible.

Among these interfaces, spoken dialogue systems offer a wide range of
possibilities, but also new challenges [2]. Dialogue interfaces (spoken or not) are
frequently tied to a specific domain and, even more, are specially designed for the
tasks they have to deal with. They are usually based on hand crafted dialogue designs.
On the one hand, this makes harder to build a dialogue interface, increasing
considerably its cost, on the other hand, changes in the system may necessarily imply
modifications in the interface.

An approach to solve this problem is the automatic dialogue generation, based on
ontological domain knowledge [3]. These systems provide plug and play spoken
interfaces, avoiding the necessity of creating them from scratch and making them
more easily reconfigurable.

This solution becomes much more effective in the case of smart environments. The
configuration of these environments is highly dynamic and it may change
considerably from one to another. New entities may be added, removed or temporally
stopped, and the spoken interface should be aware of these changes.

In this paper we present a plug and play dialogue system for smart environments.
Our system automatically creates and manages the dialogues, being based on the
information stored on the environment ontology.

Section two presents a description of our system, section three describes the
ontology; section four shows how the plug and play spoken dialogues are created;
section five describes the implementation and evaluation of the system; and; finally,
in section six we discuss the conclusions and future work.

2 System description

Our work is related to the research area known as smart environments. Smart
environments are based on the concept of ubiquitous computing, originally defined by
[4].

Ubiquitous computing systems provide access to computational services but make
the computational devices invisible to the users. Users should not be aware of their
presence and therefore the system should have a similar behavior to a human being
[2]. Users are not in charge of finding the interface, but the system has the
responsibility of serving the users [5].

Following the ideas of ubiquitous computing, a smart environment is a "highly
embedded, interactive space that brings computation into the real, physical world". It
allows computers "to participate in activities that have never previously involved
computation" and people "to interact with computational systems the way they would
with other people: via gesture, voice, movement, and context" [6].

Different and highly heterogeneous technologies may be found inside a smart
environment, from hardware devices, such as sensors, switches, appliances, web
cams, etc. to legacy software, such as voice recognizers, multimedia streaming
servers, mail agents, etc. On the one hand, all of these entities have to be seamlessly
integrated and controlled using the same user interface. For instance, users have to be
able to start a broadcasting music server as easily as to turn off the lights. On the other
hand, user interaction has to be kept as flexible as possible. It should be based on
multiple and distinct modalities, such as web, voice, touch… so that user preferences
and capabilities can be considered.

Bearing in mind these conditions we have developed a working prototype based on
a real environment. This prototype includes an ontology, which provides a simple
mechanism to represent the environment and communicate its state, and two different
plug and play user interfaces (a web-based user interface and a spoken dialogue user
interface), which interact with and control the elements of a real environment. These
interfaces are automatically created and managed, being based on the information
extracted from the ontology.

This real environment consists of a laboratory furnished as a living room, with
several devices. There are two kinds of devices: control and multimedia. Control

devices are lighting controls, a door opening mechanism, a presence detector, smart-
cards, etc. Multimedia devices, such as speakers, microphones, a TV and an IP video-
camera are accessible through a backbone IP. Control devices are connected to an
EIB (EIBA) network and a gateway joins the two networks. The blackboard that
accesses to the physical layer is harmonized through a SMNP (Simple Management
Network Protocol) layer [7].

3 Environment ontology

The ontology is implemented in a middleware layer, which is the glue between the
user interface and the environment. The interaction between them is based on an
event-driven protocol. The environment layout and its state are stored on a common
repository, called blackboard [8].

This blackboard holds a representation of multiple characteristics of the
environment. These include the distribution of the environment (buildings and
rooms), the environment active entities, their location, their state, the possible
relationships between them and the flows of information. The nature of an entity can
range from a physical device to an abstract concept, such as the number of persons in
a room or the list of persons allowed to get into it.

The ontological environment representation is written in an XML document. This
document is parsed to obtain a repository, the blackboard, which is used as a proxy
information server. Interfaces and applications may ask the blackboard to obtain
information about the state of any entity or to change it. Entity descriptions can be
added or removed to the blackboard in run-time, and the new information can be
reused by the rest of applications. Applications and interfaces do not interact directly
with the physical world or between them, but they only have access to the blackboard
layer (see figure 1).

Fig. 1. Blackboard interaction

All the entities of the same type share a set of common properties that describe
universal accepted features of the entity. Specific properties represent custom

temperaturestatus

Client. A

PHYSICAL WORLD

BLACKBOARD

on

Client. B

temperaturestatus

Client. A

PHYSICAL WORLD

BLACKBOARD

on

Client. B

application information. In order to automatically create dialogues associated to the
entities, common linguistic information is attached to the entities. This linguistic
information comprises most of the possible ways a user may employ to interact with
the entity. Basically it is formed by a verb part (the actions that can be taken with the
entity), an object part (the name it can be given), a modifier part (the kind of object
entity), a location part (where it is in the environment) and an additional information
part (additional information about the entity). These linguistic parts permit the use of
synonyms, to allow a more natural interaction with the system. Additionally, entities
store the name of the action method that has to be called after its linguistic
information is completed and the name of its associated template grammar. Figure 2
shows a simplified example of the linguistic information presented on an entity.

Fig. 2. Ontology dialogue information

The employ of these common linguistic properties makes that, in most cases, when
a user defines a new entity its spoken dialogue interface will automatically come
attached to it. Only in a few cases, some changes have to be done to adapt the location
part for a particular entity or, eventually, to refine other parts.

4 Dialogue creation

As it was said above, the system employs the linguistic information presented on the
ontology to automatically create the spoken dialogue interface.

At startup, the dialogue system reads every entity from the ontology. When an
entity has associated dialogue information, the system adds the linguistic information
to the appropriate grammar and adds a new dialogue part to the spoken dialogue
interface.

4.1 Grammar creation

Most of the spoken dialogue systems employ specialized grammars to increase the
recognition accuracy. Grammars support the recognition process by specifying the
possible sentences that may be uttered by the users, limiting the number of possible
inputs expected by the recognizer [9].

Our spoken dialogue system creates a grammar for every different type of entity
and modifies it according to the linguistic information attached to the entity. As an
example, an entity of type light, that represents a light presented in a room, has
associated an action grammar. This action grammar allows to utter a wide range of
sentences oriented to access to and control general environment devices.

In addition to the entity dialogues, the system may create new dialogues that do not
depend on any entity. That is the case, for instance, of a politeness dialogue, which
user and system may employ to thank, say hello, good bye, etc. This dialogue has
associated a plain grammar. Plain grammars do not have any verb, questioning or
location parts.

At the dialogue creation process the system reads all the entities from the ontology.
For every entity the system checks if it has associated linguistic information. If so, it
gets the name of its corresponding grammar template and checks if a previous
grammar was already created by an entity of that type (as it was said above, all the
entities of the same type share the same grammar). If that type of entity does not have
a grammar yet, the system creates a new grammar based on the entity grammar
template. For this grammar (or for a previous grammar created by other entity of the
same type) it adds each linguistic part to the corresponding position in the grammar.

All the grammar templates have the same rules. They only differ on the possible
sentences that are supported. The interface is based on Spanish, and therefore the
nouns, adjectives and articles have number and gender. For instance, for the object
part they all have the <singular female noun>, <singular male noun>, <plural female
noun>, <plural male noun> and <invariant common noun> rules. Some of these rules
will be filled in by different entities of the same type and some others will be left
empty.

Given that the linguistic parts of an entity come in one form of the word (infinitive
for verbs or singular male for nouns) we employ a tagged lexicon and a syntactic
parser [10] to obtain the most appropriate rule and the rest of the forms of the words
for that rule.

The new linguistic parts append new words to the rules, preserving the words
previously added for other entities of the same type. If a rule already contained that
word, the new word is not added again.

As an example of this process we may consider the entities fluorescent, lamp (both
of type light) and front door (of type door) and a system dialogue for yes and no. The
three entities have associated an action grammar and the system dialogue has
associated a plain grammar. The fluorescent entity will create a new grammar based
on the action grammar template and will add its parts to this grammar. Given that the
lamp entity is of the same type as the fluorescent entity (type light) it will employ the
grammar already created by the fluorescent entity to append its linguistic parts. The
front door entity will create a new grammar (since there is not a previous entity of the
type door) also based on the action grammar template and it will append its linguistic

parts. Finally the yes/no system dialogue will create a new grammar based on the
plain grammar template. The grammar set will be formed by three grammars, two of
them based on the action grammar template and the last one based on the plain
grammar template.

Once the grammars are created, the system may employ them for recognition, and
activate and deactivate them at its convenience.

4.2 Dialogue part creation

Besides the grammar creation process, for each entity the system creates the dialogue
parts that will be employed later to provide interpretation and generation capabilities.

Dialogue parts are added as dialogue nodes to a tree structure. This structure
establishes a new linguistic ontology that will carry on the process of interaction with
the user.

At the beginning of the process the dialogue tree is formed by an empty root node.
For each entity with linguistic information, the system adds new nodes or provides
new information to existing nodes, according to the linguistic parts associated to the
entity. Nodes are formed by a word and a list of the entities that contained that word.

To add a new part the system always starts from the root. The first linguistic part
added to the tree is the verb part. If the root node does not have any child node
containing the verb word, the system will create a new node containing the word and
the entity where it belonged. If the root node already had a child node containing the
verb word, the system adds the name of the entity to the list of entities of that node.
The system follows the same process for all the verb synonyms. After the verb part
addition is concluded it will continue with the object part. The object part nodes will
be children of all the verb part nodes (all the verb synonyms) previously created. If
the dialogue part did not have a verb part, the object part would hang from the root.
This means that parts of the same type may have different depth in the tree. After the
object part is added to the tree, this is completed with the modifier, location and
additional information parts.

Let us see an example taken from our real smart environment (here simplified to
improve its comprehension). The room has a fluorescent light and a radio. The
fluorescent entity is called light_1 and the radio entity is called radio_1. The light_1
entity has associated the following linguistic information:

("encender dar", "luz", "", "techo arriba", "")
("apagar", "luz", "", "techo arriba", "")
("encender", "fluorescente", "", "", "")
("apagar", "fluorescente", "", "", "")

The first column corresponds with the verb part, the second column with the object
part, the third one with the modifier part, the forth one with the location part and the
last one with the additional information part. These sentence skeletons establish all
the possible ways to interact with and control this fluorescent light. As it was said
above, the use of grammars will transform these four skeleton sentences in multiple
sentences that will provide a natural and intuitive way to interact with the system.
Notice that some parts are empty and that other parts contain more than one word
(what denotes the use of synonyms).

Fig. 3. Partial linguistic tree

Figure 3 shows the linguistic tree that is created with the linguistic information
specified above. Shadowed nodes correspond with action nodes. Every time the
dialogue system reaches one of these nodes it executes the action associated to the
entity specified in the node. In this case, it would execute the action associated to the
entity light_1, what would turn the fluorescent on or off, depending on the node.

Following with the creation of the linguistic tree, the radio entity has the next
linguistic information (to simplify, we only show the turn off information, not
considering the linguistic information to select a specific radio station or change the
radio station or the volume, which is present on the real scenario):

("apagar", "radio", "", "", "")

Fig. 4. New linguistic tree

Figure 4 shows how the tree is completed with this new linguistic information,
adding new nodes and modifying some of the already existing ones. In this case, if the
dialogue system reaches the shadowed node named radio_1, it would turn off the
radio (or answer back to the user if the radio was already off), as it is set in the action
method associated to the radio_1 entity. Notice that the node under the arrow
“apagar” contains two entities. This means that there are two entities in the
environment that may be turned off (“apagar”). This node information will be used
later at the interpretation and generation processes .

Root

Dar
Apagar

Luz

Techo

Fluorescente

Arriba

Encender

Luz Fluorescente

Arriba

Luz Fluorescente

Techo Techo Arriba

Light_1 Light_1 Light_1

Light_1 Light_1 Light_1 Light_1 Light_1 Light_1

Light_1 Light_1 Light_1 Light_1 Light_1 Light_1

Root

Dar
Apagar

Luz

Techo

Fluorescente

Arriba

Encender

Luz Fluorescente

Arriba

Luz Fluorescente

Techo Techo Arriba

Light_1 Light_1 Light_1

Light_1 Light_1 Light_1 Light_1 Light_1 Light_1

Light_1 Light_1 Light_1 Light_1 Light_1 Light_1

Root

Dar

Apagar

Luz

Techo

Fluorescente

Arriba

Luz Fluorescente

Techo Arriba

Light_1 Light_1
Radio_1

Light_1 Light_1 Light_1 Light_1

Light_1 Light_1 Light_1 Light_1

Radio_1

Radio

Encender

Light_1

Omitted
section

Root

Dar

Apagar

Luz

Techo

Fluorescente

Arriba

Luz Fluorescente

Techo Arriba

Light_1 Light_1
Radio_1

Light_1 Light_1 Light_1 Light_1

Light_1 Light_1 Light_1 Light_1

Radio_1

Radio

Encender

Light_1

Omitted
section

4.3 Interpretation and generation

Once the linguistic tree is created, the system is ready to interact with the user by
means of the spoken dialogue interface. This interaction will be based on the
information presented on the linguistic tree. Although the generation and
interpretation processes are quite complex and therefore they are out of the scope of
this paper, we will give a brief overview of them for a better understanding of the tree
generation process.

After a user utterance the system will go down the tree to interpret the sentence. If
it reaches an action node, it executes the associated action method. Its execution
usually implies some change in the environment, although it may also initiate a
system question or answer utterance. If it does not reach an action node, the system
will try to find out if it may take some action, being based on the environment current
state and the nodes under the node where it stopped. In any case, the system will
either take an action or prompt the user for more information by generating a sentence
based on the information gathered from the environment and the tree.

To go down through the tree the system will take into consideration if a dialogue
was completed in the last interaction (if an action was executed), if it is in the middle
of a dialogue, the exact sentence uttered by the user and the environment state.

As an example, based on the tree described above, let us suppose that the user
utters the sentence I would like to turn off …, where … corresponds with noise. The
system starts on the root node, goes down the arrow “apagar” and stops there. Once
there it may take several actions. The system checks the nodes under the node where
it stopped and realizes that there are two entities that may be turned off: “radio” and
“luz techo” (notice that the system recognizes that “luz arriba” and “fluorescent” refer
to the same entity as “luz techo” so it only considers the first linguistic information
encountered). Next, it gets the state of the fluorescent and the radio. If only one of
them is on, it may turn it off. If they are both on, it will generate a sentence asking
which one of them the user wants to turn off. If they are both off, the system will
inform the user in this respect.

As it can be seen in this example, the dialogue interpretation and generation
processes are related to the domain ontology and the linguistic information presented
on the tree. Not only the dialogue creation process varies depending on the
environment but the interpretation and generation do not follow a fixed script and
they also adapt to the environment circumstances.

5 Evaluation

The system has been implemented and tested employing the real environment already
mentioned. This environment consists of a laboratory furnished as a living room. It is
equipped with a television, a DVD player, a radio tuner, an IP Web cam, a flat screen,
an electrical door lock, an alphanumeric screen, personalized smart cards, two
fluorescent lights, two halogen floor lights, two hi-fi speakers and one wireless
microphone (see figure 5).

Fig. 5. Snapshot of the living room

Test dialogues interfaces have been created employing different room elements in
each test. Combinations of elements of the same and different types were made so that
we could check the correctness and accuracy of the grammar and dialogue tree
creation processes. In any case the grammar and dialogue tree construction were fully
satisfactory.

Let us explain one simple developed test to show the system performance. A
spoken dialogue interface was automatically created for a room with a fluorescent
light, two floor lights (each with a dimmable and a reading light), a radio tuner and a
door lock. This interface has to support dialogues that allow to turn on and off the
fluorescent or any of the two reading lights, dim up or down any of the two dimmable
lights, open the door, turn on or off the radio and change the radio station. An
additional politeness dialogue allows users and system to thank, say hello, good bye,
etc. In this case the system created a new grammar (based on the action template
grammar) for the fluorescent light, adding the information required to turn on, turn off
and refer to a fluorescent light. After that it continued with the first floor lamp,
composed by a reading and a dimmable light. It appended the information needed to
refer to a reading light (the information employed to turn on or turn off a reading light
was not added, since it was exactly the same as the fluorescent light information).
After that it added the information necessary to dim up or down a dimmable light, to
refer to it and, given that there is more than one floor light, it also added the location
information employed to distinguish between both lights. Next, the system processed
the second floor light. In this case it only had to append the location information for
the new light, given that the rest of the linguistic information was shared with the first
floor light. This concluded with the creation of the lighting grammar. Other three
grammars were also constructed for the radio and door control and the politeness
capabilities. Concurrently with the grammars creation, the system built the linguistic
tree. The final tree was formed by dozens of nodes (many of them shared by several
entities) and numerous action nodes. The automatic linguistic tree generation is not
described in detail because it would imply a long explanation, but it followed the
steps illustrated in section 4.2. These two processes completed the spoken dialogue

interface creation. After that, the grammar and dialogue trees were examined to make
sure that they were properly created and that they supported all the possible known
dialogues. Finally, we tested the system with real users to check the accuracy,
efficiency and naturalness of the interface (this final evaluation test corresponds with
the interpretation and generation processes).

In every case we found that the system created desired and accurate interfaces for
the proposed environments and that the interface construction efficiently adapted to
the different environment domains. Interfaces were always produced being based on
real elements of our smart environment. As a result we got interfaces that could be
employed by users to interact with real devices and rooms , making easier to evaluate
their creation process and final performance.

6 Conclusions and future work

In this paper we have presented a dialogue system that automatically creates a spoken
dialogue interface for a smart environment.

Smart environments are resulting in an increasing interest in the research and
industry fields. They provide an augmented space that offers new services and ways
of interaction [11]. These services have lots of applications for homes, working
environments, elderly people, etc. improving considerably the quality of life of their
inhabitants. Nevertheless, it is absolutely necessary to provide them with easy-to-use
and intuitive interfaces.

To get this, the interface must be created with the minimum effort, making possible
the fast development and implantation of these environments. According with these
ideas we have developed a real smart environment. Users may interact with it thanks
to a plug and play, automatically created, spoken interface. The environment is placed
in a laboratory where it is being tested with trained and untrained people of different
skills, in order to get performance results and improve its functioning.

Currently we keep working to improve and add new functionalities to the dialogue
system.

The linguistic ontology will contain a new part, the question part, which will allow
users to make questions about the environment. Current dialogue interpretation and
generation processes will have to suffer some changes to support questions, but the
dialogue creation process will remain as explained, except by the fact that the
linguistic parts will be added to the tree in different order.

We are also trying to integrate the spoken modal interface with other modal
interfaces. For instance, in some situations the system may require information to the
user by uttering a sentence or by showing the information on a screen. The user may
answer either by speaking or by clicking on the selected choice.

Dialogues are added to the system when entities with linguistic information are
inserted in the domain ontology. Nevertheless they are not efficiently removed from
the tree or stopped when the entity is eliminated from the ontology or stopped.

This plug and play spoken dialogue interface is the result of the continuous process
of evaluation tests carried out during its development and current state. New tests,

with more and bigger rooms, will also refine the automatic creation methods so that
we can test its performance in large scale environments.

Acknowledgments

This paper has been sponsored by the Spanish Ministry of Science and Technology,
project number TIC2000-0464.

References

1. Weiser, M. “The world is not a desktop”. ACM Interactions, 1, 1, 7-8, 1994.
2. Yankelovich, N. “How do users know what to say?” ACM Interactions, 3, 6, December,

1996.
3. Milward, D. and Beveridge, M. “Ontology -based dialogue systems”. IJCAI WS on

Knowledge and reasoning in practical dialogue systems, Acapulco, Mexico, August 10,
2003.

4. Weiser, M. “The computer of the 21st century”. Scientific American, 265, 3, 66-75, 1991.
5. Abowd, G.D. “Software design issues for ubiquitous computing”. IEEE CS Annual

Workshop on VLSI: System Level Design (IWV '98), Orlando, FL, April 16-17, 1998.
6. Coen, M.H. “Design Principles for Intelligent Environments”. Proceedings of the AAAI

Spring Symposium on Intelligent Environments (AAAI98). Stanford University in Palo
Alto, California, 1998.

7. Martínez, A.E., Cabello, R., Gómez, F. J. and Martínez, J. “INTERACT-DM. A Solution For
The Integration Of Domestic Devices On Network Management Platforms”. IFIP/IEEE
International Symposium on Integrated Network Management. Colorado Springs, Colorado,
USA, 2003.

8. Engelmore, R. And Mogan, T. Blackboard Systems. Addison-Wesley, 1988.
9. Dahlbäck, N. and Jönsson, A. “An empirically based computationally tractable dialogue

model”. Proceedings of the 14th Annual Conference of the Cognitive Science Society
(COGSCI’92), July 1992.

10. Carmona, J.; Cervell, S.; Atserias, J.; Cervell S.; Márquez, L.; Martí, M.A.; Padró, L.;
Placer, R.; Rodríguez, H.; Taulé, M. and Turmo, J. “An Environment for Morphosyntactic
Processing of Unrestricted Spanish Text”. Proceedings of 1st International Conferenceon
Language Resources and Evaluation (LREC'98), Granada, Spain, 1998.

11. Wellner, P. “Interacting with paper on the digital desk”. Communications of the ACM, 36,
7, 86-96, 1993.

