
Enforcement of Communal Policies for P2P Systems?

Mihail Ionescu, Naftaly Minsky, Thu D. Nguyen

Department of Computer Science, Rutgers University
110 Frelinghuysen Rd, Piscataway, NJ, 08854

{ionescu, minsky, tdnguyen }@cs.rutgers.edu

Abstract. We consider the question of how to establish and enforcecommu-
nal policies for peer-to-peer (P2P) communities. Generally, members of each
P2P community must conform to an application specific communal policy if the
community is to operate smoothly and securely. An open question, however, is
how can such communal policies be established reliably and in a scalable man-
ner? While some communities can rely on voluntary compliance with their stated
policies, voluntary compliance will not be sufficient for many future P2P appli-
cations. We illustrate the nature of policies that must beenforcedto be reliable
by means of an example of a community that operates like Gnutella, but which
is established to exchange more sensitive and critical information than music
files. Then, we propose to employ the intrinsically distributed control mechanism
calledLaw-Governed Interaction(LGI) for the scalable enforcement of commu-
nal P2P policies. To demonstrate the efficacy of the proposed approach, we show
how our example policy can be formulated and enforced under LGI. Finally, we
modify an existing open-source Gnutella client to work with LGI and show that
the use of LGI incurs little overhead.

1 Introduction

Peer-to-peer (P2P) computing, where members of a community of agents interactdi-
rectlywith each other rather than through intermediary servers, is a potentially powerful
paradigm for collaboration over the Internet [1]. But, a P2P community can collaborate
harmoniously and securely only if all its members conform to a certaincommunal pol-
icy, or protocol. A Gnutella community, for example, relies on a flooding protocol to be
carried out correctly by its members, in their collaborative effort to execute searches;
and it depends on members not to issue too many queries, which might overburden
the community, resulting in a kind oftragedy of the commons. Generally speaking, the
purpose of such a policy is (a) to provide for effective coordination between members
of the community, and (b) to ensure the security of community members, and of the
information they share with each other. To achieve these purposes, the policy might im-
pose constraints on both the membership of the community and on the behavior of its
members when they are interacting with each other—all these in a highly application
dependent manner.

The question we address in this paperis how can such a communal policy be es-
tablished reliably and scalably? That is, how can one ensure—in a manner consistent

? This work was supported in part by Panasonic Information and Networking Technologies Lab-
oratory and by NSF grant No. CCR-98-03698.

with the decentralized nature of P2P communication—that all members of a given P2P
community comply with its communal policy?

There are essentially two ways for establishing communal policies: byvoluntary
compliance, and byenforcement. A policy P can be established byvoluntary compli-
anceas follows: onceP is declared as a standard for the community in question, each
member is simply expected to abide by it, or to be carefully constructed according to it,
or to use a widely available tool (or “middleware”), which is built to satisfy this policy.
For example, to join a Gnutella community, one employs a Gnutellaservent—several
implementation of which are available—which is supposed to carry out the Gnutella
flooding protocols for finding neighbors and information. This is entirely voluntary,
and there is no way for a member to ensure, or verify, that its interlocutors use correct
Gnutella servents.

However, for voluntary compliance to be reliable, the following two conditions need
to be satisfied: (a) it must be in the vested interest of everybody to comply with the given
policy P ; and (b) a failure to comply withP , by some member, somewhere, should not
cause any serious harm to anybody else. If condition (a) is not satisfied then there is
little chance forP to be generally observed. If condition (b) is not satisfied than one
has to worry about someone not observingP , maliciously or inadvertently, and thus
causing harm to others.

The boundary between communal policies that can, and cannot, be established by
voluntary compliance is not sharp. There are, in particular, communities whose policies
have been designed carefully to be resilient to some amount of violations; this is the
case, for example, for theFree Haven[2] andFreenet[3] communities, which attempt
to provide anonymity, and to prevent censorship. There are also communities whose
activity is not important enough to worry about violations, even if conditions (a) and
(b) above are not satisfied. A case in point is a Gnutella community when it is used to
exchange music files: the exchange of music is not a critical activity for most people
and so the risk of members violating the implicit communal policy is not considered
prohibitive.

But many of the policies required for P2P collaboration do not satisfy conditions (a)
and (b) above, and do not lend themselves to implementation by voluntary compliance
alone. Such policies, we maintain,need to be enforced to be reliable. We illustrate the
nature of such policies, and their enforcement difficulty, by means of the following ex-
ample of a community that operates like Gnutella, but which is established to exchange
more critical information than music files.

A Motivating Example: Consider a collection of medical doctors, specializing in a
certain area of medicine, who would like to share some of their experiences with each
other—despite the fact that they may be dispersed throughout the world, and that they
may not know each other personally. Suppose that they decided to form a Gnutella-like
P2P community, to help in the location and dissemination of files that each of them
would earmark for sharing with other community members.

The main difference between this case and music sharing is that the reliability of
the information to be exchanged could be critical, and cannot always be judged simply
by reading it. Moreover, some people, like representative of drug companies, may have
vested interest to provide false treatment advice to promote their drug. One way to en-

hance the trustworthiness of the information exchanged is to limit the membership in
the community totrustworthypeople, however this may be defined. PolicyMDS (for
“Medical Data Sharing”) below, attempts to do that, in a manner which is consistent
with the decentralized nature of P2P communication. This policy also attempts to pre-
vent the overloading of the community with too many messages, by budgeting the rate
in which members can pose their queries; and it helps the receiver of information to
evaluate its quality by providing him with thereputationof the source of each file he
receives. PolicyMDS is stated below, in somewhat abstract form.

1. Membership: An agentx is allowed to join this community if it satisfies one of the
following two conditions:
(a) If x is one of thefoundersof this community, as certified by a specific certifi-

cation authority (CA) called hereca1. (Note: we assume that there are at least
three such founders.)

(b) (i) if x is a medical doctor, as certified by the CA calledca2, representing the
medical board; and
(ii) if x garners the support of at least three current members of this community.

And, a regular member (not a founder) isremovedfrom this community if three
different members vote for his removal.

2. Regulating the Rate of Queries: Every query has a cost, which must be paid for
from the budget of the agent presenting it. (We will elaborate later on the cost of
different queries, and on the way in which agents get their budgets.)

3. Reputation: Each member must maintain areputation valuethat summarizes other
members’ feedback on the quality of his responses to posted queries. Further, this
reputation must be presented along with every response to a query. (Again, we will
elaborate on the exact mechanism for maintaining this reputation later.)

It should be clear that this policy cannot be entrusted to voluntary compliance. The
question is: how can one enforce a single policy of this kind over a large and distributed
community? A recent answer given to this question [4], in the context of distributed
enterprise systems, is to adopt the traditional concept ofreference monitor[5], which
mediates all the interactions between the members of the community. Of course, a single
reference monitor is inherently unscalable, since it constitutes a dangerous single point
of failure, and could become a bottleneck if the system is large enough. This difficulty
can be alleviated when dealing with static (stateless) policies, simply by replicating the
reference monitor—as has been done recently in [6].

But replication is very problematic for dynamic policies, such as ourMDS, which
are sensitive to the history, orstate, of the interactions being regulated. This is because
every state change sensed by one replica needs to be propagated, synchronously, to all
other replicas of the reference monitor. In the case of ourMDSpolicy, in particular, all
replicas would have to be informed synchronously about every request made by each
member, lest this member circumvents his budget by routing different requests through
different replicas. Such synchronous update of all replica could be very expensive, and
is quite unscalable.

We propose in this paper to employ the intrinsically distributed control mechanism
calledLaw-Governed Interaction(LGI) [7, 8] for the governance of P2P communities.

LGI is outlined in Section 2. To demonstrate the efficacy of this approach for P2P
computing, we show, in Section 3, how our example policyMDScan be formulated and
enforced under LGI. This is carried out in a strictly decentralized and scalable manner,
using the Gnutella file-sharing mechanism. Finally, to show that LGI imposes only a
modest amount of overhead, we have modified an existing Gnutella servent to inter-
operate with LGI. Section 4 presents the measured overhead, both in terms of increased
latency for each message-exchange and overheads of running the LGI law enforcement
middleware.

2 Law-Governed Interaction: An Overview

Broadly speaking, LGI is a message-exchange mechanism that allows anopen groupof
distributed agents to engage in a mode of interactiongovernedby an explicitly specified
policy, called thelaw of the group. The messages thus exchanged under a given lawL
are calledL-messages, and the group of agents interacting viaL-messages is called a
communityC, or, more specifically, anL-communityCL. The concept of LGI has been
originally introduced (under a different name) in [7], and has been implemented via a
middleware called Moses [8].

By the phrase “open group” we mean (a) that the membership of this group (or,
community) can change dynamically, and can be very large; and (b) that the members
of a given community can be heterogeneous. In fact, we make here no assumptions
about the structure and behavior of the agents1 that are members of a given community
CL, which might be software processes, written in an arbitrary languages, or human
beings. All such members are treated as black boxes by LGI, which deals only with the
interaction between them viaL-messages, making sure it conforms to the law of the
community. (Note that members of a community are neither prohibited from non-LGI
communication nor from participation in other LGI-communities.)

For each agentx in a given communityCL, LGI maintains what is called thecontrol-
stateCSx of this agent. These control-states, which can change dynamically, subject to
law L, enable the law to make distinctions between agents, and to be sensitive to dy-
namic changes in their state. The semantics of control-states for a given community is
defined by its law and can represent such things as the role of an agent in this com-
munity, and privileges and tokens it carries. For example, under lawMDS to be intro-
duced in Section 3, as a formalization of our exampleMDS policy, the termmember
in the control-state of an agent denotes that this agent has been certified as a doctor and
admitted into the community.

We now elaborate on several aspects of LGI, focusing on (a) its concept of law, (b)
its mechanism for law enforcement and their deployment, and (c) its treatment of digital
certificates. Due to lack of space, we do not discuss here several important aspects of
LGI, including theinteroperabilitybetween communities and the treatment ofexcep-
tions. For these issues, and for a more complete presentation of the rest of LGI, and of
its implemetation, the reader is referred to [8–10].

1 Given the popular usages of the term “agent,” it is important to point out that we do not imply
by it either “intelligence” nor mobility, although neither of these is being ruled out by this
model.

2.1 The Concept of Law

Generally speaking, the law of a communityC is defined over a certain types of events
occuring at members ofC, mandating the effect that any such event should have—this
mandate is called theruling of the law for a given event. The events subject to laws,
calledregulated events, include (among others): thesendingand thearrival of anL-
message; thecoming due of an obligationpreviously imposed on a given object; and
thesubmission of a digital certificate. The operations that can be included in the ruling
of the law for a given regulated event are calledprimitive operations. They include,
operations on the control-state of the agent where the event occured (called, the “home
agent”); operations on messages, such asforward anddeliver ; and the imposition
of an obligation on the home agent.

Thus, a lawL can regulate the exchange of messages between members of anL-
community, based on the control-state of the participants; and it can mandate various
side effects of the message-exchange, such as modification of the control states of the
sender and/or receiver of a message, and the emission of extra messages, for monitoring
purposes, say.

On The Local Nature of Laws: Although the lawL of a communityC is global in that
it governs the interaction between all members ofC, it is enforceablelocally at each
member ofC. This is due to the following properties of LGI laws:

– L only regulates local events at individual agents,
– the ruling ofL for an evente at agentx depends only one and the local control-

stateCSx of x .
– The ruling ofL at x can mandate only local operations to be carried out atx , such

as an update ofCSx, the forwarding of a message fromx to some other agent, and
the imposition of an obligation onx .

The fact that the same law is enforced at all agents of a community gives LGI its neces-
sary global scope, establishing acommonset of ground rules for all members ofC and
providing them with the ability to trust each other, in spite of the heterogeneity of the
community. And the locality of law enforcement enables LGI to scale with community
size.

Finally, we note here that, as has been shown in [8], the use of strictly local laws does
not involve any loss in expressive power. That is, any policy that can be implemented
with a centralized reference monitor, which has the interaction state of the entire com-
munity available to it, can be implemented also under LGI—although the efficieny of
the two types of implementation can vary.

On the Structure and Formulation of Laws: Abstractly speaking, the law of a com-
munity is a function that returns aruling for any possible regulated event that might
occur at any one of its members. The ruling returned by the law is a possibly empty
sequence of primitive operations, which is to be carried out locally at thehomeof the
event.

In the current implementation of LGI, a law can be written either in Prolog or Java.
Under the Prolog implementation, which will be assumed in this paper, a lawL is
defined by means of a Prolog-like programL which, when presented with a goale,

representing a regulated event at a given agentx , is evaluated in the context of the
control-state of this agent, producing the list of primitive-operations representing the
ruling of the law for this event.

In addition to the standard types of Prolog goals, the body of a rule may contain two
distinguished types of goals that have special roles to play in the interpretation of the
law. These are thesensor-goals, which allow the law to “sense” the control-state of the
home agent, and thedo-goalsthat contribute to the ruling of the law. Asensor-goalhas
the formt@CS, wheret is any Prolog term. It attempts to unifyt with each term in the
control-state of the home agent. Ado-goalhas the formdo(p) , wherep is one of the
above mentioned primitive-operations. It appends the termp to the ruling of the law.

The Concept of Enforced Obligation:Obligations, along with permissions and pro-
hibitions, are widely considered essential for the specification of policies for financial
enterprises [11]. The concept of obligation being employed for this purpose is usually
based on conventionaldeontic logic[12], designed for the specification of normative
systems, or on some elaborations of this logic, such as taking into account interacting
agents [13]. These types of obligations allows one to reason about what an agent must
do, but they provide no means for ensuring that what needs to be done will actually be
done [14]. LGI, on the other hand, features a concept of obligation that can be enforced.

Informally speaking, an obligation under LGI is a kind ofmotive force. Once an
obligation is imposed on an agent—which can be done as part of the ruling of the law
for some event at it—it ensures that a certain action (calledsanction) is carried out at
this agent, at a specified time in the future, when the obligation is said tocome due—
provided that certain conditions on the control state of the agent are satisfied at that
time. The circumstances under which an agent may incur an obligation, the treatment
of pending obligations, and the nature of the sanctions, are all governed by the law of
the community. For a detailed discussion of obligations the reader is referred to [8].

arrived

communication
network

Legend:

a regulated event----------------------

a primitive operation ------ --------

sent

x

forward

CS
x

controller

L

CS

controller

L

y

agent

y

deliver
agent

Fig. 1.Law enforcement in LGI. Specifically, this figure shows the sequence of events and opera-
tions resulting from the sending of anL-message fromx to y. When x initiates the send, asent
event is triggered atTx, which in turns causes a ruling atTx that updatesCSx and forwards the
message toTy . When the message arrives atTy , anarrived event is triggered, which in turns
causes a ruling atTy that updatesCSy and delivers the message toy.

2.2 The Law-Enforcement Mechanism

We start with an observations about the term “enforcement,” as used here. We do not
propose to coerce any agent to exchangeL-messages under any given lawL. The role
of enforcement here is merely to ensure thatany exchange ofL-messages, once under-
taken, conforms to lawL. More specifically, our enforcement mechanism is designed to
ensure the following properties: (a) the sending and receiving ofL-messages conforms
to law L; and (b) a message received under lawL has been sent under the same law
(i.e., it is not possible to forgeL-messages).

Since we do not compel anybody to operate under any particular law, or to use
LGI, for that matter, how can we be sure that all members of a community will adopt
a given law? The answer is that an agent may beeffectively compelledto exchangeL-
messages, if he needs to use services provided only under this law, or to interact with
agents operating under it. For instance, if the members of the medical information-
sharing community posed as an example in Section 1 only acceptMDS-messages,
then anybody wishing to participate in the community would be compelled to send
MDS-messages to them.

Distributed Law-Enforcement: Broadly speaking, the lawL of communityC is en-
forced by a set of trusted agents calledcontrollers, that mediate the exchange ofL-
messages between members ofC. Every memberx of C has a controllerTx assigned to
it (T here stands for “trusted agent”) which maintains the control-stateCSx of its client
x . And all these controllers, which are logically placed between the members ofC and
the communications medium (as illustrated in Figure 1) carry thesame lawL. Every
exchange between a pair of agentsx andy is thus mediated bytheir controllersTx and
Ty, so that this enforcement is inherently decentralized. Although several agents can
share a single controller, if such sharing is desired. (The efficiency of this mechanism,
and its scalability, are discussed in [8].)

Controllers aregeneric, and can interpret and enforce any well formed law. A con-
troller operates as an independent process, and it may be placed on any trusted machine,
anywhere in the network. We have implemented a prototypecontroller-service, which
maintains a set of active controllers. To be effective in a P2P setting, such a service
would likely need to be well dispersed geographically so that it would be possible to
find controllers that are reasonably close to their prospective clients.

On the Basis for Trust Between Members of a Community:For a members of an
L-community to trust its interlocutors to observe the same law, one needs the following
assurances: (a) that the exchange ofL-messages is mediated by controllers interpreting
thesame lawL; (b) that all these controllers arecorrectly implemented; and (c) all con-
trollers run on trusted executing environments that will not maliciously cause them to
misbehave even when they are correctly implemented. If these conditions are satisfied,
then it follows that ify receives anL-message from somex , this message must have
been sent as anL-message; in other words, thatL-messages cannot be forged.

To ensure that a message forwarded by a controllerTx under lawL would be han-
dled by another controllerTy operating under thesamelaw, Tx appends a one-way
hash [15]H of law L to the message it forwards toTy . Ty would accept this as a valid
L-message underL if and only if H is identical to the hash of its own law.

With respect to the correctness of the controllers and their execution environments,
controllers must authenticate themselves to each other via certificates signed by a cer-
tification authority acceptable to the lawL. Note that different laws may, thus, require
different certification levels for the controllers (and their execution environments) used
for its enforcement. Messages sent across the network must be digitally signed by the
sending controller, and the signature must be verified by the receiving controller. Such
secure inter-controller interaction has been implemented in Moses ([16]).

On the Deployment of LGI: To deploy LGI, one needs a set of trustworthy controllers
and a way for a prospective client to locate an available controller. While this require-
ment is reminiscent of the centralized reference monitor solution, there is a critical
difference:controllers can be distributed to limit the computing load placed on any one
node, allow easy scaling, and avoid a single point of failure.Further, due to the lo-
cal enforceability of laws, each controller only has to mediate interactions that involve
agents connected to itself.

One possible deployment strategy for P2P computing is to run controllers on a sub-
set of the peers that are trusted by the community. A new member can query its peers
for the addresses of these controllers. As the community grows, this subset of trusted
peers can grow to accommodate the additional computing load. A second possible solu-
tion would be to use a controller service. An example of an analogous non-commercial
service is the set of Mixmaster anonymous remailers [17].

3 Regulating Gnutella-Based Information Sharing: A Case Study

We now show how the policyMDS introduced in Section 1 can be explicitly specified
and enforced using LGI. To provide a concrete context for our study, we assume that
the community of doctors in question are sharing their medical data using Gnutella. We
start this section with an outline of the critical aspects of the Gnutella protocol. We then
introduce the law in three parts, the first part regulates membership, the second regulates
the searches carried out by members, and the third part deals with the reputation of
members. For each part, we first motivate the appropriate portion of policyMDS, then
expand on the policy itself as necessary, and, finally, discuss the details of the law
itself—although we do not present the last part of the law, which deals with reputation,
because of space constraints; we instead refer the interested reader to [18].

Finally, before proceeding, we note that we did not choose Gnutella because it is
necessarily the best P2P system. Rather, we choose Gnutella because: (a) it is areal
protocol being used by a thriving community of users, (b) there are many different
implementations of the Gnutella servent so that the community cannot rely on built-
in safe-guards to enforce acceptable behavior, and (c) its protocol is relatively simple,
ensuring that our study is not bogged down with many irrelevant details.

3.1 Gnutella: A Brief Overview

The Gnutella protocol is comprised of three main parts:

Joining An agent joins a Gnutella community by simply connecting (using TCP) to
one or more active members.

Peer discovery After successfully contacting at least one active member, the joining
agent uses a floodingping/pongprotocol to discover more active members (peers).
This protocol is very similar to the search protocol that we will describe next.

Search An agent searches for shared content by flooding a query through the com-
munity. In particular, the querying agent sends its query along with a time-to-live
(TTL) to a subset of its known peers. When a peer receives a query, (a) it decre-
ments the TTL and forwards the query to a subset of its known peers if the TTL
is greater than 0; and (b) it searches its local store for files matching the query. If
relevant files are found, it sends aquery-hitmessage containing the names of the
matching files directly to the querying agent. As the querying agent receives query-
hit messages, it decides which file to download (if any) and does so by directly
contacting the source of the appropriate query-hit message using HTTP.

3.2 Regulating Membership

We start our case study by considering the problem of controlling membership. While
the set of criteria for admission and removal can be arbitrarily complex, fundamentally,
there seems to be three concerns for our supposed community: (a) members should be
doctors since sensitive medical data should not be shared with non-doctors, (b) members
should have some level of trust in each other—again, because of the sensitive nature of
the information being shared, and (c) if a member misbehaves, it must be possible to
revoke his membership. These requirements led us to the membership part of policy
MDSpresented in Section 1.

Figure 2 gives the first part of lawLMDS, which implements the membership por-
tion of policy MDS. This, like other LGI laws, is composed of two parts: apreamble
and a set ofrules. Each rule is followed by a comment (in italic), which, together with
the explanation below, should be understandable even for a reader not well versed in
the LGI language of laws (which is based on Prolog).

The preamble of lawLMDS has several clauses. The first two specify that this
community is willing to accept certificates from two certifying authorities,ca1 and
ca2 , identified by the given public keys. Then, there is aninitialCS clause that
defines the initial control-state of all agents in this community, which in this case is
empty. We now examine the rules of this law in detail, showing how they establish the
provisions of the policy at hand.

Rule R1 allows the bootstrapping of a community by admitting three founding
members certified byca1 . RuleR2 allows an agent wishing to join the community
to present a certificate fromca2 to prove that its user is a doctor. Once certified as a
founder, the term member will be inserted into the agent’s control state.

RuleR3 specifies that an agent wishing to sponsor the entry of a new member must
already be a member of the community. Furthermore, this rule specifies that a member
can only sponsor each distinct agent at most once. If this agent has previously sent per-
mission to Y to join, return a message saying already accepted Y in the past. RuleR4
specifies that if three members have approved the admittance of an agent, then that agent
is admitted to the community as a new member. Each message granting permission is
also delivered to the destination agent. Note the distributed enforcement of the approval
process: for example, the controller of the approver ensures that it is a member while

Preamble:
authority(ca1, CA1PublicKey). authority(ca2, CA2PublicKey). initialCS([]).

R1.
certified(X,cert(issuer(ca1),subj(X),attr([found(X)])))

:- do(+member).
The agent is accepted into the community without requiring approval from already admit-
ted members if it can present a certificate from ca1 stating that it is a founder.

R2.
certified(X,cert(issuer(ca2),subj(X),attr([md(X)])))

:- do(+certified).
The agent must establish that it is representing a doctor by presenting a certificate from
ca2 with the attribute MD.

R3.
sent(X,allow,Y) :- member@CS,

if (friend(Y)@CS) then do(deliver(X,alreadyAccept,X))
else do(+friend(Y)), do(forward(X,allow,Y)).

If the agent attempts to send a message approving admittance of another agent, forward the
message if (a) the agent has membership, and (b) have not previously given Y permission
to join.

R4.
arrived(X,allow,Y) :- certified@CS,

do(deliver),
if (nrfriends(M)@CS) then
if (M>=3) then do(+member), do(-nrfriends(M)), else
do(incr(nrfriends(M),1)), else do(+nrfriends(1)).

When 3 approval messages have been received, the agent will be allowed to join the com-
munity (by having the member term added to its control state).

R5.
sent(X,revoke,Y) :- member@CS,

if (enemy(Y)@CS) then do(deliver(X,alreadyRevoke,X))
else do(+enemy(Y)), do(forward).

The agent (X) can request that another agent (Y) to be removed from the community by
sending a revoke message to Y.

R6.
arrived(X,revoke,Y) :- member@CS, if (nrenemies(M)@CS) then

if (M>=4) then do(-member), do(-nrenemies(M)), else
do(incr(nrenemies(M),1)), else do(+nrenemies(1)).

If 4 current members have requested removal of this agent, then the agent is removed from
the community.

Fig. 2.LMDS, part 1: regulating membership.

the controller of the agent being sponsored ensures that it is a certified doctor. This dis-
tributed regulation is important for scalability because the requesting agent’s controller
does not have to gather information about the granting agent; it simply knows that, ac-
cording to the law, if it gets a reply granting permission, the proper conditions must
have been checked and met at the granting agent’s controller.

Finally, rulesR5 andR6 regulate the removal of members from the community in
a similar manner to how admittance is regulated.

3.3 Avoiding the Tragedy of the Commons

We now turn our attention to preventing members from abusing the community. In
particular, we regulate the rate with which each member can make queries, to ensure that
careless and/or selfish members cannot overwhelm the community. Before presenting
the law, we expand on the synopsis of this part of policyMDSgiven in Section 1.

Policy MDS, part (2): Limiting Query Rates

2(a) Each agent has a query budget that starts at 500, and is incremented by 500 every
minute up to a maximum of 50,000.

2(b) Each query has a cost as follows:Cost= n×2TTL, wheren is the number of peers
that the querying agent sends the query to and TTL is the query’s TTL.

2(c) An agent is only allowed to pose a query if its budget is greater than the cost of the
query. When the query is posed, the cost is deducted from the agent’s query budget.

Note that even in the above expanded policy, we have chosen to ignore the issue of
ensuring that agents faithfully follow the Gnutella flooding protocol. By ignoring this
issue, we are ignoring a number of possible threats: for example, an agent might in-
crease the TTL of a peer’s query instead of decreasing it, using searches from other
members as a method for denial-of-service attack on the community, or an agent might
selectively refuse to forward queries from a subset of community members (perhaps be-
cause the owner of the agent doesn’t like this subset of members). We have chosen not
to address this issue, however, for two reasons: (1) for simplicity of presentation and to
meet the space constraint; and (2) in our view, carelessness and/or selfish self-interest,
as represented by someone trying to index the communal set of information [19], is a
much more likely threat than a malicious insider attempting to perpetrate a denial-of-
service attack.

Figure 3 shows the second part of our law, which implements the second part of
policy MDS described above. In Figure 3, thepreamble is first modified to have
a budget term that starts with 500 credits and an obligation imposed to be fired in 60
seconds. The firing of the obligation is handled by RuleR9, which increases the agent’s
budget by 500 credits and then reimpose the obligation to be fired in another 60 seconds.
Thus, effectively, the agent’s budget is increased by 500 credits every minute until a cap
of 50,000 is reached.

RuleR7 deducts from the budget whenever the agent sends a query; if the agent
does not have enough budget accumulated, the message is dropped and the agent noti-
fied with a message saying it has exceeded its budget. The specific values chosen were
aimed at allowing a normal Gnutella search of(TTL = 7, fan-out= 3) every minute
and a maximal search of(TTL = 14, fan-out= 3), which can be posted once every 100
minutes. Clearly, these parameters can be changed easily to accommodate the specific
needs of the community. Also, note that we do not account for large fan outs once the
query reaches an intermediary peer. We could handle this by complicating the law but
do not do so here because there’s no incentives for intermediary nodes to use huge fan

Preamble:
initialCS([budget(500)]).
obligation(budgetincr,60).

R7.
sent(X,query(S,T,TTL),Y) :- member@CS, if (X=S) then

budget(B)@CS, pow(2,TTL,C),
if (B >= C) then do(decr(budget(B),C)),
do(forward(X,query(T,TTL),Y))
else do(deliver(X,nobudget,X)),
else do(forward(X,query(T,TTL),Y)).

Only an accepted agent can send query messages to the community. The content of the
query is contained in T. If the agent is the source of the query, then a charge of2TTL will
be assessed against its budget.

R8.
arrived(X,query(S, T,TTL),Y) :- member@CS,

do(deliver(X,query(T,TTL),Y)).
On the arrival of a query message, deliver it to the destination agent if it has been certified
and accepted into the community. We assume that the agent itself is responsable for the
forwarding of query messages.

R9.
obligationDue(budgetincr) :- budget(M)@CS,

if (M < 50,000) then do(incr(budget(M),500)),
do(imposeObligation(budgetincr,60)).

Impose an obligation to be fired every 60 seconds to increase the agent’s messaging budget
by 500.

Fig. 3.LMDS, part 2: controlling querying behaviors.

outs (unless that node was malicious and wanted to perform a denial of service attack,
a threat that we are explicitly not addressing).

Finally, note that we currently only keep a budget for query messages. Ping mes-
sages are costly as well. A community may or may not choose to regulate ping mes-
sages. The governance of these messages would be basically the same as that for the
query messages so we do not consider them further here.

3.4 Maintaining Reputations

The last part of our case study involves a simple yet general reputation system to aid
members in assessing the reliability of information provided by each others. We do
not include the law itself because of space constraints. Rather, we expand on the third
part of policyMDS to give the general idea of the reputation system and then refer the
interested reader to [18] for the details of the law.

A number of interesting reputation systems have already been designed [20, 21].
Most of these systems, however, have relied on a centralized server for computing and
maintaining the reputations. Here, we show how a reputation system could be built us-
ing LGI’s distributed enforcement mechanism. This reputation system is interesting be-

cause it maintains the reputation local to each peer (or, more precisely, local to the con-
troller of that peer) so that the reputation can easily be embedded in every peer-to-peer
query exchange without involving a third party. This allows scalable, per-transaction,
on-line updates of reputations.

Policy MDS, part 3: Reputation

3(a) Each member of a community has a numeric reputation in the range of−1000 to
1000, which is attached to every query-hit message so that the querier can decide
whether to trust the answer or not. Larger numeric reputation values imply greater
trust.

3(b) Each member starts with a reputation of 0 when it first joins the community. When-
ever a member receives a query-hit message from a peer, it is allowed to rate the
quality of the answer given by that peer. This rating can range from−10 to 10 and
is simply added to the peer’s reputation. A member is allowed to make only one
rating per answering peer per query.

3.5 Maintaining Persistent State

To close the section, we observe that peers in P2P networks often represent people; for
example, in our example community, each member represents a doctor. Thus, persistent
state such as membership and reputation should be associated with the person, not with
the particular agent that he happens to be using at the moment. This is because as
the real person moves around (between work and home, say), he may wish to employ
different agents—the one installed on his work computer when at work and the one
installed on his home computer when at home—at different locations. We use a feature
of LGI calledvirtual agents[22] to provide the needed persistency. Again, we refer the
interested reader to [18] for the details of this implementation.

4 Performance

We have modified the Furi Gnutella agent [23] to work with LGI to show that it is prac-
tical to make software “LGI-aware” as well as to measure the imposed overheads. This
LGI-aware (Furi-LGI) version preserves the full functionality of the original agent—
it searches for files, keeps a list of active neighbors, etc.—but passes most messages
(per lawLMDS) through an LGI controller instead of sending directly to peers on the
Gnutella network.

To give an idea of the cost of using LGI, we measured two aspects of Furi-LGI:
(1) the added latency of passing through LGI’s controllers for a pair of message ex-
change, and (2) the overhead of running a controller. Measurements were taken on two
440 MHz Sparc Ultra10 machines connected by an Ethernet hub. Results are as fol-
lows. A query/query-hit message exchange between two normal Furi agents took 4ms
compared to 15ms for two Furi-LGI agents. The added overhead for Furi-LGI is due
to 4 LGI evaluations and 4 additional inter-process but intra-machine messages. A con-
troller supporting 35 constantly interacting clients used on average 20% of the CPU and
30MB of main memory. While we did not measure the system extensively, these results

provide evidence that LGI does not impose undue overheads and so provides a practical
vehicle for establishing communal policies for P2P systems.

5 Related Work

While current P2P systems such as Gnutella [24], and KaZaA [25] have been very
successful for music and video sharing communities, little attention has been paid to
community governance. The very fact that these communities are not regulating them-
selves has led to the illegal sharing of material and so much of the legal trouble between
these communities and the entertainment industries.

Much recent work has studied the problem of how to better scale P2P systems to
support an enormous number of users [26–29]. These efforts have typically not concern
themselves with security, however, which is the focus of our work.

Two recent works have considered how to implement reputation systems for P2P
communities: Cornelli et. al have considered implementing a reputation-aware Gnutella
servent [30] while Aberer and Despotovic have considered implementing a binary trust
system in the P-Grid infrastructure [31]. These efforts take a fundamentally different ap-
proach than ours in that they do not rely on a TCB as we do (i.e., the LGI controllers).
Instead, they propose a system that uses historical information about past pair-wise
interactions among the members of a community to compute a trust metric for each
member. The underlying premise is that if only a few individuals are misbehaving, then
it should be possible to identify these individuals by statistical analysis of the main-
tained historical information. Thus, these efforts differ from our work in two critical
dimensions. First, these efforts limit their focus to reputation whereas our work uses
reputation as a case study, aiming at the broader context of governing P2P communi-
ties. Second, these efforts rely on members of the community to participate in a reliable
P2P storage and retrieval infrastructure while we rely on the network of controllers to
provide a TCB.

A related effort that attempts to provide a more general framework than Cornelli et
al. and Aberer and Despotovic is Chen and Yeager’s Pablano web-of-trust [32]. While
considerably more complex than the above two reputation systems, fundamentally, this
work differs from our in similar ways.

Finally, it may be possible that some principles/invariants can be achieved even in
the absence of universal conformance. One example of such a principle is anonymity: a
number of P2P systems preserve the anonymity of their users by implementing anony-
mous storage and retrieval protocols that are resilient to a small number of misbehaving
members [3, 33]. Our work differs from these efforts in that the LGI middleware allows
a wide variety of policies to be specified and explicitly enforced without significant
effort in protocol design, analysis, and implementation.

6 Conclusion

In this paper we propose LGI as the mechanism for specifying and enforcing the poli-
cies required for the members of a P2P community to collaborate harmoniously and
securely with each other. LGI is well-suited to the P2P computing model because while

it enforcesglobalpolicies, it uses adecentralizedenforcement mechanism that only de-
pend onlocal information. This allows the use of LGI to easily scale with community
sizes, avoids a single point of failure, and avoid needed centralized resources to start a
community.

We provide supporting evidence for our proposal by presenting a case study of a
Gnutella-based information sharing community. We show how a law regulating impor-
tant aspects of such communities, including membership, resource usage, and reputa-
tion control can be written in a straightforward manner in LGI. Further, modifying a
Gnutella agent to be compatible with LGI was a matter of a small number of weeks of
work by one programmer.

Finally, we observe that while our proposed solution requires the deployment of a
trusted computing infrastructure, i.e., the set of law enforcement controllers, we believe
that such an infrastructure is critical to the enforcement of policies that cannot rely
on voluntary compliance. Further, this trusted computing infrastructure scales with the
value of the collaboration being protected by the communal policy. Thus, a voted set of
trusted nodes may be entirely adequate for the enforcement of many policies over many
communities. Beyond this simple method, security may be escalated through a vari-
ety of approaches, such as the use of secure co-processors or a commercial controller
service.

References

1. Oram, A., ed.: PEER-TO-PEER: Harnessing the Benefits of a Disruptive Technology.
O’Reilly & Associates, Inc. (2001)

2. Dingledine, R., Freedman, M.J., Molnar, D.: The Free Haven Project: Distributed Anony-
mous Storage Service. In: Proceedings of the ICSI Workshop on Design Issues in Anonymity
and Unobservability. Number 2009 in LNCS (2000) 67–95

3. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System. In: Proceedings of the ICSI Workshop on Design Issues
in Anonymity and Unobservability. Number 2009 in LNCS (2000) 46–66

4. Ferraiolo, D., Barkley, J., Kuhn, R.: A role based access control model and refernce im-
plementation within a corporate intranets. ACM Transactions on Information and System
Security2 (1999)

5. Anderson, J.: Computer security technology planning study. Technical Report TR-73-51,
Air Force Electronic System Division. (1972)

6. Karjoth, G.: The authorization service of tivoli policy director. In: Proc. of the 17th Annual
Computer Security Applications Conference (ACSAC 2001). (2001) (to appear).

7. Minsky, N.: The imposition of protocols over open distributed systems. IEEE Transactions
on Software Engineering (1991)

8. Minsky, N., Ungureanu, V.: Law-governed interaction: a coordination and control mecha-
nism for heterogeneous distributed systems. TOSEM, ACM Transactions on Software Engi-
neering and Methodology9 (2000) 273–305

9. Ungureanu, V., Minsky, N.: Establishing business rules for inter-enterprise electronic com-
merce. (In: Proc. of the 14th International Symposium on DIStributed Computing (DISC
2000); Toledo, Spain; LNCS 1914)

10. Ao, X., Minsky, N., Nguyen, T., Ungureanu, V.: Law-governed communities over the inter-
net. (In: Proc. of Fourth International Conference on Coordination Models and Languages;
Limassol, Cyprus; LNCS 1906)

11. Linington, P.: Options for expressing ODP enterprise communities and their policies by using
UML. In: Proceedings of the Third Internantional Enterprise Distributed Object Computing
(EDOC99) Conference, IEEE (1999)

12. Meyer, J.J.C., Wieringa, R.J., F.P.M., D.: The role of deontic logic in the specification of
information systems. In Chomicki, J., Saake, G., eds.: Logic for Databases and Information
Systems. Kluwer (1998)

13. Brown, M.: Agents with changing and conflicting commitments: a preliminary study.
In: Proc. of Fourth International Conference on Deontic Logic in Computer Science
(DEON’98). (1998)

14. Linington, P., Milosevic, Z., Raymond, K.: Policies in communities: Extending the odb
enterprise viewpoint. In: Proceedings of the Second Internantional Enterprise Distributed
Object Computing (EDOC98) Conference, IEEE (1998)

15. Schneier, B.: Applied Cryptography. John Wiley and Sons (1996)
16. Minsky, N., Ungureanu, V.: A mechanism for establishing policies for electronic commerce.

In: The 18th International Conference on Distributed Computing Systems (ICDCS). (1998)
322–331

17. Mixmaster. (http://mixmaster.sourceforge.net)
18. Ionescu, M., Minsky, N., Nguyen, T.: Enforcement of communal policies for p2p sys-

tems. Technical Report DCS-TR-537, Department of Computer Science, Rutgers University
(2003)

19. Clip2 DSS: Gnutella: To the Bandwidth Barrier and Beyond.
http://www.clip2.com/gnutella.html (2000)

20. The SlashDot Home Page. (Website: http://www.slashdot.org/)
21. Advogado. (Website: http://www.advogato.org/)
22. Minsky, N., Ungureanu, V.: Scalable Regulation of Inter-Enterprise Electronic Commerce.

In: Proceedings of the Second International Workshop on Electronic Commerce. (2001)
23. The Furi Project. (Website: http://www.furi.org)
24. Gnutella. (http://gnutella.wego.com)
25. KaZaA. (http://www.kazaa.com/)
26. Zhao, Y., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant wide-

area location and routing. Technical Report UCB/CSD-01-1141, University of California,
Berkeley (2000)

27. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware). (2001)

28. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications. In: Proceedings of the ACM SIGCOMM
’01 Conference. (2001)

29. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content address-
able network. In: Proceedings of the ACM SIGCOMM ’01 Conference. (2001)

30. Fabrizio Cornelli, Ernesto Damiani, S.D.C.d.V.S.P., Samarati, P.: Implementing a
Reputation-Aware Gnutella Servent. In: Proceedings of International Workshop on Peer
to Peer Computing. (2002)

31. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: Pro-
ceedings of the 10th International Conference on Information and Knowledge Management
(ACM CIKM). (2001)

32. Chen, R., Yeager, W.: Poblano: A Distributed Trust Model for Peer-to-Peer Networks.
(http://www.jxta.org/docs/trust.pdf)

33. Waldman, M., Rubin, A.D., Cranor, L.F.: Publius: A Robust, Tamper-Evident, Censorship-
Resistant, Web Publishing System. In: Proceedings of the 9th USENIX Security Symposium.
(2000)

