Skip to main content

Methods for Constructing Coded DNA Languages

  • Chapter
Aspects of Molecular Computing

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2950))

Abstract

The set of all sequences that are generated by a biomolecular protocol forms a language over the four letter alphabet Δ={A,G,C,T}. This alphabet is associated with a natural involution mapping θ, AT and GC which is an antimorphism of Δ*. In order to avoid undesirable Watson-Crick bonds between the words (undesirable hybridization), the language has to satisfy certain coding properties. In this paper we build upon an earlier initiated study and give general methods for obtaining sets of code words with the same properties. We show that some of these code words have enough entropy to encode {0,1}* in a symbol-to-symbol mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R.L., Coppersmith, D., Hassner, M.: Algorithms for sliding block codes -an application of symbolic dynamics to information theory. IEEE Trans. Inform. Theory 29, 5–22 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation Comput. 20(3), 263–277 (2002), Available as a sample paper at http://www.ohmsha.co.jp/ngc/index.htm

  3. Baum, E.B.: DNA Sequences useful for computation unpublished article (1996), available at http://www.neci.nj.nec.com/homepages/eric/seq.ps

  4. Braich, R.S., et al.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  5. Berstel, J., Perrin, D.: Theory of codes. Academis Press, Inc., Orlando (1985)

    Google Scholar 

  6. Lind, D., Marcus, B.: An introduction to Symbolic Dynamics and Coding. Cambridge University Press, Inc., Cambridge (1999)

    Google Scholar 

  7. Deaton, R., et al.: A PCR-based protocol for in vitro selection of non-crosshybridizing oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 196–204. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Deaton, R., et al.: A DNA based implementation of an evolutionary search for good encodings for DNA computation. In: Proc. IEEE Conference on Evolutionary Computation ICEC 1997, pp. 267–271 (1997)

    Google Scholar 

  9. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular Computation: RNA solutions to chess problems. Proceedings of the National Academy of Sciences 97(4), 1385–1389 (2000)

    Article  Google Scholar 

  10. Feldkamp, U., Saghafi, S., Rauhe, H.: DNASequenceGenerator - A program for the construction of DNA sequences. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 23–32. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Garzon, M., Deaton, R., Reanult, D.: Virtual test tubes: a new methodology for computing. In: Proc. 7th. Int. Symposium on String Processing and Information retrieval, A Corun̆a, Spain, pp. 116–121. IEEE Computing Society Press, Los Alamitos (2000)

    Chapter  Google Scholar 

  12. Head, T.: Relativised code properties and multi-tube DNA dictionaries in Finite vs. Infinite. In: Calude, C., Paun, G. (eds.), pp. 175–186. Springer, Heidelberg (2000)

    Google Scholar 

  13. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 57–69. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Jonoska, N., Mahalingam, K.: Languages of DNA based code words Preliminary. In: Proceedings of the 9th International Meeting on DNA Based Computers, Madison, Wisconsin, June 1-4, pp. 58–68 (2003)

    Google Scholar 

  15. Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words. Congressus Numernatium 156, 99–110 (2002)

    MathSciNet  Google Scholar 

  16. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages (preprint)

    Google Scholar 

  17. Keane, M.S.: Ergodic theory an subshifts of finite type. In: Edford, T., et al. (eds.) Ergodic theory, symbolic dynamics and hyperbolic spaces, pp. 35–70. Oxford Univ. Press, Oxford (1991)

    Google Scholar 

  18. Li, Z.: Construct DNA code words using backtrack algorithm (preprint)

    Google Scholar 

  19. Liu, Q., et al.: DNA computing on surfaces. Nature 403, 175–179 (2000)

    Article  Google Scholar 

  20. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial word design. In: Preliminary Preproceedings of the 5th International Meeting on DNA Based Computers, Boston, pp. 75–88 (1999)

    Google Scholar 

  21. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing, New computing paradigms. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  22. Ruben, A.J., Freeland, S.J., Landweber, L.F.: PUNCH: An evolutionary algorithm for optimizing bit set selection. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 150–160. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Seeman, N.C.: De Novo design of sequences for nucleic acid structural engineering. J. of Biomolecular Structure & Dynamics 8(3), 573–581 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jonoska, N., Mahalingam, K. (2003). Methods for Constructing Coded DNA Languages. In: Jonoska, N., Păun, G., Rozenberg, G. (eds) Aspects of Molecular Computing. Lecture Notes in Computer Science, vol 2950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24635-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24635-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20781-8

  • Online ISBN: 978-3-540-24635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics