Skip to main content

Transducers with Programmable Input by DNA Self-assembly

  • Chapter
Aspects of Molecular Computing

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2950))

Abstract

Notions of Wang tiles, finite state machines and recursive functions are tied together. We show that there is a natural way to simulate finite state machines with output (transducers) with Wang tiles and we show that recursive (computable) functions can be obtained as composition of transducers through employing Wang tiles. We also show how a programmable transducer can be self-assembled using TX DNA molecules simulating Wang tiles and a linear array of DNA PX-JX2 nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

    Article  Google Scholar 

  3. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA Computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  4. Chen, J.H., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991)

    Article  Google Scholar 

  5. Cutland, N.J.: Computability, an introduction to recursive function theory. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  6. Faulhammer, D., Curkas, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solution to chess problems. PNAS 97, 1385–1389 (2000)

    Article  Google Scholar 

  7. Fu, T.J., Seeman, N.C.: DNA double crossover structures. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  8. Head, T., et al.: Computing with DNA by operating on plasmids. BioSystems 57, 87–93 (2000)

    Article  Google Scholar 

  9. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  10. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)

    Article  Google Scholar 

  11. Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)

    Article  Google Scholar 

  12. Kallenbach, N.R., Ma, R.-I., Seeman, N.C.: An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983)

    Article  Google Scholar 

  13. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  14. Manca, V., Martin-Vide, C., Păun, G.: New computing paradigms suggested by DNA computing: computing by carving. BioSystems 52, 47–54 (1999)

    Article  Google Scholar 

  15. Manca, V., Martin-Vide, C., Păun, G.: Iterated gsm mappings: a collapsing hierarchy. In: Karhumaki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Jewels are forever, pp. 182–193. Springer, Heidelberg (1999)

    Google Scholar 

  16. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  17. Mao, C., Sun, W., Shen, Z., Seeman, N.C.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (2000)

    Google Scholar 

  18. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA sierpinski triangles (abstract). In: Preproceedings of the 9th International Meeting of DNA Based Computers, June 1-4 (2003)

    Google Scholar 

  19. Sa-Ardyen, P., Jonoska, N., Seeman, N.: Self-assembling DNA graphs. Journal of Natural Computing (to appear)

    Google Scholar 

  20. Seeman, N.C.: DNA junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)

    Article  Google Scholar 

  21. Seeman, N.C.: DNA nicks and nodes and nanotechnology. NanoLetters 1, 22–26 (2001)

    Google Scholar 

  22. Siwak, P.: Soliton like dynamics of filtrons on cyclic automata. Inverse Problems 17, 897–918 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang, Y., Mueller, J.E., Kemper, B., Seeman, N.C.: The assembly and characterization of 5-arm and 6-arm DNA junctions. Biochemistry 30, 5667–5674 (1991)

    Article  Google Scholar 

  24. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA computers II. AMS DIMACS series, vol. 44, pp. 191–214 (1998)

    Google Scholar 

  25. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of twodimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  26. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)

    Article  Google Scholar 

  27. Yan, H., Seeman, N.C.: Edge-sharing motifs in DNA nanotechnology. Journal of Supramolecular Chemistry 1, 229–237 (2003)

    Article  Google Scholar 

  28. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel Jr., F.C.: A DNA fueled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  29. Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 160, 1661–1669 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jonoska, N., Liao, S., Seeman, N.C. (2003). Transducers with Programmable Input by DNA Self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds) Aspects of Molecular Computing. Lecture Notes in Computer Science, vol 2950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24635-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24635-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20781-8

  • Online ISBN: 978-3-540-24635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics