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Abstract. In this paper, we study short exponent Diffie-Hellman prob-
lems, where significantly many lower bits are zeros in the exponent. We
first prove that the decisional version of this problem is as hard as two
well known hard problems, the standard decisional Diffie-Hellman prob-
lem (DDH) and the short exponent discrete logarithm problem. It implies
that we can improve the efficiency of ElGamal scheme and Cramer-Shoup
scheme under the two widely accepted assumptions. We next derive a sim-
ilar result for the computational version of this problem.

1 Introduction

The discrete logarithm (DL) problem and the Diffie-Hellman (DH) problems are
basis of many applications in modern cryptography.

1.1 Previous Works on DL Problem

Blum and Micali [1] presented the first cryptographically secure pseudo-random
bit generators (PRBG) under the DL assumption over Z∗

p , where p is a prime.
Long and Wigderson [6], and Peralta [9] showed that up to O(log log p) pseudo-
random bits can be extracted by a single modular exponentiation of the Blum-
Micali generator.

The discrete logarithm with short exponent (DLSE) assumption is also use-
ful. It claims that the DL problem is still hard even if the exponent is small.
Van Oorschot and Wiener studied under what condition the DLSE assumption
remains difficult (Their concern was to speed-up the key agreement method of
Diffie-Hellman) [12]. They showed that the known attacks are precluded if safe
primes p are used for Z∗

p (that is, p − 1 = 2q for a prime q) or prime-order
groups are used. Especially, the latter is highly recommended. Under the DLSE
assumption, Patel and Sundaram [8] showed that it is possible to extract up to
n − ω(log n) bits from one iteration of the Blum-Micali generator by using safe
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primes p, where n is the bit length of p. Gennaro [4] further improved this result
in such a way that each full modular exponentiation can be replaced with a short
modular exponentiation.

1.2 Our Contribution on DH Problems

Let Gq be a finite Abelian group of prime order q. Let g be a generator, that is,
Gq = 〈g〉. Then the computational Diffie-Hellman (CDH) problem is to compute
gab from (g, ga, gb). The decisional Diffie-Hellman (DDH) problem is to distin-
guish between (g, ga, gb, gab) and (g, ga, gb, gc), where a, b and c are uniformly
and randomly chosen from Zq.

Short exp ≈ Full exp Short DL

|Z∗
p | = even Gennaro [4] Application to PRBG [8,4]

Table 1. Previous works over Z∗
p

Short ≈ Full Short exp. DDH Short exp. CDH

|Gq | = prime This paper DDH+Short DL CDH+Short DL
Application to encryption Application to OT

Table 2. Our work over Gq

In this paper, we study short exponent variants of the DDH problem and
the CDH problem over Gq, where significantly many lower bits are zeros in
the exponent. More precisely, the short exponent DDH problem has two sub-
problems, a (Short, Full)-DDH problem in which a is small, and a (Short, Short)-
DDH problem in which both a and b are small. The short exponent CDH problem
has two sub-problems, similarly.

We first prove that each of the short exponent DDH problems is as hard
as two well known hard problems, the standard DDH problem and the DLSE
problem. That is, we show our equivalence:

(Short, Full)-DDH ⇐⇒ (Short, Short)-DDH ⇐⇒ DDH + DLSE.

To prove these equivalence, we show that short exponents {gs | s is small}
and full exponents {gx | x ∈ Zq} are indistinguishable under the DLSE assump-
tion over prime-order groups Gq. A similar result was proved for Z∗

p by Gennaro
[4] based on [8], where p is a safe prime. Our proof shows that the indistin-
guishability can be proved much simpler over Gq than over Z∗

p . (Remember that
prime-order groups are highly recommended for the DLSE assumption by van
Oorschot and Wiener [12]. It is also consistent with the DDH problem which is
defined over prime-order groups.)

Our result implies that we can improve the efficiency of ElGamal encryption
scheme and Cramer-Shoup encryption scheme directly under the two widely ac-
cepted assumptions, the DDH assumption and the DLSE assumption. Indeed, we
present such variants of ElGamal scheme and Cramer-Shoup scheme. They are
much faster than the original encryption algorithms because short exponents are
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used instead of full exponents. (Remember that under the DDH assumption, El-
Gamal encryption scheme [3] is secure in the sense of indistinguishability against
chosen plaintext attack (IND-CPA) and Cramer-Shoup scheme [2] is secure in
the sense of indistinguishability against chosen ciphertext attack (IND-CCA).)

We next show a similar result for the CDH problem. That is, we prove the
equivalence such that

(Short, Full)-CDH ⇐⇒ (Short, Short)-CDH ⇐⇒ CDH + DLSE.

This result implies that we can improve the efficiency of the oblivious transfer
protocols of [7,5] under the CDH assumption plus the DLSE assumption.

We believe that there will be many other applications of our results.

2 Preliminaries

2.1 Notation

|x| denotes the bit length of x. x ∈R X means that x is randomly chosen from a
set X . We sometimes assume the uniform distribution over X . Throughout the
paper, an ”efficient algorithm” means a probabilistic polynomial time algorithm.

Let n denote the bit length of q, where q is the prime order of Gq. Let
c = ω(log n). It means that 2c grows faster than any polynomial in n. Let
lsbk(z) be the function that returns the least significant k bits of z and msbk(z)
the function that returns the most significant k bits of z. If we write b = msbk(z),
we sometimes mean that the binary representation of b is msbk(z).

2.2 Discrete Logarithm with Short Exponent (DLSE) Assumption

Let f(g, z) = (g, gz), where g is a generator of Gq. The discrete logarithm (DL)
problem is to compute the inverse of f . The DL assumption says that the DL
problem is hard.

We next define the discrete logarithm with short exponent (DLSE) problem
as follows. Let f se(g, u||0n−c) = (g, gu||0n−c

), where |u| = c and || denotes con-
catenation. That is, the exponent of gu||0n−c

is short. Then the DLSE problem
is to compute the inverse of f se. The DLSE assumption says that the DLSE
problem is hard. Formally,

Assumption 1. (DLSE assumption) There exists no efficient algorithm which
solves the DLSE problem with non-negligible probability.

3 Short EXP ≈ Full EXP

In this section, we prove that full exponents and short exponents are indistin-
guishable under the DLSE assumption. More formally, define A0 and An−c as

A0 = {(g, gx) | x ∈ R0} and An−c = {(g, gx) | x ∈ Rn−c},
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where

R0 = {u | 0 ≤ u < q} and Rn−c = {2n−cu | 0 ≤ 2n−cu < q}.

Theorem 1. A0 and An−c are indistinguishable under the DLSE assumption.

A proof is given in Appendix A. We show a sketch of the proof here. For
1 ≤ i ≤ n − c, let

Ai = {(g, gx) | x ∈ Ri}, where Ri = {2iu | 0 ≤ 2iu < q}.
Suppose that there exists a distinguisher D which can distinguish An−c from

A0. Then by using a hybrid argument, there exists j such that Aj and Aj+1 are
distinguishable.

We will show that (i) the j can be found in polynomial time and (ii) the
DLSE problem can be solved by using the (D, j). We briefly sketch below how
to solve the DLSE problem by using the (D, j). (Remember that the DLSE
problem is to find x from (g, gx) in An−c.)

1. The difference between Aj and Aj+1 appears in the (j+1)-th least significant
bit bj+1 of exponents x. That is,

bj+1 =
{

1 if (g, gx) ∈ Aj \ Aj+1

0 if (g, gx) ∈ Aj+1

Hence we can show that (D, j) can be used as a prediction algorithm of bj+1.
2. We can compute gx/2 from gx because the order of Gq is a prime q. This

enables us to use (D, j) to predict all higher bits of x as well as bj+1 (except
several most significant bits γ).

3. Suppose that (g, y) ∈ An−c is given, where y = gv||0n−c

. In order to find
the b1 = lsb1(v), we carefully randomize y so that the exponent is uniformly
distributed over Rj . For this randomization, we need to search some most
significant bits γ of v exhaustively, but in polynomial time.

4. After all, by taking the majority vote, we can find b1 = lsb1(v) with over-
whelming probability. Next let

y1 = (y(g2n−c

)−b1)1/2 = g0||v′||0n−c

,

where v = v′||b1. Applying the same process, we can find lsb1(v′) similarly.
By repeating this algorithm, we can finally find v with overwhelming prob-
ability.

4 (Short, Full)-DDH = Standard DDH + DLSE

The standard DDH assumption claims that

B0 = {(g, gx, gy, gxy) | x ∈ Zq, y ∈ Zq} and
C0 = {(g, gx, gy, gz) | x ∈ Zq, y ∈ Zq, z ∈ Zq}

are indistinguishable.
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We now define the (Short, Full)-DDH assumption as follows. Let

Bn−c = {(g, gx, gy, gxy) | x ∈ Rn−c, y ∈ Zq} and
Cn−c = {(g, gx, gy, gz) | x ∈ Rn−c, y ∈ Zq, z ∈ Zq},

where c = ω(log n) with n = |q|. The (Short, Full)-DDH assumption claims that
Bn−c and Cn−c are still indistinguishable. Note that x is short and y is of full
length.

We then prove the (Short, Full)-DDH assumption is equivalent to the stan-
dard DDH assumption and the DLSE assumption. We first show that the stan-
dard DDH assumption and the DLSE assumption implies the (Short, Full)-DDH
assumption.

Theorem 2. Suppose that the DDH assumption and the DLSE assumption are
true. Then the (Short, Full)-DDH assumption is true.

Proof. From Theorem 1, A0 and An−c are indistinguishable under the DLSE
assumption, where

A0 = {(g, gx) | x ∈ R0} and An−c = {(g, gx) | x ∈ Rn−c}.
First it is clear that C0 and Cn−c are indistinguishable because y and z are
random independently of x.

Next we prove that B0 and Bn−c are indistinguishable. Suppose that there
exists a distinguisher D which distinguishes Bn−c from B0. Then we show that
there exists a distinguisher D′ which distinguishes An−c from A0. On input
(g, gx), D′ chooses y ∈ Zq at random and computes gy and (gx)y. D′ then gives
(g, gx, gy, (gx)y) to D. Note that

(g, gx, gy, (gx)y) ∈R

{
B0 if (g, gx) ∈R A0,
Bn−c if (g, gx) ∈R An−c.

D′ finally outputs the output bit of D. Then it is clear that D′ can distinguish
An−c from A0. However, this is against Theorem 1. Hence B0 and Bn−c are
indistinguishable.

Consequently we obtain that Bn−c ≈ B0 ≈ C0 ≈ Cn−c, where ≈ means
indistinguishable. (B0 ≈ C0 comes from the standard DDH assumption.) There-
fore, Bn−c and Cn−c are indistinguishable. �	

We next show that the (Short, Full)-DDH assumption implies the standard
DDH assumption and the DLSE assumption.

Theorem 3. Suppose that the (Short, Full)-DDH assumption is true. Then the
DDH assumption and the DLSE assumption are true.

Proof. First suppose that there exists an efficient algorithm M which can solve
the DLSE problem with some non-negligible probability ε. Then we show that
there exists a distinguisher D between Bn−c and Cn−c.
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On input (g, gx, gy, α), D gives gx to M . If M does not output x correctly,
then D outputs a random bit b. Suppose that M outputs x correctly. Then D
outputs b such that

b =
{

1 if α = (gy)x

0 if α 
= (gy)x.

Then it is easy to see that D distinguishes between Bn−c and Cn−c.
Next suppose that there exists a distinguisher D0 which breaks the DDH

assumption. Then we show that there exists a distinguisher D1 which breaks the
(Short, Full)-DDH assumption.

Let (g, gx, gy, ga) be an input to D1, where a = xy mod q or random. D1

chooses r 
= 0 at random and gives (g, (gx)r, gy, (ga)r) to D0. It is easy to see
that

(g, (gx)r, gy, (ga)r) ∈R

{
B0 if (g, gx, gy, ga) ∈R Bn−c,
C0 if (g, gx, gy, ga) ∈R Cn−c.

Finally D1 outputs the output bit of D0. Then it is clear that D1 distinguishes
between Bn−c and Cn−c. �	

From Theorem 2 and Theorem 3, we obtain the following corollary.

Corollary 1. The (Short, Full)-DDH assumption is equivalent to both the DDH
assumption and the DLSE assumption.

5 Extension to (Short, Short)-DDH

We define the (Short, Short)-DDH assumption as follows. Let

B′
n−c = {(g, gx, gy, gxy) | x ∈ Rn−c, y ∈ Rn−c} and

C′
n−c = {(g, gx, gy, gz) | x ∈ Rn−c, y ∈ Rn−c, z ∈ Zq}.

Then the (Short, Short)-DDH assumption claims that B′
n−c and C′

n−c are indis-
tinguishable. Note that both x and y are short in B′

n−c and C′
n−c.

We first show that the (Short, Full)-DDH assumption implies the (Short,
Short)-DDH assumption.

Theorem 4. Suppose that the (Short, Full)-DDH assumption is true. Then the
(Short, Short)-DDH assumption is true.

Proof. First suppose that the (Short, Full)-DDH assumption is true. From The-
orem 3, both the DLSE assumption and the DDH assumption are true. From
Theorem 1, A0 and An−c are indistinguishable. Then it is clear that Cn−c and
C′

n−c are indistinguishable because x and z are random independently of y.
Next we prove that Bn−c and B′

n−c are indistinguishable. Suppose that there
exists a distinguisher D which distinguishes Bn−c and B′

n−c. Then we show that
there exists a distinguisher D′ which distinguishes An−c from A0. On input



Short Exponent Diffie-Hellman Problems 179

(g, gy), D′ chooses x ∈ Rn−c at random and computes gx and (gy)x. D′ then
gives (g, gx, gy, (gy)x) to D. Note that

(g, gx, gy, (gx)y) ∈R

{
Bn−c if (g, gx) ∈R A0,
B′

n−c if (g, gx) ∈R An−c.

D′ finally outputs the output bit of D. Then it is clear that D′ can distinguish
An−c from A0. However, this contradicts that A0 and An−c are indistinguishable.
Hence Bn−c and B′

n−c are indistinguishable.
Consequently we obtain that

B′
n−c ≈ Bn−c ≈ Cn−c ≈ C′

n−c,

where ≈ means indistinguishable. Therefore, B′
n−c and C′

n−c are indistinguish-
able. �	

We next show that the (Short, Short)-DDH assumption implies the (Short,
Full)-DDH assumption.

Theorem 5. Suppose that the (Short, Short)-DDH assumption is true. Then
the (Short, Full)-DDH assumption is true.

Proof. First suppose that the (Short, Full)-DDH assumption is false. Then, from
Theorem 2, either the DDH assumption or the DLSE assumption is false.

Further suppose that the DLSE assumption is false. That is, there exists an ef-
ficient algorithm M which can solve the DLSE problem with some non-negligible
probability ε. Then we show that there exists a distinguisher D between B′

n−c

and C′
n−c.

On input (g, gx, gy, α), D gives gx to M . If M does not output x correctly,
then D outputs a random bit b. Suppose that M outputs x correctly. Then D
outputs b such that

b =
{

1 if α = (gy)x

0 if α 
= (gy)x.

Then it is easy to see that D distinguishes between B′
n−c and C′

n−c.
Next suppose that the DDH assumption is false. That is, there exists a distin-

guisher D0 which breaks the DDH assumption. Then we show that there exists
a distinguisher D1 which breaks the (Short, Short)-DDH assumption.

Let (g, gx, gy, ga) be an input to D1, where a = xy mod q or random. D1

chooses r1, r2 
= 0 at random and gives (g, (gx)r1 , (gy)r2 , (ga)r1r2) to D0. It is
easy to see that

(g, (gx)r1 , (gy)r2 , (ga)r1r2) ∈R

{
B0 if (g, gx, gy, ga) ∈R B′

n−c,
C0 if (g, gx, gy, ga) ∈R C′

n−c.

Finally D1 outputs the output bit of D0. Then it is clear that D1 distinguishes
between B′

n−c and C′
n−c. �	

Corollary 2. The (Short, Short)-DDH assumption is equivalent to the (Short,
Full)-DDH assumption.
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From Corollary 1, we obtain the following corollary.

Corollary 3. The (Short, Short)-DDH assumption is equivalent to both the
DDH assumption and the DLSE assumption.

6 Short Computational DH

Remember that the computational Diffie-Hellman (CDH) problem is to compute
gxy from g, gx, gy, where x, y ∈ Zq. The CDH assumption says that the CDH
problem is hard.

In this section, we introduce two variants of the CDH assumption, (Short,
Full)-CDH assumption and (Short, Short)-CDH assumption. We then prove that
each of them is equivalent to the standard CDH assumption and the DLSE
assumption.

Short variants of the CDH assumption are defined as follows.

Assumption 2. ((Short, Full)-CDH assumption) There exists no efficient al-
gorithm for computing gxy with non-negligible probability from g, gx, gy, where
x ∈ Rn−c and y ∈ Zq.

Assumption 3. ((Short, Short)-CDH assumption) There exists no efficient al-
gorithm for computing gxy with non-negligible probability from g, gx, gy, where
x ∈ Rn−c and y ∈ Rn−c.

We first show that the standard CDH assumption and the DLSE assumption
imply the (Short, Full)-CDH assumption.

Theorem 6. Suppose that the CDH assumption and the DLSE assumption are
true. Then the (Short, Full)-CDH assumption is true.

Proof. Suppose that there exists an efficient algorithm A which computes gxy

from g, gx, gy such that x ∈ Rn−c and y ∈ Zq.
If the CDH problem is easy, then our claim holds. Suppose that the CDH

problem is hard. We then show an efficient algorithm B which distinguishes be-
tween A0 and An−c. On input (g, gx), B chooses y ∈ Zq randomly and computes
gy. B gives (g, gx, gy) to A. Suppose that A outputs z. B checks if z = (gx)y.

Now from our assumption, if (g, gx) ∈ An−c, then z = gxy with non-negligible
probability. If (g, gx) ∈ A0, then z = gxy with negligible probability. This means
that B can distinguish between A0 and An−c. From Theorem 1, this means that
the DLSE assumption is false. �	

We can prove the converse of Theorem 6 similarly to Theorem 3. Therefore,
we obtain the following corollary.

Corollary 4. (Short, Full)-CDH = Standard CDH + DLSE.

We next show that the (Short, Short)-CDH assumption is equivalent to the
standard CDH assumption and the DLSE assumption.
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Theorem 7. (Short, Short)-CDH = Standard CDH + DLSE.

The proof is based on the same argument for the (Short, Full)-CDH assump-
tion and the random self-reducibility of the discrete logarithm problem. The
details will be given in the final paper.

7 Applications

In this section, we present fast variants of ElGamal encryption scheme and
Cramer-Soup encryption scheme. Each variant uses a short random exponent
r such that r is essentially c bits long, where c = ω(log |q|) and q is the order of
the underlying group.

Note that computing gr requires at most 2c modulo multiplications in our
variants while it requires at most 2n modulo multiplications in the original al-
gorithms. Hence our variants are much faster than the original encryption algo-
rithms.

We can prove their security easily from our results. They are semantically
secure under the DDH assumption and the DLSE assumption (i.e., our variant
of ElGamal scheme is IND-CPA and our variant of Cramer-Shoup scheme is
IND-CCA, respectively). They are one-way under the CDH assumption and the
DLSE assumption.

7.1 Security of Public Key Cryptosystem

A public key encryption scheme is called one-way if it is hard to compute the
message m from a public key pk and a ciphertext C.

The security in the sense of indistinguishability is defined as follows. Consider
the following model of adversaries. In the find stage, the adversary chooses two
messages m0, m1 on input pk. She then sends these to an encryption oracle. The
encryption oracle chooses a random bit b, and encrypts mb. In the guess stage, the
ciphertext Cb is given to the adversary. The adversary outputs a bit b′. We say
that the public key cryptosystem is secure in the sense of indistinguishability
against chosen plaintext attack (IND-CPA) if |Pr(b′ = b) − 1/2| is negligibly
small (as a function of the security parameter).

The security against chosen-ciphertext attack (IND-CCA) is defined similarly
except for that the adversary gets the decryption oracle and is allowed to query
any ciphertext C, where it must be C 
= Cb in the guess stage.

7.2 (Short, Full) ElGamal Encryption Scheme

ElGamal encryption scheme is (1) one-way under the CDH assumption and (2)
IND-CPA under the DDH assumption. Now our variant of ElGamal encryption
scheme is described as follows.

(Key generation) Choose a generator Gq and x ∈ Zq randomly. Let ĝ = g2n−c

, ŷ =
ĝx. The public key is (ĝ, ŷ) and the secret key is x.
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(Encryption) Given a message m ∈ G, first choose r such that 2n−cr ∈ Rn−c

randomly. Next compute c1 = ĝr (= g2n−cr), c2 = mŷr. The ciphertext is (c1, c2).

(Decryption) Given a ciphertext (c1, c2), compute

c2/cx
1 = mŷr/(g2n−cr)x = m(g2n−cx)r/(g2n−cr)x = m.

Note that the encryption is very efficient because small r is used. The security
is proved as follows.

Theorem 8. The above scheme is still one-way under the CDH assumption and
the DLSE assumption.

Theorem 9. The above scheme is still IND-CPA under the DDH assumption
and the DLSE assumption.

7.3 (Short, Full) Cramer-Shoup Encryption Scheme

We next show our variant of Cramer-Shoup scheme.

(Key generation) Choose two generator g1 and g2 at random. Also Choose
x1x2, y1, y2, z ∈ Zq randomly. Let ĝ1 = gn−c

1 and ĝ2 = gn−c
2 . Also let

ĉ = ĝx1
1 ĝx2

2 , d̂ = ĝy1
1 ĝy2

2 , ĥ = ĝz
1 .

The public key is (ĝ1, ĝ2, ĉ, d̂, ĥ, H) and the secret key is (x1x2, y1, y2, z), where
H is a randomly chosen universal one-way hash function.

(Encryption) Given a message m ∈ G, first choose r such that 2n−cr ∈ Rn−c

randomly. Next compute

u1 = ĝr
1, u2 = ĝr

2, e = ĥrm, α = H(u1, u2, e), v = (ĉd̂α)r.

The ciphertext is (u1, u2, e, v).

(Decryption) Given a ciphertext (u1, u2, e, v), first compute α = H(u1, u2, e)
and test if ux1+y1α

1 ux2+y2α
2 = v. If this condition does not hold, the decryption

algorithm outputs “reject”. Otherwise, it outputs m = e/uz
1.

The encryption algorithm is very efficient because small r is used. Cramer-
Shoup scheme is IND-CCA under the DDH assumption [2]. The proposed scheme
is secure under the following assumption.

Theorem 10. The above scheme is still IND-CCA under the DDH assumption
and the DLSE assumption.

The proof is almost the same as the proof of [2]. We use Corollary 1. The
details will be given in the final paper.

7.4 (Short, Short) Versions

We can construct (Short, Short) versions of ElGamal scheme and Cramer-Shoup
scheme, and prove their security. The details will be given in the final paper.
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Appendix

A Proof of Theorem 1

Before giving a proof of Theorem 1, we show some technical lemmas. Remember
that c = ω(log n).

Lemma 1. We consider an index i which can be computed in probabilistic
polynomial time. Suppose that there exists an efficient algorithm D that on
input (g, gu||0i

) ∈R Ai, outputs the lsb of u with probability 1/2 + ε, where ε is
non-negligible. Then for any fixed g ∈ G, there exists an efficient algorithm that
on input gu||0i

, outputs the lsb of u with probability 1/2+ ε, where u||0i ∈R Ri.

Lemma 1 is easily obtained from the random self-reducibility such that com-
puting z from (g, gz) is equivalent to computing z from (gr, grz). Next let g be
a generator of Gq.
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Lemma 2. We consider an index i such that i < n− c which can be computed
in probabilistic polynomial time. Suppose that there exists an efficient algorithm
D that on input g and gu||0i

, outputs the lsb of u with probability 1/2+ ε, where
u||0i ∈R Ri and ε is non-negligible.

Then there exists an efficient algorithm D′ that on input y = gv||0n−c

and
msblog t(v), outputs the lsb of v with probability at least 1/2 + ε − (2/t).

Proof. Let D be an efficient algorithm as stated above. We construct an efficient
algorithm D′ that, given g and gv||0n−c

and msb log t(v), outputs the lsb of v with
probability at least 1/2 + ε − (2/t). Let γ = msblog t(v). That is, v = γ||v′ for
some v′. We will find the lsb of v′ by using D (because lsb1(v) = lsb1(v′)).

(1) First, D′ zeros the log t most significant bits of v by computing

y1 = y · g−γ·2n−log t

= g0log t||v′||0n−c

.

(2) Next D′ computes

y2 = ye
1, where e = 1/2n−c−i mod q.

Note that the exponent of y1 is shifted to the right n − c − i bits. Therefore, y2

is written as y2 = gs in such a way that

s = 0n−c−i+log t||v′||0i.

(3) D′ chooses r ∈ Ri randomly and computes

y′ = y2 · gr = gs+r.

(Note that r = 2ir′ for some r′ since r ∈ Ri.)
(4) D′ invokes D with input (g, y′).
(5) Suppose that D outputs a bit α. (If D outputs neither 0 nor 1, D′ chooses
a bit α randomly.) Then D′ outputs β = α ⊕ lsb1(r′).

Let u = s + r. Then u is uniformly distributed over {s′ : s ≤ s′ ≤ s +
rmax and 2i|s′}, where rmax is the maximum element of Ri. Since 2i | u, we let
u′ = u/2i. Then

u′ = v′ + r′.

If u < q and α = lsb1(u′), then

α = lsb1(u′) = lsb1(v) ⊕ lsb1(r′).

Hence
lsb1(v) = α ⊕ lsb1(r′) = β(= the output of D′).

Therefore,

Pr(D′ suceeds) ≥ Pr(u < q and α = lsb1(u′))
= Pr(u < q and D(g, gu) = lsb1(u′))

For a fixed random tape C of D, let

GOOD(C) = {x | x ∈ Ri, D(g, gx) = lsb1(x/2i)}
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(It is clear that 2i | x for x ∈ Ri.) Then

Pr(D′ suceeds) ≥ Pr(u < q and D(g, gu) = lsb1(u′))
= EC [Pr(u < q and u ∈ GOOD(C))]

where EC denotes the expected value over C.
It is easy to see that ”u < q and u ∈ GOOD(C))” is equivalent to u ∈

GOOD(C). Therefore,

Pr(D′ suceeds) ≥ EC [Pr(u ∈ GOOD(C))]

Further, since u is uniformly distributed over {s′ : s ≤ s′ ≤ s + rmax and 2i|s′},
we obtain

EC [Pr(u ∈ GOOD(C))] ≥ EC [ Pr
y∈Ri

(y ∈ GOOD(C)) − Pr
y∈Ri

(y < s)]

≥ EC [ Pr
y∈Ri

(y ∈ GOOD(C))] − EC [ Pr
y∈Ri

(y < s)]

≥ Pr
y∈Ri

(y ∈ GOOD(C)) − Pr
y∈Ri

(y < s)

≥ 1/2 + ε − 2/t.

Consequently,
Pr(D′ suceeds) ≥ 1/2 + ε − 2/t.

�	

Lemma 3. In Lemma 2, let t = 4/ε. Then there exists an efficient algorithm
that on input g, y = gv||0n−c

and msblog t(v), outputs v with overwhelming prob-
ability.

Proof. In Lemma 2, D′ outputs lsb1(v) with probability at least 1/2+ε/2 because
t = 4/ε. Here ε/2 is non-negligible from the assumption of Lemma 2. Then by
running D′ polynomially many times (i.e., 2/ε3 times) independently and taking
the majority vote, we can obtain b1 = lsb1(v) with overwhelming (i.e., e−1/ε)
probability.

Next let
y1 = (y(g2n−c

)−b1)1/2 = g0||v′||0n−c

,

where v = v′||b1. Applying the same process, we can find lsb1(v′) similarly. By
repeating this algorithm, we can find v with overwhelming probability. �	

Now, we are ready to prove Theorem 1.

Proof. Suppose that A0 and An−c are distinguishable. Then we will show that
we can solve the DLSE problem. Assume that there exists a distinguisher D
between A0 and An−c, namely,

|Pr[D(A0) = 1] − Pr[D(An−c) = 1]| >
1

p(n)
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for infinitely many n for some polynomial p(·). (A0 and An−c in the above
equation denote the uniform distribution over the set A0 and An−c, respectively.)
Then, for some j such that 0 ≤ j ≤ n − c − 1,

|Pr[D(Aj) = 1] − Pr[D(Aj+1) = 1]| >
1

np(n)
. (1)

We first show that we can find such an index j in polynomial time.
Let pi = Pr[D(Ai) = 1] for 0 ≤ i ≤ n − c − 1. We estimate each pi by the

sampling method of m experiments. Let p̂i denote the estimated value. By using
the Chernoff bound, we can show that

Pr[|p̂i − pi| > 1/8np(n)] ≤ 2e−2m/64(np(n))2 .

In other words, we can estimate all pi with accuracy ±1/8np(n) with high prob-
ability by using m = 2048n3(p(n))2 random samples. This means that we have,
for the j of eq.(1),

|p̂j+1 − p̂j| > 1/np(n) − 2/8np(n) = 3/4np(n).

Therefore, there exists at least one j which satisfies the above equation.
Our algorithm first finds an index i such that

|p̂i+1 − p̂i| > 3/4np(n),

by using p̂i. For this i, we see that

|pi+1 − pi| > 1/2np(n) (2)

by using the same argument as above.
We next show that D can be used as a prediction algorithm of Lemma 1.

Wlog, we assume that pi −pi+1 > 1/2np(n) from eq.(2). Then we can show that

1
2

Pr(D(Ai+1) = 0) +
1
2

Pr(D(Ai \ Ai+1) = 1) >
1
2

+
1

2np(n)
.

This means that
Pr[D(g, gu||b||0i

) = b) >
1
2

+
1

2np(n)
.

Thus D can be used as a prediction algorithm of Lemma 1 with ε = 1/2np(n).
We finally show that we can solve the DLSE problem by using Lemma 3. Sup-

pose that we are given (g, y) such that y = gv||0n−c

. In order to apply Lemma 3,
we first let t = 4/ε = 8np(n). We next guess the value of msblog t(v). For each
guessed value γ, we apply Lemma 3 and obtain ṽ. We then check if y = gṽ||0n−c

.
If so, we have found that v = ṽ. Otherwise, we try another guessed value. The
number of possible values of msblog t(v) is

2log t = t = 8np(n).

Therefore, the exhaustive search on msblog t(v) runs in polynomial time. Conse-
quently, we can find v in polynomial time with overwhelming probability. �	
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