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Summary. A new proof is given that languages generated by H (nonextended)
systems with finite axioms and rules are regular.

1.1 Introduction

Splicing is the basic combinatorial operation which DNA Computing [8] is based on.
It was introduced in [4] as a formal representation of DNA recombinant behavior and
opened new perspectives in the combinatorial analysis of strings, languages, gram-
mars, and automata. Indeed, biochemical interpretations were found for concepts
and results in formal language theory [11, 8] and Molecular Computing emerged as
a new field covering these subjects, where synergy between Mathematics, Computer
Science and Biology yields an exceptional stimulus for developing new theories and
applications based on discrete formalizations of biological processes.

In this paper we express the combinatorial form of splicing by four cooperating
combinatorial rules: two cut rules (suffix and prefix deletion), one paste rule, and
one (internal) deletion rule. This natural translation of splicing allows us to prove
in a new manner the regularity of (non extended) splicing with finite axioms and
rules.

1.2 Preliminaries

Consider an alphabet V and two symbols #, $ not in V . A splicing rule over V
is a string r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗. For a rule r and for any
x1, x2, y1, y2 ∈ V ∗ we define the (ternary) splicing relation =⇒r such that:

x1u1u2x2 , y1u3u4y2 =⇒r x1u1u4y2.
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In this case we say that x1u1u4y2 is obtained by a splicing step, according to the rule
r, from the left argument x1u1u2x2 and the right argument y1u3u4y2. The strings
u1u2 and u3u4 are respectively the left and right splicing points or splicing sites of
the rule r.

An H system, according to [8], can be defined by a structure Γ = (V, A, R) where
V is an alphabet, that is, a finite set of elements called symbols, A is a set of strings
over this alphabet, called axioms of the system, and R is a set of splicing rules over
this alphabet.

L0(Γ ) consists of the axioms of Γ . For n ≥ 0, Ln+1(Γ ) consists of the strings
generated by one splicing step from strings of Ln(Γ ), by applying all the rules in R
that can be applied. The language L(Γ ) generated by Γ is the union of all languages
Ln(Γ ) for n ≥ 0.

If a terminal alphabet T ⊂ V is considered, and L(Γ ) consists of the strings over
T ∗ generated by Γ , then we obtain an extended H system Γ = (V, T, A, R).

H systems are usually classified by means of two classes of languages FL1, FL2:
a H system is of type H(FL1, FL2) when its axioms are a language in the class
FL1 and its rules, which are strings of (V ∪ {#, $})∗, are a language in the class
FL2; EH(FL1, FL2) is the subtype of extended H systems of type H(FL1, FL2).
We identify a type C = H(FL1, FL2) of H systems with the class of languages
generated by C. Let FIN, REG, RE indicate the classes of finite, regular, and
recursively enumerable languages respectively. It is known that: H(FIN, FIN) ⊂
REG, H(REG, FIN) = REG, EH(FIN, FIN) = REG, EH(FIN, REG) = RE.
Comprehensive details can be found in [8]. We refer to [11] and [8] for definitions
and notations in formal language theory.

1.3 Cut-and-Paste Splicing

A most important mathematical property of splicing is that the class of languages
generated by a finite splicing, that is, by finite number of splicing rules, from a finite
initial set of strings, is a subclass of regular languages: H(FIN, FIN) ⊂ REG and,
more generally, H(REG, FIN) = REG. The proof of this result has a long history.
It originates in [1, 2] and was developed in [9], in terms of a complex inductive
construction of a finite automaton. In [8] Pixton’s proof is presented (referred to as
Regularity preserving Lemma). More general proofs, in terms of closure properties of
abstract families of languages, are given in [5, 10]. In [6] a direct proof was obtained
by using ω-splicing.

In this section we give another and more direct proof of this lemma, as a natural
consequence of a representation of splicing rules.

Let Γ be a H system of alphabet V , with a finite number of splicing rules. The
language L(Γ ) generated by a H system Γ can be obtained in the following way.
Replace every splicing rule

ri = u1#u2$u3#u4

of Γ by the following four rules (two cut rules, a paste rule, a deletion rule) where
•i and �i are symbols that do not belong to V , and variables x1, x2, y1, y2, x, y, w, z
range over the strings on V .
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1. x1u1u2x2 =⇒ri x1u1•i right cut rule
2. y1u3u4y2 =⇒ri �iu4y2 left cut rule
3. xu1•i, �iu4y =⇒ri xu1 •i �iu4y paste rule
4. w •i �iz =⇒ri wz deletion rule

If we apply these rules in all possible ways, starting from the axioms of Γ , the
set of strings so generated that also belong to V ∗ coincides with the language L(Γ ).

This representation of splicing has a very natural biochemical reading [3]. Ac-
tually, the first two rules are an abstract formulation of the action of restriction
enzymes, where the symbols •i and �i correspond to the sticky ends (here comple-
mentarity is between •i and �i). The third rule is essentially the annealing process
that joins strands with matching sticky ends but leaves a hole (represented by the
string •i�i) in the fosphodiesteric bond between the 5’ and 3’ loci. The final rules
express the hole repair performed by ligase enzyme.

The proof that will follow is inspired by this analysis of the splicing mechanism
and develops an informal idea already considered in [7].

Theorem
Let Γ be a H system with a finite number of axioms and rules, then L(Γ ) is regular.

Proof. Let r1, r2, . . . rn be the rules of Γ . For each rule ri = u1#u2$u3#u4, in-
troduce two new symbols •i for i = 1, . . . n, and �i we call bullet and antibullet of
the rule ri.

If u1u2 and u3u4 are the left and the right splicing sites of ri, then symbols •i

and �i can be used in order to highlight the left and right splicing sites that occur
in a string.

More formally, let h be the morphism

h : (V ∪ {•i|i = 1, . . . n} ∪ {�i|i = 1, . . . n})∗ → V ∗

that coincides with the identity on V while erases all the symbols that do not belong
to V , that is, associates the empty string λ to them. In the following V ′ will abbrevi-
ate (V ∪{•i|i = 1, . . . n}∪{�i|i = 1, . . . n})∗. For any rule ri = u1#u2$u3#u4, with
i = 1, . . . , n, we say that a string of V ′ is •i-factorizable if it includes a substring
u′1u

′
2 ∈ V ′ such that h(u′1) = u1, h(u′2) = u2. In this case the relative •i-factorization

of the string is obtained by replacing u′1u
′
2 with u′1 •i u′2. Analogously, a string of

V ′ is �i-factorizable if it includes a substring u′3u
′
4 ∈ V ′ such that h(u′3) = u3,

h(u′4) = u4. In this case the relative �i-factorization of the string is obtained by
replacing u′3u

′
4 with u′3 �i u′4.

A string α is a maximal factorization of a string η if α is a factorization such
that h(α) = η, α contains no two consecutive occurrences of the same bullet or
antibullet, while any further factorization of α contains two consecutive occurrences
of the same bullet or antibullet. It easy to verify that the maximal factorization of
a string is unique.

Now, given a H system, we factorize its axioms in a maximal way. Let α1, α2, . . . , αm

be these factorization and let .α1., .α2., . . . , .αm. be their extensions with a sym-
bol marking the start and the end of these factorizations. From the set Φ of these
factorization strings we construct the following labeled directed graph G0, which we
call axiom factorization graph of the system, where:



4 Vincenzo Manca

1. A node is associated to each occurrence of a bullet or antibullet that occurs
in in a strings of Φ, while a unique entering node .• is associated to all the
occurrences of symbol . at beginning of the strings of Φ, and a unique exiting
node •. is associated to all the occurrences of symbol . at end of the strings of
Φ.

2. From any node n there is an arc to the node m if the occurrence to which m is
associated is immediately after the occurrence to which n is associated; this arc
is labeled with the string between these two occurrences.

3. Each bullet is linked by an arc with empty label to the antibullet of the same
index.

As an example, apply this procedure to the following H system specified by:

Alphabet: {a, b, c, d}
Axioms: {dbab , cc}
Rules: {r1 : a#b$λ#ab , r2 : baa#aaa$λ#c}
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Fig. 1.1. An Axiom Factorization Graph

In Figure 1.1 the graph G0 of our example is depicted. Hereafter, unless it is
differently specified, when we say path we intend a path going from the entering
node to the exiting node. If one concatenates the labels along a path, one gets a
string generated by the given H system. However, there are strings generated by the
system that are not generated as (concatenation of labels of) paths of this graph.
For example, the strings dbaac, dbaacc do not correspond to any path of the graph
above. In order to overcome this inadequacy, we extend the graph that factorizes
the axioms by adding new possibilities of factorizations, where the strings u1 and
u4 of the rules are included and other paths with these labels are possible.

Before going on, let us sketch the main intuition underlying the proof, that
should appear completely clear when the formal details are developed. The axiom
factorization graph suggests that all the strings generated by a given H system are
combinations of: i) strings that are labels of the axiom factorization graph, and ii)
strings u1 and u4 of splicing rules of the system. Some combinations of these pieces
can be iterated, but, although paths may include cycles, there is only a finite number
of ways to combine these pieces in paths going from the entering node to the exiting
node. An upper bound on this number is determined by: i) the number of substrings
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of the axioms and of the rules, and ii) the number of factorization nodes that can be
inserted in a factorization graph when extending the axiom factorization with the
rules, as it will be shown in the proof.

The detailed construction of the proof is based on two procedures that expand
the axiom factorization graph G0. We call the first procedure Rule expansion and
we call the second one Cross bullet expansion. In the following, for the sake of
brevity, we identify paths with factorization strings.

Rule expansion
Let G0 be the graph of the maximal factorizations of the axioms of Γ . Starting from
G0, we generate a new graph Ge we call rule expansion of G0.

Consider a symbol ⊗ we call cross bullet. For this symbol h is assumed to be a
deleting function, that is, h(⊗) = λ. For every rule ri = u1#u2$u3#u4 of Γ , add to
G0 two rule components: the u1 component that consists of a pair of nodes ⊗ and
•i, with an arc from ⊗ to •i labeled by the string u1, and the u4 component that
consista of a pair of nodes ⊗,�i with an arc from �i to ⊗ labeled by the string u4.

Then, add arcs with empty label from the new node •i to the corresponding
antibullet nodes �i that were already in the graph. Analogously, add arcs with
empty label from the nodes •i that were already in the graph to the new antibullet
node �i.

---�
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Fig. 1.2. Rule i Expansion Components

In the case of the graph in Figure 1.1, if we add the rule expansions of the two
rules of the system, we get the graph of Figure 1.3.

Cross bullet Expansion
Now we define the cross bullet expansion procedure. Consider a symbol ◦, which we
call empty bullet. For this symbol, h is assumed to be a deleting function, that is,
h(◦) = λ.

Suppose that in Ge there is a cycle �j −•j . A cycle intoduces new factorization
possibilities that are not explicitly present in the graph, but that appear when we
go around the cycle a certain number of times. Let us assume that, by iterating this
cycle, a path θ is obtained that generates a new splicing site for some rule.

We distinguish two cases. In the first case, which we call 1-cross bullet expansion,
the path θ, considered as a string, includes the splicing site u1u2 of a rule:
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Fig. 1.3. The Rule Expansion of the Graph of Figure 1.1

θ = ηξβ

for some ξ beginning with a symbol of V such that h(ξ) = u1u2.
In the second case, which we call 4-cross bullet expansion, the path θ, considered

as a string, includes the splicing site u3u4 of a rule:

θ = ηξβ

for some ξ ending with a symbol of V such that h(ξ) = u3u4.
As it is illustrated in the following pictures, the positions where the beginning

of ξ or the end of ξ are respectively located could be either external to the cycle or
internal to it.

In both cases we insert an empty bullet in the path θ.

• In the case of a 1-cross bullet expansion, we insert an empty bullet ◦, exactly
before ξ, with an arrow going from this empty bullet to the cross bullet of the
u1 expansion component of ri. Let 1/i be the type of this empty bullet. This
expansion is performed unless η does not already include an empty bullet of type
1/i after its last symbol of V .

• In the cases of a 4-cross bullet expansion, we insert an empty bullet ◦, exactly
after ξ, with an arrow, entering this empty bullet and coming from the cross
bullet of the u4 expansion component of ri. Let 4/i be the type of this empty
bullet. This expansion is performed unless β does not already include an empty
bullet of type 4/i before its first symbol of V .

The two cases are illustrated in the following pictures (in 1-cross bullet expan-
sion the beginning of the splicing site is external to the cycle, in the 4-cross bullet
expansion the end of the splicing point is internal to the cycle).

The general situation of cross bullet expansion is illustrated in figure 1.3.
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Fig. 1.5. 4-Cross bullet Expansion: αn includes a string of h−1(u3u4) as its suffix

If we apply cross bullet expansion to the graph of Figure 1.3 we get the graph of
Figure 1.7 where only an 1-cross bullet expansion was applied. The following lemma
establishes the termination of the cross bullet expansion procedure.

Lemma 1. If, starting from Ge, we apply again and again the cross bullet expansion
procedure, then the resulting process eventually terminates, that is, after a finite
number of steps we get a final graph where no new cycles can be introduced.

Proof.This holds because in any cross bullet expansion we insert an empty bullet
◦ and an arc with empty label connecting it to a cross node, but empty bullets,
at most one for each type, are always inserted between two symbols of V starting
from the graph Ge, which is fixed at beginning of the cross bullet expansion process.
Therefore, only a finite number of empty bullets can be inserted. This ensures that
the expansion process starting from Ge will eventually stop.
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Fig. 1.7. Cross bullet Expansion of the Graph of Figure 1.3

Let G be the completely expanded graph, the cross bullet expansion procedure is
performed by a (finite) sequence of steps. At each step an empty bullet is inserted
and an arc is added that connects the empty bullet with a cross bullet.

Let L(G) be the language of the strings generated by paths of G. The inclusion
L(G) ⊆ L(Γ ) can be easily shown by induction on the number of cross bullet
expansion steps: obviously L(G0) ⊆ L(Γ ), thus, assume that all the paths of the
graph at step i generate strings of L(Γ ), then the paths in the expanded graph at
step i+1 generate strings spliced from paths which are present at step i. Therefore,
the inclusion holds for the completely expanded graph.
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For the inverse inclusion we need the following lemma which follows directly
from the method of the cross bullet expansion procedure.

Lemma 2. In the completely expanded graph G, when there is a path ηθσρ where
h(θ) = u1, h(σ) = u2 and u1u2 is the splicing site of the rule ri, then also a path
ηθ′•i occurs in G with h(θ) = h(θ′). Analogously, if in G there is a path ηθσρ where
h(θ) = u3, h(σ) = u4 and u3u4 is the splicing site of the rule ri, then also a path
�iσ

′ρ occurs in G with h(σ) = h(σ′).

The inclusion L(Γ ) ⊆ L(G) can be shown by induction on the number of splicing
steps. If η is an axiom, the condition trivially holds. Assume that η derives, by means
of a rule ri, from two strings. This means that these strings can be factorized as:

α •i β

γ �i δ

and, by induction hypothesis, in G there are two paths θ, ρ generating αβ and γδ
respectively. These paths include as sub-paths h−1(u1u2), h−1(u3u4) respectively,
therefore, according to the previous lemma, a path σ•i is in G where h(σ) = α and
a path �iπ is in G where h(π) = δ. This means that the path σ •i �iπ is in G,
but h(σ •i �iπ) = η, therefore η is generated by a path of the completely expanded
graph.

In conclusion, L(Γ ) = L(G).
The language L(G) is regular because it is easy to define it by means of a regular

expression deduced from G.
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