
Measuring component adaptation

Antonio Brogi1, Carlos Canal2, and Ernesto Pimentel2

1 Department of Computer Science, University of Pisa, Italy
2 Department of Computer Science, University of Málaga, Spain

Abstract. Adapting heterogeneous software components that present
mismatching interaction behaviour is one of the crucial problems in
Component-Based Software Engineering. The process of component adap-
tation can be synthesized by a transformation from an initial specification
(of the requested adaptation) to a revised specification (expressing the
actual adaptation that will be featured by the deployed adaptor com-
ponent). An important capability in this context is hence to be able
to evaluate to which extent an adaptor proposal satisfies the initially re-
quested adaptation. The aim of this paper is precisely to develop different
metrics that can be employed to this end. Such metrics can be fruitfully
employed both to assess the acceptability of an adaptation proposal, and
to compare different adaptation solutions proposed by different servers.

1 Introduction

One of the general objectives of coordination models is to support the successful
interoperation of heterogeneous software elements that may present mismatching
interaction behaviour [12]. In the area of Component-Based Software Engineer-
ing, the problem of component adaptation is widely recognised to be one of
the crucial issues for the development of a true component marketplace and for
component deployment in general [5, 6]. Available component-oriented platforms
address software interoperability at the signature level by means of Interface
Description Languages (IDLs), a sort of lingua franca for specifying the func-
tionality offered by heterogeneous components possibly developed in different
languages. While IDL interfaces allow to overcome signature mismatches, there
is no guarantee that the components will suitably interoperate, as mismatches
may also occur at the protocol level, due to differences in the interaction be-
haviour of the components involved [18].
The need for component adaptation is also motivated by the ever-increasing

attention devoted to developing extensively interacting distributed systems, con-
sisting of large numbers of heterogeneous components. Most importantly, the
ability of dynamically constructing software adaptors will be a must for the
next generation of nomadic applications consisting of wireless mobile computing
devices that will need to require services from different hosts at different times.
In our previous work [2–4], we have developed a formal methodology for com-

ponent adaptation that supports the successful interoperation of heterogeneous
components presenting mismatching interaction behaviour. The main ingredi-
ents of the methodology can be summarised as follows:

– Component interfaces. IDL interfaces are extended with a formal description
of the behaviour of components, which explicitly declares the interaction
protocol followed by a component.

– Adaptor specification. Adaptor specifications are simply expressed by a set
of correspondences between actions of two components. The distinguishing
aspect of the notation used is that it yields a high-level, partial specification
of the adaptor.

– Adaptor derivation. A concrete adaptor is fully automatically generated,
given its partial specification and the interfaces of two components, by ex-
haustively trying to build a component which satisfies the given specification.

The methodology has proven to succeed in a number of diverse situations [2],
where a suitable adaptor is generated to support the successful interoperation of
heterogeneous components presenting mismatching interaction behaviours. The
separation of adaptor specification and adaptor derivation permits the automa-
tion of the error-prone, time-consuming task of constructing a detailed imple-
mentation of a correct adaptor, thus notably simplifying the task of the (human)
software developer. One of the distinguishing features of the methodology is the
simplicity of the notation employed to express adaptor specifications. Indeed
the desired adaptation is simply expressed by defining a set of (possibly non-
deterministic) correspondences between the actions of the two components.
Consider for instance a typical scenario where a client component wishes

to use some of the services offered by a server. (For instance, a client wishing
to access a remote system via the network, or a mobile client getting into the
vicinity of a stationary server.) The client will ask for the server interface, and
then submit its service request in the form of an adaptor specification (together
with its own interface). The server will run the adaptor derivation procedure
to determine whether a suitable adaptor can be generated to satisfy the client
request. If the client request can be satisfied, the server will notify the client by
presenting a (possibly modified) adaptor specification which states the type of
adaptation that will be effectively featured. The client will then decide whether
to accept the adaptation proposal or not. (In the latter case the client may decide
to continue the trading process by submitting a revised adaptor specification, or
to address another server.)
Expressing adaptation trading by means of adaptor specification features two

main advantages:

– Efficiency. Clients and servers exchange light-weighted adaptor specifica-
tions rather than component code. Besides contributing to the efficiency of
communications, this notably simplifies the trading process, when the client
has to analyse the adaptation proposed by the server.

– Non-disclosure. The server does not have to present the actual adaptor com-
ponent in its full details, thus communicating only the “what” of the offered
adaptation rather than the “how”.

Summing up, the process of component adaptation can be synthesized by
an adaptor specification S, representing the client request, and by a (possibly

modified) adaptor specification C, representing the actual adaptation offered by
the server. The specification C is then interpreted as a contract guaranteeing
that:

1. The client will be able to interoperate successfully with the adaptor (viz.,
the client will not get stuck), and

2. all the client actions occurring in C will be effectively executable by the
client.

An important issue in this context is hence how to evaluate to which ex-
tent a contract proposal satisfies the initial specification defining the requested
adaptation. The aim of this paper is precisely to develop different metrics for
component adaptation. Such metrics can be fruitfully employed both to assess
the acceptability of an adaptation proposal and to compare different adaptations
proposed by different servers.

The rest of the paper is organised as follows. Section 2 recalls the key aspects
of the methodology for component adaptation developed in [2–4]. Section 3 is
devoted to present several metrics to assess the acceptability of an adaptation
proposal. Such metrics are then extended in Section 4 to deal with additional
quantitative information. Finally, some concluding remarks are drawn in Sec-
tion 5.

2 Component adaptation

Throughout this paper we will use an example concerning a Video-on-Demand
system (VoD), simplified to some extent. The VoD is a Web service providing
access to remote clients to a repository of movies in video format.

When interacting with a client, the VoD executes client’s instructions, rep-
resented by the different input messages the VoD is able to react to (message
names are in italics in the description that follows). For instance, clients may
search the VoD catalog for a movie, or ask the service which is the première of
the day. Once a certain movie is selected, the client may decide to preview it for
a few minutes, or to view it all. In either case, the client must indicate whether
it wants to play the movie (which will be shown by a viewer), or to record it
on its disk. During video transmission, chunks of data are sent by the server by
means of repeated stream output messages, while the end of the transmission is
marked with an eof output message.

Following [2], component interfaces are extended with a description of the
interactive behaviour of components using a process algebra (here, we use the
π-calculus [16]). Suppose that the behaviour of the VoD server during the video
data transmission phase is described by a term of the form:

Server = stream!(y). Server + τ. eof !(). 0

where τ is an internal silent action.

Consider now a simple Client that (repeatedly) receives data by performing
an input action data, and which may decide autonomously to abort the data
transmission by performing an output action abort:

Client = data?(x). Client + τ. abort!(). 0

It is worth observing that the mismatch between the two components above is
not limited to signature differences (viz., the different names of actions employed,
such as stream in the server and data in the client), but it also involves behav-
ioral differences, in particular the way in which either component may close the
communication unexpectedly.

2.1 Hard adaptation

The objective of software adaptation is to deploy a software component, called
adaptor, capable of acting as a component-in-the-middle between two compo-
nents and of supporting their successful interoperation. Following our approach,
a concrete adaptor will be automatically generated starting from the interfaces
of the components and from a specification of the adaptor itself. Such a speci-
fication simply consists of rules establishing correspondences between actions of
the two components. More precisely, an adaptor specification is a set of rules of
the form:

a1, . . . , am ♦ b1, . . . , bn ;

where ai and bj are the input or output actions performed by the components
to be adapted. By convention, given a specification S, actions on the left-hand
side of rules refer to one of the components to be adapted (in the examples here,
the client), and we will refer to them by [S]cl, while actions on the right-hand
side of rules refer to the other component (the server), and will be denoted by
[S]sr. To simplify notation, and without loss of generality, we assume that the
sets of client and server actions are disjoint.
The formal semantics of adaptor specifications is defined in [4], here we shall

recall this semantics informally by means of examples. For instance, the adap-
tation required for the video transmission between the server and the client can
be naturally expressed by the specification:

S1 =

data?(u) ♦ stream!(u) ;
abort!() ♦ stream!(u) ;
abort!() ♦ ;

♦ eof !() ;

The first rule in S1 states that the input action data? in the client matches
or corresponds to the output action stream! in the server. This same stream!

action is also matched to client’s abort! in the second rule, stating that the client
may abort the transmission even when the server is trying to send video data.
Thus, combining both rules we have that the action stream! may correspond
non-deterministically to either data? or abort!, depending on the evolution of

the client. In the third and fourth rules, actions abort! and eof! are represented
without a corresponding action in the other side. For instance, the fourth rule
of S1 indicates that the execution of an eof! server action does not necessarily
call for a corresponding client action. Notice that rules in an adaptor specifica-
tion may establish one-to-one, one-to-many, and many-to-many correspondences
among actions of the two components. They can also be employed to express
asymmetries naturally, typically when the execution of an action in one of the
component may not require a corresponding action to be executed by the other
component.
Given an adaptor specification and the interfaces of two components, a fully

automated procedure [2] returns non-deterministically one of the possible adap-
tors components (if any) that satisfy the specification, and that let the two com-
ponents interoperate successfully. For instance, for the specification S1 above the
generation procedure may return the adaptor:

A = stream?(u). (data!(u). A+ abort?(). eof?(). 0)
+
eof?(). abort?(). 0

In this example a full adaptation is achieved, and hence the server will return
the submitted specification S1 as the contract proposal. However, in general,
the server may be able to offer the client only a partial adaptation, namely a
contract C which is a proper subset of the submitted specification S.
To illustrate the idea, let us develop further our example of the VoD sys-

tem. Suppose now that the client uses different action names for accessing the
service than those considered by the server (again action names are in italics in
the description that follows). For instance, the client wishes to perform its info
action either for requesting information on a particular movie (by indicating its
title), or for asking the service to suggest a movie (by using in this case the
empty string as parameter), and its watch and store actions to play and record a
movie, respectively. Hence the client submits the adaptor specification S2 below,
establishing correspondences with the previously described server actions3:

S2 =

info!(t) ♦ search?(t) ;
info!(′′ ′′) ♦ premiere?() ;
watch!(m) ♦ view?(m), play?() ;
store!(m) ♦ view?(m), record?() ;

Let us suppose that as a reply to the specification S2, the client receives from
the server the following contract CA:

CA =
{

info!(t) ♦ search?(t) ;
}

The straightforward reading of the contract proposal CA is that while the server
commits to let the client search the movies database, for some reason it will

3 For the sake of simplicity, we omit here the correspondences concerning the data
transfer actions (data, abort, stream, eof) already described in specification S1.

not feature the adaptation required to let the client watch or store such movies.
(For instance, the server might decide to feature a partial adaptation even if a
full adaptation would be feasible, in order to balance its current workload or for
other internal service policies.)
Hence, given an adaptor specification S, the type of component adaptation

that we have described so far:

– either it yields a (possibly partial) adaptation proposal C (where C is a
subset of S),

– or it fails when no adaptation is possible.

The sole possibility of removing some rules from the initial specification ob-
viously limits the success possibilities of yielding a (partial) adaptation. Indeed
there are many situations in which more flexible ways of weakening the initial
specification may lead to deploying a suitable partial adaptor, as we shall discuss
in the next section.

2.2 Soft adaptation

The methodology for hard adaptation described in [2] has been extended in [3] to
feature forms of soft adaptation. One of the key notions introduced in [3] is the
notion of subservice. Intuitively speaking, a subservice is a kind of surrogate of a
service, which features only a limited part of such service. Formally, subservices
are specified by defining a partial order @ over the actions of a component:

bj @ bi

indicating that the service bj is a subservice of bi.
It is important to observe that adding subservice declarations to component

interfaces paves the way for more flexible forms of adaptation. Indeed, subser-
vice declarations support a flexible configuration of components in view of their
(dynamic) behaviour, without having to modify or to make more complex the
protocol specification of component interfaces.
As one may expect, the introduction of subservices increases notably the

possibilities of successful adaptations, as an initial specification can be suit-
ably weakened by providing (when needed) subservices in place of the required
services. A direct consequence of enabling soft adaptation is that a client that
submits an adaptor specification may now receive a rather different contract pro-
posal, in which the server may declare its intention both to feature only some
of the services requested and to subservice some of them. Hence, the process of
soft adaptor generation in presence of subservice declarations can be described
as follows.

1. The initial adaptor specification S is actually interpreted as the specifica-
tion S∗ obtained by expanding every rule r in S with a new set subs(r) of
correspondence rules that are obtained by replacing one or more (server)
actions in r with a corresponding subservice. That is, S∗ = S ∪ subs(S),
where subs(S) = ∪r∈Ssubs(r).

2. The process of adaptor construction generates (if possible) a partial adaptor
that satisfies a subset C of the extended specification S∗.

(Notice that while both C and S are subsets of S∗, in general C is not a subset
of S since possibly some service requests have been subserviced.)
For instance, in the Video-on-Demand service, offering a clip preview of a

movie can be considered a typical subservice of offering the whole movie, while
starting to view a movie could be considered as a subservice of downloading
it into the hard disk of the client. These subservice definition are expressed as
follows:

preview?(m) @ view?(m) ;
play?() @ record?() ;

The previous adaptor specification S2 is hence actually interpreted by the
server as the following expanded specification S∗

2 :

S2 =

info ♦ search ;
info ♦ premiere ;

watch ♦ view, play ;
store ♦ view, record ;

S∗

2 =

info ♦ search ;
info ♦ premiere ;

watch ♦ view, play ;
watch ♦ preview, play ;
store ♦ view, record ;
store ♦ view, play ;
store ♦ preview, record ;
store ♦ preview, play ;

where for simplicity we have omitted signs and parameters in the actions of both
components.
Depending both on the actual protocols of the components, and on the

server’s policy, the server may return different contract proposals, for instance:

CB =

info ♦ search ;
watch ♦ view, play ;
watch ♦ preview, play ;
store ♦ preview, record ;

where the contract proposal CB indicates that some watch requests will be
adapted into previews, while all store requests will be adapted into previews.
As in the case of the partial adaptation described in the previous section,

it is worth noting that a server may decide to subservice some of the client
requests even if this is not strictly necessary in order to achieve a successful
interoperation of the two components. Hence, the contract proposal returned
may present relevant differences with respect to the original client requests, and
some additional information would be of help for deciding whether or not to
accept a proposed adaptation. Thus, together with the contract proposal, the
server should provide the client with some explanation of why some requests
have not been satisfied, such as for instance “temporarily unavailable service”,
“insufficient access rights”, or “unsolved protocol mismatch”, as discussed in [3].

However, this kind of “qualitative” information is usually insufficient and
most of the times the client needs a “quantitative” estimation on how close to
the original request is a certain contract proposal with respect to an alternative
one (either provided by the same server or by a different one). The main aim of
this work is exploring different possibilities for achieving a quantitative measure
of adaptation.

3 Measuring adaptation

In this section we develop two initial metrics to compare an initial specification
S with a contract proposal C.

3.1 Rule satisfaction

A first way to measure the distance between an initial specification S and a
contract proposal C is to inspect how many rules of S are “satisfied” by C.
For the case of hard adaptation, where C is a subset of S, one may simply

count the number of correspondence rules of S that are contained in C, that is
consider the ratio:

] C

] S

where] X denotes the number of rules in a specification X.
However, the above ratio does not make much sense in the context of soft

adaptation, where in general the rules of C are not a subset of the rules of S.
Indeed, as we have already mentioned, both S and C are subsets of S∗, but C
may even contain more rules than S.
In the general context of soft adaptation, one should measure how many

rules of S are “satisfied” by C, either because they are included verbatim in C

or because a subserviced version of them is included in C. More precisely, we
can single out three possible cases for each rule r in S:

1. r is fully satisfied by C. Namely, r belongs to C, but no subserviced version
of r belongs to C. Formally:

r ∈ C ∧ subs(r) ∩ C = ∅

2. r is partly satisfied by C with some subservicing. Namely, some subserviced
version of r belongs to C. Formally:

subs(r) ∩ C 6= ∅

3. r is not satisfied by C. Namely, neither r nor any subserviced version of r
belongs to C. Formally:

r 6∈ C ∧ subs(r) ∩ C = ∅

Based on the above observation, we define the metric m1(S,C) which, given
a specification S and a contract C, returns two values. The first value indicates
the percentage of rules of S that are fully satisfied by the contract proposal C.
The second value indicates the percentage of rules of S that are partly satisfied,
that is subserviced, by the contract proposal C. Formally:

m1(S,C) =

〈

] {r ∈ S ∩ C | subs(r) ∩ C = ∅}

] S
,

] {r ∈ S | subs(r) ∩ C 6= ∅}

] S

〉

For instance, consider again the specification S2 and the contract CB already
presented, together with the new contract proposal CC :

CC =

info ♦ search ;
watch ♦ view, play ;
store ♦ view, play ;

We have that m1(S2, CB) =
〈

1
4 ,

2
4

〉

, while m1(S2, CC) =
〈

2
4 ,

1
4

〉

, from which we
could deduce that the contract proposal CB is worse than CC with respect to the
specification S2, since CB presents less rules fully satisfied and more subserviced
rules than CC .

3.2 Action enabling

The simple inspection of the percentage of rules satisfied by a contract proposal
does not however deal adequately with specifications that contain nondetermin-
istic correspondence rules. For instance, consider once more the specification S2

and the contract CB already presented, together with the new contract proposal
CD:

CD =

info ♦ search ;
info ♦ premiere ;

watch ♦ preview, play ;

We observe that, according to metric m1, m1(S2, CB) =
〈

1
4 ,

2
4

〉

, while on the

other hand m1(S2, CD) =
〈

2
4 ,

1
4

〉

, from which we should conclude that the con-
tract proposal CD is closer to the specification S2 than CB , since in CD the
number or rules of S2 fully satisfied are greater than in CB . However, the adap-
tor corresponding to the new contract CD will allow the client to perform a
smaller number of actions than CB (viz., action store is not present in CD).
Hence, a finer metric should consider the percentage of client actions (instead of
rules) whose execution will be actually enabled by the adaptor proposal. Again,
for the case of hard adaptation, one may simply consider the ratio between the
number of client actions occurring in C and in S, formally:

] [C]cl

] [S]cl

However, the above ratio is a bit coarse in the general context of soft adapta-
tion, since it does not consider the subservicing possibly operated by the adap-
tor. More precisely, we can single out three possible cases for a client action a

occurring in S (viz., for each a ∈ [S]cl):

1. a is fully enabled by C. Namely the execution of a is enabled by C without
introducing subservicing, that is, a only occurs in rules of C that were in S

too. Formally:
a ∈ [C]cl ∧ a 6∈ [C ∩ subs(S)]cl

2. a is partly enabled by C with some subservicing. Namely the execution of a
is enabled by C via some subservicing, that is, a occurs in some subserviced
version of rules of S. Formally:

a ∈ [C ∩ subs(S)]cl

3. a is not enabled by C. Namely a does not occur in (any rule of) C. Formally:

a 6∈ [C]cl

Based on the above observation, we define a new metricm2(S,C) which, given
a specification S and a contract C, returns two values. The first value indicates
the percentage of client actions in S that are fully enabled by C. The second
value indicates the percentage of client actions in S that are partly enabled by
C. Formally:

m2(S,C) =

〈

] ([C]cl\[C ∩ subs(S)]cl)

] [S]cl

,
] [C ∩ subs(S)]cl

] [S]cl

〉

For instance, considering again the specification S2 along with the contracts
CB and CD, we observe that m2(S2, CB) =

〈

1
3 ,

2
3

〉

while m2(S2, CD) =
〈

1
3 ,

1
3

〉

,
from which we should now conclude that CB —in which all client actions are
being adapted— represents a better adaptation than CD —in which no adap-
tation for action store is featured. In other words, if we only take into account
the number of (partially) satisfied rules (as given by metric m1), the contract
proposal CD presents a greater level of satisfaction for the specification S2. Nev-
ertheless, from an intuitive point of view, CB seems closer to S2 than CD, which
is correctly reflected by metric m2.

4 Adding quantitative information

So far we have assumed that contract specifications are plain sets of correspon-
dence rules, some of which may have been introduced because of subservicing.
We now consider the case in which contract specifications are enriched so as
to contain additional quantitative information denoting usage percentage of the
individual rules during the construction of the adaptor. For instance, consider
again the specification S2 already presented, together with the following anno-
tated version of the contract proposal CB :

CB′ =

info ♦ search : 1;
watch ♦ view, play : .8;
watch ♦ preview, play : .2;
store ♦ preview, record : 1;

The intended meaning of the numbers annotated on the right of the correspon-
dence rules is to provide an estimation of the degree of subservicing employed in
the adaptation. For instance, the first rule of CB′ indicates that the first rule of
S2 is kept as is in CB , i.e., without subservicing it (while the second rule of S2

has not been used at all during the construction of the adaptor). On the other
hand, the second and third rules of CB′ state that the third rule of S2 has been
used 80% of the times during the adaptor construction to match client action
watch, while its subserviced version has been employed the remaining 20% of
the times. Finally, the fourth rule of CB′ states that the fourth rule of S2 has
been always subserviced.
Hence, we can refine metric m1 so as to measure the percentage with which

the rules of S are satisfied without or with subservicing by C:

m3(S,C) =

〈

∑

r∈S{p | 〈r : p〉 ∈ C}

] S
,

∑

r∈subs(S){p | 〈r : p〉 ∈ C}

] S

〉

For instance, for the contract CB′ above we have thatm3(S2, CB′) =
〈

1.8
3 , 1.2

3

〉

,
which offers a more precise information on the adaptation proposal than that
provided by m1(S2, CB) =

〈

1
4 ,

2
4

〉

for the non-annotated version CB of the same
contract proposal.
The metric m3(S,C) above allows to exploit the information provided by

annotated contracts in order to measure the percentage of overall subservicing
of the original specifications. However, subservices may not be all the same for
clients. Typically, a client may consider a subservice bj to be an acceptable surro-
gate of bi, while a different subservice bk of bi may not be of interest or valuable
for the client. Therefore, a finer metric should try to combine the information
provided by an annotated contract together with an assessment of subservices
performed by the client.
We hence consider that a client may wish to set its own criteria to assess

the quality of a soft adaptor obtained in response to its request for adaptation.
As soft adaptors employ subservicing, clients may wish to assess how much
the employed subservicing will affect the quality of the adaptation proposed.
For instance, in our VoD system, the client may wish to weight the subservice
relation presented by the server on the basis of its own assessment. For instance,
the client may annotate the above subservice relation as follows:

preview @.5 view ;
play @1 record ;

where the first annotation (@.5) indicates that the client will be half satisfied if
the preview subservice will be provided in place of the view service. The second
annotation (@1) instead indicates that the subservicing of record with play is not
relevant for the client. Annotations must maintain some kind of consistency. In
fact, they must satisfy the following property:

a @u b ∧ b @v c implies a @u×v c

which ensures that @· is also a partial order.
The annotated subservice relation can be lifted to rules as follows:

r′ @v r iff v =

{

mina′∈[r′]sr,a∈[r]sr
{x | a′ @x a} if r′ ∈ subs(r)

1 if r′ = r

We can hence refine metric m3 to take into account the subservicing assessment
made by the client:

m4(S,C) =

∑

r∈S{p× v | 〈r′ : p〉 ∈ C ∧ r′ @v r}

] S

For instance, for the above specification S2 and the annotated contract CB′ , we
have that m4(S2, CB′) = (1 × 1 + .8 × 1 + .2 × .5 + 1 × .5) ÷ 3 = .8, which can
be considered as a measure of the optimality of the contract for the client, i.e.,
of the degree of satisfaction achieved during adaptor construction.

The introduction of quantitative annotations (both in contracts and in sub-
service relations) paves the way for a more precise assessment of the actions or
services whose execution will be enabled by an adaptor proposal. However, such
an assessment should consider the actual interaction protocols followed by the
components and the adaptor. Consider for instance the following specification
S3, and the contract proposal CE :

S3 =
{

watch ♦ view, play ;
}

CE =

{

watch ♦ view, play : .5;
watch ♦ preview, play : .5;

}

where as before preview @.5 view. The quantitative annotations in CE denote
the usage percentage of the rules during the construction of the adaptor, resulting
in a satisfaction measurement m4(S3, CE) = (1× .5 + .5× .5)÷ 2 = .375.
However, let us suppose now that the contract CE corresponds for instance

to the actual adaptor:

A = watch. (preview. A + view. A)

It is easy to observe that the real percentage of subservicing employed by the
server to enable the execution of client actions depends on the actual protocols of
the components involved (in the example, the frequency with which the server
drives the adaptor to perform action preview instead of view). Furthermore,
a simple inspection of the protocols of the two components may not suffice.
Suppose for instance that the protocol of the server is:

Server = preview. Server + view. Server

From that, we cannot conclude that the adaptor will perform the actions preview
and view with the same frequency, since the choice between the two branches of
the alternative may depend on internal policies of the Server not represented at
the protocol level. Hence, the amount of times that action watch will be subser-
viced when using the adaptor A above will not depend merely on the protocol

describing the adaptor, but mainly on the actual behaviour of the Server and
the Client which determines the frequency with which these components present
the actions complementary to those offered by the adaptor.
Hence, a quantitative assessment of the actual, possibly subserviced, exe-

cution of client actions should take into account also probabilistic information
associated with protocols (e.g., see [9, 14]). For instance a probabilistic definition
of the previous process Server, as:

Server = preview. Server .9+.1 view. Server

indicates that the left branch of the alternative will be executed with probability
.9. Hence, most of the times the subservice preview will be offered to the client
instead of the service view originally requested. This information should be taken
into account in order to refine metrics like m3 and m4 in order to yield a more
precise information on the adaptation proposal.

5 Concluding remarks

When heterogeneous software components have to be combined in order to con-
struct complex systems, one of the crucial problems to be solved is the mismatch-
ing of interaction behaviours they may present. To the best of our knowledge,
in spite of the relevance of this topic, not many efforts have been devoted to
develop well-founded component adaptation theories.
A number of practice-oriented studies have analysed different issues encoun-

tered in (manually) adapting a third-party component for using it in a (possibly
radically) different context (e.g., see [10, 11, 19]). The problem of software adap-
tation from a more formal point of view was specifically addressed by the work
of Yellin and Strom [21], which constitutes the starting point for our work. They
used finite state grammars to specify interaction protocols between components,
to define a relation of compatibility, and to address the task of (semi)automatic
adaptor generation. The main advantage of finite state machines is that their
simplicity supports an efficient verification of protocol compatibility. However,
such a simplicity is a severe expressiveness bound for modelling complex open
distributed systems. On the contrary, process algebras feature more expressive
descriptions of protocols and enable more sophisticated analysis of concurrent
systems. For this reason, several authors propose their use for the specification
of component interfaces and for the analysis of component compatibility [1,
7]. A technique for automatically synthetising connectors is discussed in [13] by
focussing on avoiding deadlocks caused by mismatching coordination policies
among COM/DCOM components that present compatible interfaces. A differ-
ent approach is that of [20], where software composition is addressed in the
context of category theory. The connection between components is obtained by
superposition, defining a morphism between actions in both components. Mor-
phisms are similar to our specifications, though the kind of adaptation provided
is more restrictive, limiting adaptation to a kind of name translation similar to
that provided by IDL signature descriptions. Finally, in [17], type systems and

finite state automata are used for describing component interfaces, and a game-
theoretic framework is defined for the automatic generation of adaptors avoiding
component deadlock. Their proposal is quite appealing, although it shares most
of the limitations of those based on finite automata.

Following the above comparison with significant related works in the litera-
ture, we argue that our approach [2–4] facilitates the adaptation of components
by combining expressiveness and effectiveness in a formally grounded methodol-
ogy. Our proposal is based on the idea of deriving a concrete adaptor, given its
specification and the behaviour description of the two components to be adapted.
As full adaptation is not always possible (e.g., because behavioral protocols can-
not be matched, or because the requested services are not —fully— available),
soft adaptation features a flexible way of adapting components, and calls for
mechanisms to assess the appropriateness of proposed adaptors.

Component adaptation is also a relevant issue in the context of mobile com-
putation, where nomadic applications (client components) will need to require
services from different hosts (server components). Again, the behaviours mis-
matching can be solved by adapting both client and server protocols, considering
an initial adaptation (given by a set of rules) requested by the client. If the server
cannot fully satisfy these initial requests, it could offer an alternative (partial)
adaptation (given by a set of —possibly— revised rules) , whose appropriateness
should be evaluated by using the previously mentioned mechanisms.

If the references to formal adaptation of software components are scarce in
the literature, those trying to address a measurement of the results obtained are
probably non-existing. There are quite a few proposals for measuring the qual-
ity of component-based systems, usually dealing with measuring the adequacy
of the components in a repository w.r.t. the particular needs of a software de-
veloper (see for instance [8] for catching a glimpse on the state-of-the-art in this
field). Although there are works, as [15], dealing with measuring the semantic
distance between functional specifications on a formally based setting, most of
the proposals in the component-based field deal with component specification
and metrics using long lists of mostly qualitative attributes. Some of these met-
rics are proposed as an estimation of the effort required for adapting (manually)
software components.

At the best of our knowledge, this work is the first proposal addressing the
measurement of the (automatic) process of software adaptation and of its result
(the adaptor). In this paper, we have defined a set of behaviour-oriented met-
rics which feature different ways of measuring the distance between an adaptor
request and the adaptor which will be effectively deployed. Thus, m1 gives a
measure based on the satisfied adaptation rules, whereas m2 defines a metric
where enabled services are taken into account. On the other hand metrics m3

and m4 take into account additional quantitative information provided by the
server and client components, respectively.

It is worth noting that the metrics m1, m2, and m3 can be computed directly
by server components (they only need the client protocol specification and the
initial adaptor request). Thus, servers may ultimately send back to the client

only metric values rather than adaptor proposal specifications, hence increasing
further the non-disclosure of information.

Our plans for future work include integrating the adaptation methodology
in existing CBSE development environments, so as to allow experimenting and
assessing the methodology on large numbers of available components. Another
interesting direction for future work is to extend the adaptation methodology
to deal with probabilistic descriptions of behaviour, as suggested at the end of
Section 4.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, 6(3):213–49, 1997.

2. A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation.
Journal of Systems and Software, Special Issue on Automated Component-Based
Software Engineering, (in press). A preliminary version of this paper was published
in COORDINATION 2002: Fifth International Conference on Coordination Models
and Languages, LNCS 2315, pages 88–95. Springer, 2002.

3. A. Brogi, C. Canal, and E. Pimentel. Soft component adaptation. Electronic Notes
in Theoretical Computer Science (ENTCS), 85(3), 2003.

4. A. Brogi, C. Canal, and E. Pimentel. On the specification of software adaptation.
In FOCLASA’03, Electronic Notes in Theoretical Computer Science (ENTCS), 90
(in press), 2003.

5. A.W. Brown and K.C. Wallnau. The current state of CBSE. IEEE Software,
15(5):37–47, 1998.

6. G.H. Campbell. Adaptable components. In ICSE 1999, pages 685–686. IEEE
Press, 1999.

7. C. Canal, E. Pimentel, and J.M. Troya. Compatibility and inheritance in software
architectures. Science of Computer Programming, 41:105–138, 2001.

8. A. Cechich, M. Piattini, and A. Vallecillo (Eds). Component-Based Software Qual-
ity. LNCS 2693. Springer, 2003.

9. A. Di Pierro, C. Hankin, H. Wiklicky. Approximate Non-Interference. In CSFW’02,
IEEE Press, pages 3–17, 2002.

10. S. Ducasse and T. Richner. Executable connectors: Towards reusable design ele-
ments. In ESEC/FSE’97, LNCS 1301. Springer, 1997.

11. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6):17–26, 1995.

12. D. Gelernter and N. Carriero. Coordination languages and their significance. Com-
munications of the ACM. 35(2):97–107. 1992

13. P. Inverardi and M. Tivoli. Automatic synthesis of deadlock free connectors for
COM/DCOM applications. In ESEC/FSE’2001. ACM Press, 2001.

14. B. Jonsson, K.G. Larsen, and W. Yi. Probabilistic extensions of process algebras.
Handbook of Process Algebra. Elsevier, 2001.

15. R. Mili et al. Semantic distance between specifications. Theoretical Computer
Science, 247:257–276, Elsevier 2000.

16. R. Milner, J. Parrow, D. Walker. A calculus of mobile processes. Journal of
Information and Computation, 100:1–77. 1992

17. R. Passerone et al. Convertibility Verification and Converter Synthesis: two faces
of the same coin. In Proc. of the Int. Conference on Computer-Aided Design. ACM
Press, 2002.

18. A. Vallecillo, J. Hernández, and J.M. Troya. New issues in object interoperability.
In Object-Oriented Technology, LNCS 1964, pages 256–269. Springer, 2000.

19. K. Wallnau, S. Hissam, and R. Seacord. Building Systems from Commercial Com-
ponents. SEI Series in Soft. Engineering, 2001.

20. M. Wermelinger and J.L. Fiadeiro. Connectors for mobile programs. IEEE Trans-
actions on Software Engineering, 24(5):331–341, 1998.

21. D.M. Yellin and R.E. Strom. Protocol specifications and components adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

