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Abstract. We develop cryptographically secure techniques to guarantee uncon-
ditional privacy for respondents to polls. Our constructions are efficient and prac-
tical, and are shown not to allow cheating respondents to affect the “tally” by
more than their own vote—which will be given the exact same weight as that
of other respondents. We demonstrate solutions to this problem based on both
traditional cryptographic techniques and quantum cryptography.
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1 Introduction

In some instances, privacy is a matter of keeping purchase information away from tele-
marketers, competitors, or other intruders. In other instances, privacy translates to secu-
rity against traffic analysis, such as for web browsing; or to security of personal location
information. In still other instances, which we study in this paper, privacy is a precon-
dition to being able to obtain answers to important questions. Two concrete examples
of instances of latter are elections and surveys/polls.

While the first of these examples is the one of the two that has received—by far—the
most attention in the field of cryptography, there are important reasons to develop better
privacy tools for polling. Surprisingly, the two examples (namely, elections and polls),
while quite similar at a first sight, are very different in their requirements. Since it is
typically the case that there is more funding available for providing privacy in elections
than in surveys and polls, it follows that the tallying process in the former may involve
more costly steps than that in the latter—whether the process is electronic (using, e.g.,
mix networks) or mechanic. Second, while in the case of the voting scheme, we have
that users need to entrust their privacy with some set of authorities, it is often the case
that there is less trust established between the parties in polls. Yet another reason to
treat the two situations separately is that elections involve many more respondents than
polls typically do, thereby allowing a unique opinion (e.g., vote) to be hidden among
many more in the case of elections than in the case of polls. Finally, while elections
require as exact tallying as is possible, statistical truths are both sufficient and desirable
in polls. This allows the use of polling techniques that are very different from election
techniques—in terms of their cost; how tallying is done; and how privacy is protected.
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While not given much attention in cryptography, important work on polling has
been done in statistics. In particular, the randomized response technique (RRT) was
proposed by Warner [War65] in 1965, with the goal of being used in polls relating to
sensitive issues, such as drug abuse, sexual preferences and shoplifting. The underlying
idea behind Warner’s proposal (alternative RRTs have been proposed since then) is for
respondents to randomize each response according to a certain, and known, probability
distribution. More precisely, they answer the question truthfully with some probability
pct > 1/2, while with a fixed and known probability 1 − pct they lie. Thus, users can
always claim that their answer—if it is of the “incriminating” type—was a lie. When
evaluating all the answers of the poll, these lies become statistically insignificant given
a large enough sample (where the size of the sample can be simply computed from the
probability distribution governing lying.)

However, a pure RRT by itself is not well suited for all types of polls. E.g., it is be-
lieved that people are more likely to vote for somebody who leads the polls than some-
body who is behind. Therefore, it could be politically valuable not to lie (as required by
the protocol) in polls relating to one’s political opinion, and therefore have one’s “vote”
assigned a greater weight. (This is the case since people with the opposite opinion—if
honestly following the protocol—will sometimes cast a vote according to your opinion,
but you would never cast a vote according to their opinion, assuming you are willing
to cheat.) While the results of the poll remain meaningful if everybody cheats (i.e., tells
the truth with a probability different from that specified by the protocol), this is not the
case when only some people deviate from the desired behavior. Also, while one might
say that the increased weight in the polls is gained at the price of the cheater’s privacy,
this is not necessarily the case if the cheater claims to have followed the protocol, and
there is no evidence to the contrary.

To address the problem of cheating respondents in RRT, we propose the notion
of cryptographic randomized response technique (CRRT), which is a modification of
RRT that prevents cheating. We present three efficient protocols for CRRT; two of them
using classic cryptographic methods (and being efficient for different values of pct), and
one using quantum methods. Importantly, the quantum RRT protocol is implementable
by using contemporary technology. We give rigorous proofs of security for one of the
classical protocols and for the quantum protocol.

For all of our proposed solutions, the privacy of the respondent will be guaranteed
information-theoretically (more precisely, statistically). This is appropriate to stimulate
truthful feedback on topics that may affect the respondent for years, if not decades.
All proposed solutions also guarantee that the respondents reply based on the desired
probability distributions. Clearly, this requires that the respondent cannot determine the
outcome of the protocol (as viewed by the interviewer) before the end of the protocol.
Otherwise, he could simply halt the execution of the protocol to suppress answers in
which the communicated opinion was a lie. We will therefore require protocols to offer
privacy for the interviewer as well as for the respondent, meaning that the respondent
cannot learn what the outcome of the protocol is, as seen by the interviewer. (One could
relax this requirement slightly to allow the respondent to learn the outcome at the same
time as the interviewer does, or afterward.)
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While we believe that it is important to prevent the respondent from biasing the
outcome by selective halting (corresponding to the protocol being strongly secure), we
also describe simplified versions of our protocols in which this protection mechanism
is not available. Such simplified versions (which we refer to as weakly secure) can still
be useful in some situations. They may, for example, be used as the default scheme for
a given application—where they would be replaced by their strongly secure relatives
if too many interactions are halted prematurely. (The decision of when the shift would
be performed should be based on standard statistical methods, and will not be covered
herein.) The benefit of considering such dual modes is that the weakly secure versions
typically are computationally less demanding than the strongly secure versions.

Finally, we also discuss cryptographic enhancements to two alternative RRT tech-
niques. In the first, referred to as RRT-IQ, the respondent always gives the truthful
answer to the question he is presented with. However, with a certain probability, he is
presented with an Innocous Question instead of the intended question. A second alter-
native RRT technique is what is referred to as polychotomous RRT. In this version of
RRT, the respondent is given more than two possible options per question.

Other Applications. Our first protocol uses a novel protocol for information-
theoretically secure verifiable oblivious transfer that enables easier zero-knowledge
proofs on the properties of the transferred values. The new verifiable oblivious transfer
protocol may also be useful in other applications. While our main designated appli-
cation is polling, our techniques have also several other applications, in particular in
the privacy-preserving data-mining. They are also related to several fundamental cryp-
tographic problems. For example, our protocols Wagner’s technique are also efficient
implementations of the verifiable binary symmetric channel. (See Section 3.)

New Verifiable Commitment Scheme. One of our RRT protocols uses a novel (and as
far as we know, the first) two-round verifiable commitment scheme based on the (non-
verifiable) commitment scheme by Naor and Pinkas [NP01]. Verifiable commitment
schemes have a huge range of applications.4

Outline. We first review the details of the randomized response technique (Section 2),
after which we review some related work in cryptography (Section 3). We then intro-
duce the cryptographic building blocks of our protocols (Section 4). We then describe
the functionality of our desired solution in terms of functional black boxes and protocol
requirements (Section 5). In Section 6, we present our secure CRRT protocols. In Sec-
tion 7 we describe cryptographic solutions to other variants of the standard RRT. The
appendix contains additional information about the new oblivious transfer protocol and
about the quantum RRT protocol.

2 Short Review of Randomized Response Technique

When polling on sensitive issues like sexual behavior or tax evasion, respondents of-
ten deny their stigmatizing behavior due to the natural concern about their privacy. In

4 Slightly more efficient and recent verifiable commitment schemes that draw ideas from this
paper were proposed by the third author in [Lip03b]. The new schemes can be seamlessly
plugged into our first RRT protocol.
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1965, Warner [War65] proposed the Randomized Response Technique (RRT) for or-
ganization of polls where an unbiased estimator (UE, defined in any standard statistics
textbook) to the summatory information —the proportion of people belonging to a stig-
matizing group A—can be recovered, while the privacy of every individual respondent
is protected statistically. Since then, different variations of the RRT have been proposed
in statistics, see [CM88] for a survey. These different variations provide, for exam-
ple, smaller variance, smaller privacy breaches, optimality under different definitions
of privacy, and ability to answer polychotomous questions. Next we will give a short
overview of three types of RRT.

RRT-W. In Wagner’s original method (RRT-W), the respondents provide a truthful
answer to the question “Do you belong to a stigmatizing group A?” with a certain
fixed and publicly known probability pct > 1/2. With probability 1 − pct they lie—
i.e., answer the opposite question. Define πA to be the true proportion of the pop-
ulation that belongs to A (or whose type is t = 1). Let pyes be the proportion of
“yes” responses in the poll. In RRT-W, the a priori probability of getting a “yes”
response is pyes = pct · πA + (1 − pct)(1 − πA). In the case of N players, L of
which answer “yes”, an UE of pyes is p̂yes = L/N , the sample proportion of “yes”
answers. From this, one can simply compute the unbiased estimator of πA. This equals
π̂A = p̂yes−(1−pct)

2pct−1 = pct−1
2pct−1 + L

N ·
1

(2pct−1) . Similarly, the variance var(π̂A) and its UE
can be computed.

RRT-IQ. An alternative RRT is the innocuous question method (RRT-IQ), first analyzed
in [GASH69]. When using RRT-IQ, the respondent answers the sensitive question with
a probability pct, while with probability 1−pct to an unrelated and innocuous question,
such as “Flip a coin. Did you get tails?”. The RRT-IQ achieves the same goals as RRT-
W but with less variance [CM88], which makes it more suitable for practical polling.
Many other RRT-IQs are known, including some with unknown estimate of the the
proportion of the population belonging to the innocuous group.

PRRT. The RRTs for dichotomous polling (where the answer is yes or no) can be
generalized to polychotomous RRT (PRRT) where the respondent can belong to one
of the m mutually exclusive groups A1, . . . , Am, some of which are stigmatizing. A
typical sensitive question of this kind is “When did you have your first child?”, with an-
swers “1—while not married”, “2—within 9 months after the wedding” and “3—more
than 9 months after the wedding”. In many cultures, the answer 1 is stigmatizing, the
answer 3 is innocuous, while the answer 2 is somewhere inbetween. The interviewer
wants to know an UE for the proportion πi of people who belong to the group Ai,
i ∈ [1,m]. There are many possible PRRTs [CM88, Chapter 3]. One of the simplest
is the following technique PRRT-BD by Bourke and Dalenius [CM88]: first fix the
probabilities pct and p1, . . . , pm, such that pct +

∑

i∈[1,m] pi = 1. A respondent either
reveals her true type t ∈ [1,m] with probability pct, or answers i ∈ [1,m] with prob-
ability pi. To recover an UE of π := (π1, . . . , πm)T , define p := (p1, . . . , pm)T and
pans = (pans1 , . . . , pansm

)T , where pansi
is the proportion of people who answer i. Then

pans = pct · π + p, and hence π̂ = p−1
ct · (p̂ans − p).
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3 Related Cryptographic Work

In [KANG99], Kikuchi et al. propose techniques with similar goals as ours. Unaware
of the previous work on RRT, the authors reinvent this notion, and propose a protocol
for performing the data exchange. However, their protocol is considerably less efficient
than ours. Also, it does not offer strong security in our sense. This vulnerability makes
their protocol unsuitable for their main application (voting), as well as polls where re-
spondents may wish to bias their answer. Our protocols can be used in their framework.

The cryptographic RRT-W protocol can be seen as an implementation of an verifi-
able BSC, based on either verifiable oblivious transfer or more generally on a suitable
commitment scheme. (Protocols for other RRTs implement even more complex chan-
nels.) Crépeau and Kilian have showed how to construct (nonverifiable) oblivious trans-
fer protocols and commitment schemes from a (nonverifiable) BSC [CK88, Cré97], but
their opposite reductions are less efficient.

There is a very close relationship between our protocols and protocols for oblivious
transfer and for the fractional oblivious transfer [BR99]. While our goals are orthog-
onal to those of oblivious transfer, the techniques are hauntingly similar. In particular,
one of our CRRT protocols uses a protocol for oblivious transfer as a building block.
While in principle any such protocol can be used, it is clear that the properties of the
building block will be inherited by the main protocol. Therefore, in order to provide
unconditional guarantees of privacy for the respondents, we use a verifiable variant of
the information theoretic protocol for oblivious transfer, namely that proposed by Naor
and Pinkas [NP01]. We leave it as an open question whether the fractional oblivious
transfer protocols of [BR99] (that essentially implement verifiable erasure channel) can
be modified to work in our scenario (where we need to implement verifiable BSC in the
case of RRT-W and related information channels without erasure in the case of other
RRT protocols) or our protocols can be modified to work in their scenario; at least the
first seems clearly not to be the case.

Furthermore, our work is related to the work on Private Information Retrieval (PIR)
in that the goal of our interviewer is to retrieve some element from the respondent, with-
out the latter learning what was retrieved. More specifically, if some � out of n elements
represent the respondent’s opinion, and the remaining n− � elements represent the op-
posite opinion, then the interviewer will learn the respondent’s opinion with probability
�/n if he retrieves a random element. Of course, in order to guarantee the interviewer
that the elements are correctly formed, additional mechanisms are required.

In privacy-preserving data-mining a related data randomization approach has been
proposed: namely, the users input their data to the central database (e.g., a loyal cus-
tomer inputs the name of the product he bought), and the database maintainer needs to
do some statistical analysis on the database. However, the maintainer should not be able
to recover individual items. Database randomization in the case when the maintainer is
limited to the SUM function corresponds exactly to the RRT. For the same reasons as
in the RRT, one should not be able to bias the data. Our protocols are also applicable in
the privacy-preserving data-mining.
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4 Cryptographic Building Blocks

Define [a, b] := {a, a + 1, . . . , b − 1, b}. In the rest of this section we present some
cryptographic building blocks that will be used in our CRRT protocols. Throughout
this paper, assume that p is a large prime, and q, q | (p − 1), is another prime. Then
Z
∗
p has a unique subgroup G of order q. Let g and h be two generators of G, such

that nobody knows their mutual discrete logarithms logg h and logh g. We let k be the
security parameter, in our setting we can take k = q. In the next two protocols (the
Pedersen’s commitment scheme and the Naor-Pinkas oblivious transfer protocol), the
key K consists of public parameters,K := (g;h).

Pedersen’s Commitment Scheme. In this scheme [Ped91], a message µ ∈ Zq is com-
mitted by drawing a random ρ ←R Zq , and setting CK(µ; ρ) := gµhρ. The commit-
ment can be opened by sending µ and ρ to the verifier. This scheme is homomorphic,
i.e., CK(µ; ρ)CK(µ′; ρ′) = CK(µ + µ′; ρ + ρ′). Since it is also perfectly hiding and
computationally binding, it can be used as a building block in efficient zero-knowledge
arguments, such as protocols for arguing the knowledge of plaintext µ.

Verifiable 1-out-of-n Oblivious Transfer. In an
(
1
n

)
-oblivious transfer (OT) protocol,

the sender R has private input µ = (µ1, . . . , µn) ⊂ Mn (and no private output) for
some set M , while the chooser I has private input σ ∈ [1, n] and private output µσ . The
oblivious transfer (OT) protocol by Naor and Pinkas [NP01] guarantees information-
theoretic privacy for R, and computational privacy for I. Intuitively, the in the Naor-
Pinkas protocol, the sender oblivious-transfers one encryption key vσ that is used to
encrypt the actual database element µσ . The Naor and Pinkas [NP01] paper does not
specify the encryption method, mentioning only that the encryption scheme must be
semantically secure.

We propose to use Pedersen’s commitment scheme instead of an encryption scheme.
Let K = (g;h) be the public key of the commitment scheme. The proposed variant of
the Naor-Pinkas protocol works as follows:

1. I generates random a, b← Zq and sends (A,B,C)← (ga, gb, gab−σ+1) toR.
2. R performs the following, for i ∈ [1, n]: Generate random (ri, si). Compute wi ←
griAsi , compute an encryption yi ← CK(µi; vi mod q), where vi ← Bri(C ·
gi−1)si . Send (wi, yi) to I.

3. I computes wb
σ(= vσ) and recovers gµσ ← yσ/h

wb
σ .

We denote this version of Naor-Pinkas protocol, where yi is defined as yi = CK(µi, vi),
by

(
1
n

)
-OTK(µ;σ). As the end of this protocol, the verifier obtains commitments of all

elements µi. Thus, the sender can argue in zero-knowledge for all i ∈ [1, n] that the
values µi satisfy some required conditions. We call such an OT protocol verifiable.
(See [Lip03b] for a more precise definition.) I can “decrypt” yσ with the “key” vσ ,
given that the possible message space M is small enough for the exhaustive search on
the set {gx : x ∈M} to be practical. In the case of dichotomous RRT, M = {0, 1}.

We define the sender privacy of an oblivious transfer protocol as follows. The
chooser I∗ chooses σ and two different vectors, µ[1] = (µ[1]1, . . . , µ[1]n) ∈ Mn

and µ[2] = (µ[1]1, . . . , µ[1]n) ∈ Mn, such that µ[1]σ = µ[2]σ . Denote an I∗ that has
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made such choices by I∗(µ[1], µ[2]). He submits both tuples to the responder, who flips
a fair coin b ←R [1, 2]. After that, the chooser and the responder execute the protocol(
1
n

)
-OTK(µ[b];σ). After receiving µ[b]σ, I∗ guesses the value of b. Let Advlor

k (I∗,R)
be the probability that I∗ guesses the correct b, where probability is taken over the in-
ternal coin tosses of I∗ and R. We say that the oblivious transfer protocol is ε-sender-
private, if for any unbounded algorithm I∗, Advlor

k (I∗,R) ≤ ε.

Theorem 1. Let
(
1
n

)
-OTK(·; ·) be the described oblivious transfer protocol. (a) If a

malicious R∗ can guess the value of σ with advantage ε, then he can solve the Deci-
sional Diffie Hellman (DDH) problem with the same probability and in approximately
the same time. (b) This protocol is (m− d)(m− 1)/q ≤ m(m− 1)/q-sender-private,
where d := q mod m and m := |M |.

The security proof is omitted from this extended abstract due to the space constraints.

Zero-Knowledge Arguments. We will use zero-knowledge arguments (and not proofs)
of knowledge in our protocol, since they are at the very least statistically hiding and
computationally convincing. This property is important in a setting where a verifier
must not be able to extract additional information even if he is given infinite time.

Our first protocol uses only two very standard statistical zero-knowledge arguments.
The first one is an argument that a given value yi (Pedersen-)commits to a Boolean
value µi ∈ {0, 1}. One can use standard disjunctive proofs for this. We denote the (pos-
sibly parallelized) argument that this holds for i ∈ [1, n] by AKEncBool(y1, . . . , yn).
The second argument of knowledge, AKLin(y1, . . . , yn+1; a, b), is an argument that the
prover knows some set of values µi, for which yi is a commitment of µi, and such that
∑

i≤n µi + aµn+1 = b. This argument of knowledge can be constructed from Peder-
sen’s commitment scheme by computing y ←

∏

i≤n yi · ya
n+1 and then arguing that the

result y is a commitment to b. Note that such an argument of knowledge is secure only
when accompanied by zero-knowledge arguments of knowledge of the values µi; for
this purpose, we employ AKEncBool(y1, . . . , yn+1) as described above.

5 Security Definitions

Next, we will give the definition of a weakly and strongly secure cryptographic RRT
(CRRT). The security definitions will be in accordance with the ones in secure two-
party computation. We will also explain why these requirements are relevant in the case
of CRRT.

Assume we have a concrete variant of RRT, like RRT-W or RRT-IQ. Let Φp be the
function that implements the desired functionality. For example, in the case of RRT-W,
Φpct(x) is a randomized function that with probability pct returns x, and with prob-
ability 1 − pct returns 1 − x. The ideal-world CRRT protocol, has three parties, the
interviewer I, the respondent R, and the trusted third party T . R has her type, tR as
her private input, while I has no private input. Then, R communicates tR to T , who
selects the value rR ← Φpct(tR) and sends rR to I. After that, the private output of
I will be Φpct(tR), while R will have no private output. It is required that at the end
of the protocol, the participants will have no information about the private inputs and
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outputs of their partners, except for what can be deduced from their own private inputs
and outputs. In particular, I (resp. R) has no information about the value of tR (resp.
rR), except what they can deduce from their private inputs and outputs.

In an ideal world, exactly the next three types of attacks are possible: a party can
(a) refuse to participate in the protocol; (b) substitute his private input to the trusted
third party with a different value; or (c) abort the protocol prematurely. In our case, the
attack (c) is irrelevant, sinceR has no output. (Attack (c) models the case when the first
party halts the protocol after receiving his private output but before the second party
has enough information to compute her output.) Therefore, in an ideal-world RRT pro-
tocol, we cannot protect against a participant, who (a) refuses to participate in polling
(non-participation attack) or (b) claims that her type is 1 − tR, where tR is her real
type (absolute denial attack). No other attacks should be possible. Note that neither
(a) nor (b) is traditionally considered an attack in the context of polling or voting. The
argument here is game-theoretic, and the solutions must be proposed by mechanism
design, instead of cryptography: namely, a non-manipulable mechanism (e.g., the algo-
rithm with which the election winner is determined from all the collected votes) must
be designed so that answering against one’s true type (or non-participation) would not
give more beneficial results to the respondent than the truthful answer.

On the other hand, as we stated, no other attacks should be allowed. This require-
ment is very strict, so we will explain why it is necessary in the RRT’s context. Clearly,
one must protect the privacy of R, since this is the primarily goal of a RRT. It is also
necessary to protect the privacy of I, although the reason here is more subtle. Namely,
if R obtains any additional information about rR before the end of the protocol (for
example, if she suspects that rR �= tR), she might halt the protocol. Such a behavior by
a malicious respondent might cause a bias in the poll, as already explained. (Halting the
protocol while having no information on rR is equivalent to the non-participation at-
tack.) The third requirement on the protocol, of course, is that I either halts or receives
Φpct(x), where x is the input submitted by theR.

In a real-world implementation, we want to replace T by a cryptographic protocol
Π = (R, I) between R and I. This protocol (R, I) is assumed to be “indistinguish-
able” from the ideal-world protocol, that is, with a high probability, it should be secure
against all attacks that do not involve attacks (a) or (b). “Secure” means that the privacy
of R (resp. I) must be protected, if R (resp. I) follows the protocol, and that I either
halts, or receives the value Φpct(x), where x was the submitted value ofR. The security
of the respondent should be information-theoretical, while the security of interviewer
can be computational. That is, a secure CRRT-W protocol must have the next three
properties (here, k is the security parameter):

Privacy of Respondent: Let I∗ be an algorithm. After the end of the protocol execution
(R, I∗), I∗ will have no more information on tR than it would have had after the execu-
tion of the ideal world protocol. That is, assuming that viewI∗ is his view of the protocol
(R, I∗), define Advpri−r

k (R, I∗) := |Pr[I∗(viewI∗ , rR) = tR]− Pr[tR|rR]| , where
the probability is taken over the internal coin tosses of I∗ and R. We say that a CRRT
protocol is privacy-preserving for the respondent, if Advpri−r

k (R, I∗) is negligible (in
k) for any unbounded adversary I∗.
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Privacy of Interviewer: Let R∗ be an algorithm. Assume that I halts when R∗ halts.
After the end of the protocol execution (R∗, I), R∗ will have no more information
on tR than it would have had after the execution of the ideal world protocol. That is,
assuming that viewR∗ is her view of the protocol (I,R∗), define Advpri−i

k (R∗, I) :=
|Pr[R∗(viewR∗ , tR) = rR]− Pr[R∗(tR) = rR]| ,where the probability is taken over
the internal coin tosses ofR∗ and I. We say that a CRRT protocol is privacy-preserving
for the interviewer, if for any adversaryR∗, if Advpri−i

k (R∗, I) ≤ ε andR∗ takes τ steps
of computation then ετ is negligible (in k).

Correctness: Let R∗(x) be an algorithm with private input x to the protocol (R∗, I).
Assume that I halts whenR∗ halts. We require that at the end of the protocol execution
(R∗, I), I will either halt, or otherwise receive Φpct(x) with high probability. That
is, assuming that viewI is I’s view of the protocol (R∗, I), define Advcrct

k (R∗, I) :=
1 − Pr[I(viewI) = Φpct(x)|I does not halt] , where the probability is taken over the
internal coin tosses of I and R∗. We say that a CRRT protocol is correct, if for any
adversary R∗, if Advcrct

k (R∗, I) = ε and R∗ takes up to τ steps of computation then
ετ is negligible (in k).

We call a cryptographic RRT (CRRT) protocol weakly secure if it is privacy-
preserving for the respondent and correct. We call CRRT protocol (strongly) secure
if it is weakly secure and it is privacy-preserving for the interviewer. While a secure
CRRT protocol is preferable in many situations, there are settings where a weakly se-
cure CRRT protocol suffices, such as where halting can be easily detected and punished,
or means for state recovery prevent modifications between a first and second attempt of
executing the protocol.

6 Cryptographic RRT

We will propose three different CRRT-W protocols. In the first two protocols, the com-
mon parameters are pct = �/n > 1/2 for �, n ∈ Z; generators g and h whose mutual
discrete logs are unknown (at least byR); and K = (g;h).R has private input t = tR,
and I’s private output is rR.

CRRT Protocol Based on Oblivious Transfer. Our first implementation of RRT-W
is described in Protocol 1. The arguments of knowledge can be efficiently constructed,
see Sect. 4. Here, we can use AKLin(y1, . . . , yn+1; 2� − n; �) since

∑

i≤n µi + (2� −
n)µn+1 = � independently of the value of t. All the steps in this protocol must be
authenticated.

If we take the number of bits that must be committed as the efficiency measure
(communication complexity of the protocol), then our protocol has complexity O(n).
In the polling application, one can most probably assume that n ≤ 5. The security
proofs of this protocol follow directly from the properties of underlying primitives. As
a direct corollary from Theorem 1, we get that Protocol 1 is privacy-preserving for re-
spondent (Advpri−r

k (R, I∗) ≤ 2/q + O(1/q), where the constant comes in from the
use of statistically-hiding zero-knowledge arguments). It is privacy preserving for in-
terviewer, given the Decisional Diffie-Hellman (DDH) assumption. The correctness of
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PRECOMPUTATION STEP:

1. R prepares n random bits µi ∈ {0, 1} for i ∈ [1, n], such that
∑
µi = � if t = 1 and

∑
µi = n− � if t = 0. Additionally, she sets µn+1 ← 1− t.

2. I chooses an index σ ∈ [1, n].

INTERACTIVE STEP:

1. I and R follow
(
1
n

)
-OTK(gµ1 , . . . , gµn ;σ). I obtains gµσ , and computes µσ from that.

2. R performs zero-knowledge arguments AKEncBool(y1, . . . , yn+1) and
AKLin(y1, . . . , yn+1; 2� − n; �) with I as the verifier.

3. I halts if the verification fails.

Protocol 1: A secure CRRT-W protocol based on oblivious transfer

this protocol follows from the properties of the zero-knowledge arguments used under
the DDH assumption.

In a simplified weakly secure protocol based on the same idea, R commits
to all µi by computing and publishing yi ← CK(µi; ρi). Next, R argues that
AKEncBool(y1, . . . , yn+1), and AKLin(y1, . . . , yn+1; 2� − n; �). After that, I sends
σ toR, who then reveals µσ and ρσ . Upon obtaining these, I verifies the correctness of
the previous corresponding commitment, outputting µσ .

CRRT from Coin-Flipping. Protocol 2 depicts a secure CRRT-W protocol with com-
munication complexityΘ(d log2 n), where d := �1/(1− pct)�, and pct = �/n as previ-
ously. While in the common RRT application one can usually assume that n is relatively
small, this second protocol is useful in some specific game-theoretic applications where
for the best outcome, pct must have a very specific value. The idea behind this protocol
is that at least one of the integers µ+ν+ i� mod nmust be in interval [0, �−1], and at
least one of them must be in interval [�, n− 1]. Hence, I gets necessary proofs for both
the 0 and the 1 answer, which is sufficient for his goal. For his choice to be accepted,
he must accompany the corresponding r with R-s signature on his commitment on σ.

PRECOMPUTATION STEP:

1. R chooses a random µ←R [0, n− 1].
2. I chooses random ν ←R [0, n− 1] and σ ←R [0, d− 1].

INTERACTIVE STEP:

1. R commits to t and µ, and sends the commitments to I.
2. I commits to σ, by setting y ← CK(σ; ρ) for some random ρ. He sends ν and y toR,

together with a zero-knowledge argument that y is a commitment of some i ∈ [0, d− 1].
3. R verifies the argument. She computes values µ′

i, for i ∈ [0, d− 1], such that µ′
i = t⇐⇒

(µ+ ν + i� mod n) < �. She signs y, and sends her signature together with {µ′
i} and

the next zero-knowledge argument for every i ∈ [0, d− 1]: [µ′
i = t ⇐⇒ (µ+ ν + i�

mod n) < �].
4. After that, I sets rR ← µ′

σ . He will accompany this withR-s signature on the
commitment, so that bothR and third parties can verify it.

Protocol 2: A secure CRRT-W protocol based on coin-flipping
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PRECOMPUTATION STEP:

1. I chooses random u0 ←R [0, 1], u1 ←R [0, 1]. He generates quantum states |ψ0〉 =√
pct|u0〉+√1− pct|1− u0〉, |ψ1〉 = √pct|u1〉+√1− pct|1− u1〉.

2. R chooses a random i←R [0, 1].

INTERACTIVE STEP:

1. I sends |ψ0〉 and |ψ1〉 toR.
2. R sends i to I.
3. I sends ui toR.
4. R measures the state |ψi〉 in the basis |ψui〉 =

√
pct|ui〉+√1− pct|1− ui〉, |ψ⊥

ui
〉 =√

1− pct|ui〉 − √pct|1− ui〉 and halts if the result is not |ψui〉.
5. If the verification is passed, R performs the transformation |0〉 → |t〉, |1〉 → |1− t〉 on

the state |ψ1−i〉 and sends it back to I.
6. I measures the state in the basis |0〉, |1〉, gets outcome s. I outputs r ← ui ⊕ s.

Protocol 3: A quantum CRRT-W protocol.

A weakly secure version of this protocol is especially efficient. There, one should
set d ← 1, and omit the steps in Protocol 2 that depend on σ being greater than 1.
(E.g., there is no need to commit to σ anymore.) Thus, such a protocol would have
communication complexity Θ(log2 n). Now, pct > 1/2 (otherwise one could just do a
bit-flip on the answers), and hence d > 2. On the other hand, the privacy of respondents
is in danger if say pct ≥ 3/4. Thus, we may assume that d ∈ [3, 4]. Therefore, Protocol 2
will be more communication-efficient than Protocol 1 as soon as n/ log2 n > 4 ≥ d, or
n ≥ 16. The weakly secure version will be always more communication-efficient.

This protocol is especially efficient if the used commitment scheme is an integer
commitment scheme. In this case, to argue that (µ + ν + i� mod n) < � one only
must do the next two simple steps: first, argue that µ + ν + i� = z + en for some z,
e, and then, argue that z ∈ [0, � − 1]. This can be done efficiently by using the range
proofs from [Lip03a]. One can also use Pedersen’s scheme, but this would result in
more complicated arguments.

Quantum-Cryptographic RRT. The next quantum CRRT protocol (see Protocol 3)
works also for irrational pct, and provides a relaxed form of information-theoretic se-
curity to both parties. While not secure by our previous definitions, it provides mean-
ingfully low bounds on the probabilities of success for a cheater. Namely, (a) if dis-
honest, R cannot make his vote count as more than

√
2 votes: if pct = 1

2 + ε, then
padv ≤ 1

2 +
√

2ε (The full version of this paper has a slightly better bound with a
more complicated expression for padv). (b) if dishonest strategy allows I to learn t with
probability pct + ε, it also leads to I being caught cheating with probability at least
2pct−1

2 ε. This form of security (information-theoretic security with relaxed definitions)
is common for quantum protocols for tasks like bit commitment or coin flipping. The
security guarantees of our quantum protocol compare quite well to ones achieved for
those tasks. A desirable property of this quantum protocol is that it can be implemented
by using contemporary technology, since it only involves transmitting and measuring
single qubits, and no maintaining of coherent multi-qubit states.
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To show the main ideas behind quantum protocol, we now show how to analyze a
simplified version of protocol 3. The security proof for the full protocol is quite com-
plicated and will be given in the full version of this paper.

The simplified version of Protocol 3 is: (1) I chooses a random u ←R [0, 1], pre-
pares a quantum bit in the state |ψu〉 =

√
pct|u〉 +

√
1− pct|1 − u〉 and sends it to R;

(2) R performs a bit flip if her type t = 1, and sends the quantum bit back to I; (3)
I measures the state in the computational basis |0〉, |1〉, gets answer s. The answer is
r = u ⊕ s. If both parties are honest, the state returned by respondent is unchanged:√
pct|u〉 +

√
1− pct|1 − u〉 if t = 0 and

√
pct|1 − u〉 +

√
1− pct|u〉 if t = 1. Mea-

suring this state gives the correct answer with probability 1 − pct. Next, we show that
respondent is unable to misuse this protocol.

Theorem 2. For any respondent’s strategyR∗, the probability of honest interviewer I
getting r = 1 is between 1−pct and pct. Therefore, the previous protocol is both correct
and privacy-preserving for the interviewer.

Proof. We show that the probability of r = 1 is at most pct. The other direction is
similar. We first modify the (simplified) protocol by making R∗ to measure the state
and send the measured result to I, this does not change the result of the honest protocol
since the measurement remains the same. Also, any cheating strategy for R∗ in the
original protocol can be used in the new protocol as well. So, it is sufficient to bound
the probability of r = 1 in the new protocol. The answer is r = 1 if I sent |ψi〉 andR∗

sends back j, with i = j. By a well-known fact, the maximum success probability with
what one can distinguish two qubits is 1/2 + sinβ/2, where β is the angle between
two qubits. The rest is a calculation: to determine the angle β between |ψ0〉 and |ψ1〉,
it suffices to determine the inner product which is sinβ = 2

√
pct(1 − pct). Therefore,

cosβ =
√

1− sin2 β = 2pct − 1 and 1
2 + cos β

2 = pct. �


On the other hand, when using this simplified version, a dishonest interviewer I∗ can
always learn t with probability 1. Namely, it suffices to send the state |0〉. If t = 0,
R sends |0〉 back unchanged. If t = 1, R applies a bit flip. The state becomes |1〉. I
can then distinguish |0〉 from |1〉 with certainty by a measurement in the computational
basis.

Note that this is similar to a classical “protocol”, where I first generates a random u
and sends a bit i that is equal to u with probability pct and 1−uwith probability 1−pct.
R then flips the bit if t = 1 and sends it back unchanged if t = 0. The interviewer
XORs it with u, getting t with probability pct and 1 − t with probability 1 − pct. In
this ”protocol”,R can never cheat. However, I∗ can learn t with probability 1 by just
remembering i and XORing the answer with i instead of u. In the classical world, this
flaw is fatal because I cannot prove that he has generated i from the correct probability
distribution and has not kept a copy of i for himself. In the quantum case, I can prove
to R that he has correctly prepared the quantum state. Then, we get Protocol 3 with
I sending two states |ψu0〉 and |ψu1〉, one of which is verified and the other is used
for transmitting t. A detailed analysis of this protocol is omitted from this extended
abstract.
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7 Protocols for Other RRTs and Extensions

Protocol for Cryptographic RRT-IQ. Recall that in one version of RRT-IQ, the re-
spondent would reply with his true opinion tR with a rational probability pct = �/n,
while he would otherwise flip a coin and answer whether it came up tails. Like for
CRRT-W, it is important to guarantee the use of correct distributions. Protocol 1 can be
easily changed to work for this version of RRT-IQ. Instead of n random bits, R pre-
pares 2n random bits µi, so that either

∑n
i=1 µi ∈ {�, n − �} and

∑2n
i=n+1 µi = n/2

or
∑2n

i=n+1 µi ∈ {�, n− �} and
∑n

i=1 µi = n/2. She then uses standard techniques to
prove that the bits were prepared correctly, after which I chooses one of the 2n bits by
using the verifiable oblivious transfer protocol. (Here, of course, n must be even.)

Protocol for Cryptographic PRRT-BD. The next protocol is a modification of Pro-
tocol 1 as well. Let pi be such that pct +

∑

i∈[1,m] pi = 1, and assume that every
respondent has a type tR ∈ [1,m]. Assume pct = �/n, pi = �i/n and that pi = 0 if
i �∈ [1,m]. Assume D ≥ max(�, �1, . . . , �m) + 1. The respondent prepares n numbers
Dµi , such that 
{i : µi = tR} = �tR + �, and 
{i : µi = j} = �j , if j �= tR. Then the
interviewer and respondent will execute a variant of OT with choice σ, during which
the interviewer only gets to know the value µσ. Then the respondent argues that the sum
of all commitments is a commitment to the value

∑
�iD

µi + �Dj , for some j ∈ [1,m],
by using range-proofs in exponents [LAN02]. (A more efficient proof methodology
is available when D is a prime [LAN02], given that one uses an integer commitment
scheme.) Additionally, she argues that every single commitment corresponds to a value
Di for i ∈ [1,m], also using range-proofs of exponents [LAN02]. After the OT step, the
interviewer gets gµσ , and recovers µσ from it efficiently. (Note that m ≤ 10 is typical
in the context of polling.)

Extensions to Hierarchies of Interviewers. One can consider a hierarchy of interview-
ers, reporting to some central authority. If there is a trust relationship between these two
types of parties, no changes to our protocol would be required. However, if the cen-
tral authority would like to be able to avoid having to trust interviewers, the following
modifications could be performed. First, each respondent would have to authenticate
the transcript he generates, whether with a standard signature scheme, a group signa-
ture scheme, etc. Second, and in order to prevent collusions between interviewers and
respondents, the interviewers must not be allowed to know the choice σ made in a
particular interview. Thus, the triple (A,B,C) normally generated by the interviewer
during the Naor-Pinkas OT protocol would instead have to be generated by the central
authority, and kept secret by the same. More efficient versions of proxy OT satisfying
our other requirements are beneficial for this application.

Full version. Due to the space constraints, we had to omit the security proof of the
new verifiable oblivious transfer protocol and a detailed analysis of the quantum RRT
protocol. The full version of this paper is available from the IACR eprint archive.
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