Skip to main content

Lattice Profile and Linear Complexity Profile of Pseudorandom Number Sequences

  • Conference paper
Finite Fields and Applications (Fq 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2948))

Included in the following conference series:

Abstract

The relationship between two concepts measuring structural properties of pseudorandom numbers, namely the linear complexity profile and the lattice profile, is investigated. In particular an explicit formula expressing the lattice pro.le in terms of the linear complexity profile (and vice versa) can be provided once the interrelation is known in certain points. Moreover an intrinsic characterization of lattice profiles is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  2. Dorfer, G., Winterhof, A.: Lattice structure and linear complexity profile of nonlinear pseudorandom number generators. Appl. Algebra Engrg. Comm. Comput. 13, 499–508 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dorfer, G., Winterhof, A.: Lattice structure of nonlinear pseudorandom number generators in parts of the period. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002 (to appear, 2002)

    Google Scholar 

  4. Dorfer, G., Meidl, W., Winterhof, A.: Counting functions and expected values for the lattice profile at n (2003) (preprint)

    Google Scholar 

  5. Eichenauer, J., Grothe, H., Lehn, J.: Marsaglia’s lattice test and non-linear congruential pseudo random number generators. Metrika 35, 241–250 (1988)

    Article  MATH  Google Scholar 

  6. Eichenauer-Herrmann, J., Herrmann, E., Wegenkittl, S.: A survey of quadratic and inversive congruential pseudorandom numbers. In: Niederreiter, H., et al. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 66–97. Springer, New York (1998)

    Google Scholar 

  7. Jungnickel, D.: Finite Fields: Structure and Arithmetics. Bibliographisches Institut, Mannheim (1993)

    Google Scholar 

  8. Lehmer, D.H.: Mathematical methods in large-scale computing units. In: Proc. 2nd Sympos. on Large-Scale Digital Calculating Machinery, pp. 141–146. Harvard University Press, Cambridge (1951)

    Google Scholar 

  9. Marsaglia, G.: The structure of linear congruential sequences. In: Zaremba, S.K. (ed.) Applications of Number Theory to Numerical Analysis, pp. 249–285. Academic Press, New York (1972)

    Google Scholar 

  10. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15, 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  11. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  12. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  13. Niederreiter, H.: New developments in uniform pseudorandom number and vector generation. In: Niederreiter, H., Shiue, P.J.-S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 87–120. Springer, New York (1995)

    Google Scholar 

  14. Niederreiter, H., Shparlinski, I.E.: Recent advances in the theory of nonlinear pseudorandom number generators. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 86–102. Springer, Berlin (2002)

    Google Scholar 

  15. Niederreiter, H., Winterhof, A.: On the lattice structure of pseudorandom numbers generated over arbitrary finite fields. Appl. Algebra Engrg. Comm. Comp. 12, 265–272 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Niederreiter, H., Winterhof, A.: Lattice structure and linear complexity of nonlinear pseudorandom numbers. Appl. Algebra Engrg. Comm. Comp. 13, 319–326 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ripley, B.D.: The lattice structure of pseudo-random number generators. Proc. Roy. Soc. London Ser. A 389, 197–204 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  19. Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorfer, G. (2004). Lattice Profile and Linear Complexity Profile of Pseudorandom Number Sequences. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds) Finite Fields and Applications. Fq 2003. Lecture Notes in Computer Science, vol 2948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24633-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24633-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21324-6

  • Online ISBN: 978-3-540-24633-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics