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Abstract. We explore whether non-malleability is necessary for the ap-
plications typically used to motivate it, and propose two alternatives.
The first we call weak non-malleability (wnm) and show that it suf-
fices to achieve secure contract bidding (the application for which non-
malleability was initially introduced), despite being strictly weaker than
non-malleability. The second we call tag-based non-malleability (tnm),
and show that it suffices to construct an efficient universally-composable
secure message transmission (SMT) protocol, for which the only previ-
ous solution was based on a public key encryption functionality whose
security is equivalent to non-malleability. We also demonstrate construc-
tions for wnm and tnm encryption schemes that are simpler than known
constructions of non-malleable encryption schemes.

1 Introduction

Non-malleability [TT] is a security condition for encryption schemes that requires,
informally, that an attacker given a challenge ciphertext be unable to produce an-
other, different ciphertext so that the plaintexts underlying the two ciphertexts
are “meaningfully related” to each other. Non-malleability is the strongest com-
monly considered notion of security for encryption, being strictly stronger than
indistinguishability [14] under chosen-plaintext or indifferent chosen-ciphertext
(“lunchtime”) attacks, and being equivalent to indistinguishability under adap-
tive chosen-ciphertext attacks [I].

In this paper we revisit the definition of non-malleability with an eye to-
ward whether it is mecessary for applications commonly used to motivate it.
Our contributions in this study are twofold. First, we identify alternatives to
non-malleability that suffice for applications where previously non-malleability
seemed warranted. Second, we identify encryption schemes that implement these
variants and that are conceptually simpler than known non-malleable schemes.

The alternative definitions that we propose deviate from non-malleability
in different ways. The first notion, which we call weak non-malleability (wnm),
identifies a point in the space of definitions strictly between non-malleability
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and indistinguishability (in those cases where there is room between them, i.e.,
under chosen-plaintext and lunchtime attacks). Informally, wnm allows mauling
of a ciphertext ¢, but such that this mauling does not benefit the adversary. In
particular, a mauling that produces a valid ciphertext ¢’ would imply that the
adversary has successfully guessed the plaintext corresponding to ¢, and thus for
many natural applications, this mauling would not be useful. In other words, in
such applications, wnm should suffice in place of non-malleability. As an example,
we show that a wnm encryption scheme suffices to implement a secure contract
bidding auction in the spirit of that originally used to (informally) motivate
non-malleability [TT]. Still, wnm does allow an adversary to produce a ciphertext
¢’ that has a (very restricted) dependence of a given ciphertext ¢, and we can
in fact show that wnm is a strictly weaker property than non-malleability. In
addition, we show that this weaker property may be satisfied by very simple
encryption schemes similar to those used in Bellare and Rogaway [2] to achieve
the (even less stringent) property of indistinguishability under chosen-plaintext
attacks [IZ] These schemes assume p is a prime, H is a hash function (modeled
by a random oracle in our security analyses) with range a group X with group
operation “” and f denotes a trapdoor permutation that constitutes the public
key (with the trapdoor being the private key):

Mult-Range scheme. The encryption of mis E(m) = <f(r), H(r)-m> where
r is chosen randomly (per encryption) from the domain of f, the plaintext
space is an integer range [a,b] satisfying 0 < a < b < p, a > (b — a)? and
p>2b% and X = Z,, with - being multiplication in Z.

Mult-Adjacent scheme. The encryption of mis E(m) = <f(r), H(r)-(m, m+
1)> where r is chosen randomly (per encryption) from the domain of f, the
plaintext space is Z; \ {p—1}, and X = Z; x Z; with group operation - being
component-wise multiplication in Zy, i.e., (o, 71) - (Y0, y1) = (ToYo, T1Y1)-

Add-Square scheme. The encryption of m is E(m) = <f(r), H(r)-(m,m?)>,

where the plaintext space is Z,, and X = Z, X Z;, with group operation -

being component-wise addition in Z,,, i.e., (xo, z1)-(yo, y1) = (Xo+Y0, T14+Y1).

For some intuition behind weak non-malleability, consider the Mult-Range
scheme above. Without the range restriction on the plaintext space, this scheme
would be completely malleable (similar to the first scheme introduced in [2]).
However, simply by restricting the range of plaintexts (as opposed to, e.g., adding
an additional hash for verification/redundancy, as is done in [2] to achieve non-
malleability) we are able to achieve wnm. Informally, this is because any mod-
ification of a ciphertext (v,w) to (v,w’) implies a multiplying factor w’/w for
which there is only a single plaintext in the range that would be transformed
into another plaintext in the range.

1 'While there exist efficient encryption systems that implement indistinguishability
under adaptive chosen-ciphertext attacks (and thus non-malleability under these
attacks, e.g., [2I8]), we are unaware of prior constructions that, like those listed here,
so simply implement a property strictly stronger than indistinguishability (in this
case, weak non-malleability) under chosen-plaintext and lunchtime attacks.
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The second alternative to non-malleability that we propose is called tag-based
non-malleability (tnm). Here, we structurally modify encryption and decryption
to take an additional public string argument called a tag. Informally, tnm dictates
that an adversary be unable to create a (ciphertext,tag) pair with plaintext
related to that of the challenge ciphertext and with the tag being different from
the challenge tag, even though it is able to obtain decryptions of (ciphertext,tag)
pairs with any tag different from the challenge tag. We demonstrate the utility of
tnm by using it to implement the “secure message transmission functionality” in
the universal composability framework of [3], replacing the use of non-malleable
encryption there, and arguably providing a more natural implementation. tnm
also admits exceedingly simple implementations, e.g.:

Tag-based scheme. The encryption of m with tag ¢ is E(m,t) =
<f(r), H(r,t)-m> where r is chosen randomly (per encryption) from the do-
main of f. The plaintext space is Zy, and X = Z; with - being multiplication
in Z7.

P

We also present a tnm construction that is a (simpler) variation of the Cramer-
Shoup encryption scheme [8[9]. The change in structure for encryption and de-
cryption (specifically due to the tag) does not permit us to argue that tnm
is definitionally weaker than non-malleability. However, given a non-malleable
encryption scheme, it is trivial to implement a tnm scheme using it with no
additional assumptions or loss in security. We also show how to implement a
non-malleable scheme using a tnm scheme and a one-time signature scheme.

2 Preliminaries

Trapdoor Permutations [2[15] A permutation generator G, is a probabilistic
polynomial time algorithm that takes as input 1¥ and outputs three polynomial-
time algorithms (f, f~1,d), the first two being deterministic, and the last being
probabilistic. The range of d(1*) is required to be a subset of {0,1}* and f, f~*
are permutations over the range of d(1*), and are inverses of each other. G, is a
trapdoor permutation generator if it is a permutation generator such that for all
non-uniform polynomial-time algorithms A, Pr[(f, f~1, d) < G.(1%);z « d(1%);
y+ f(z) : A(f,d,y) = z] is negligible. It is commonly assumed that, for exam-
ple, RSA is a trapdoor permutation.

Encryption schemes An encryption scheme II is a triple (G, E, D) of algorithms,
the first two being probabilistic, and all running in polynomial time. G takes as
input 1% and outputs a public key pair (pk, sk), i.e., (pk, sk) < G(1%). E takes a
public key pk and a message m as input and outputs an encryption ¢ for m; we
denote this ¢+ Epi(m). D takes a private key sk and a ciphertext ¢ as input
and returns either a message m such that c is a valid encryption of m, if such
an m exists, and otherwise returns 1 ; we denote this m < Dgy(c).
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As discussed in Section [l indistinguishability is the most commonly
studied goal for encryption. Here we adopt definitions ind-cpa, ind-ccal, and ind-
cca2 from [I]. Below we give the definition of non-malleability from Dolev, Dwork
and Naor [11], as written explicitly as the simulator-based non-malleable (snm)
definition in Bellare and Sahai EHE In this definition and throughout, we use
atk to denote one of {cpa,ccal,cca2} and define oracles O; and Oy as follows:

atk =cpa= 01(-) =¢05(-) =
atk = ccal = O;() = D ("),
atk = cca2 = O4(-) = Dy (+),

Definition 1 (snm-cpa, snm-ccal, snm-cca?). Let II = (G,E,D) be an en-
cryption scheme, let R be a relation, let A = (A1, A2) be an adversary,
and let S = (81,82) be an algorithm (the “simulator”). For k € N define

AdVEITE(R, k) Pr[Expt ™ (R, k) = 1] — Pr[ExptS ™% (R, k) = 1], where

Expti " (R, k) : Expt27 (R, k) :
(pk, sk) + G(1%) (pk, sk) « G(1%)
(M,Sl,SQ)(*A?l (pk) (M, s1,82) + Si1(pk)
T M T+ M
Y < Ep(2)
Y AT%(52,9) y < Sa(s2)
x + Dy (y) x + Dsi(y)
Return 1 iff y € y A R(x,x, M, s1)| Return 1 iff R(x,x, M, s1)

We say that II is secure in the sense of snm-atk for if for every polynomial q(k),
every R computable in time q(k), every A thal runs in time q(k) and outputs
a valid message space M samplable in time q(k), there exists a polynomial-time
algorithm S such that AdvaTg:aﬁk(R, k) is negligible.

Technically, for our definitions to hold with respect to random oracles we would
need to explicitly include a random oracle in our experiments. However, this can
be done in a standard way, and for readability it is not included.

3 Weak Non-malleability

3.1 Definition

Here we propose a definition for weak non-malleable (wnm) encryption schemes.
As in Definition [I[] a wnm-secure encryption scheme requires the existence of
a simulator S (not given a challenge ciphertext y) that has roughly the same
probability as an adversary A (given y) of generating a vector y of ciphertexts
for which the plaintext vector x bears some relationship R with the plaintext x

2 Actually we slightly modify the definition of [4] so as to not require that every
element of y decrypt to a valid plaintext. This is needed for the equivalences stated
in [4] to hold.
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of y. In the wnm definition, the adversary experiment will take exactly the same
form as that in Definition [[l The difference lies in the simulator experiment
and the form of S. Specifically, S is permitted to make each element y; of y
contingent upon a “guess” z; as to the value of z. That is, relation R tests x
against a vector x where each element z; is the plaintext of the corresponding
y; in y if either S guessed x or offered no guess (i.e., guessed L), and where x;
is 1 otherwise.

It is easy to see that any snm-secure encryption scheme is also wnm-secure,
since the wnm-simulator is simply given more power. It is perhaps not as easy
to see that this power is sufficient to allow a wnm-secure scheme that is not
snm-secure, but we will show that in fact this is the case. For example, the wnm-
schemes presented in the introduction are not snm-secure in the random oracle
model

The precise definition of wnm security is as follows.

Definition 2 (wnm-cpa, wnm-ccal, wnm-cca2). Let II = (G,E,D) be an
encryption scheme, let R be a relation, let A = (A1, A2) be an adversary,
and let S = (81,82) be an algorithm (“simulator”). For k € N define

AV =R (R k) < Pr{Expt (R, k) = 1] — PrExpta™m % (R, k) = 1], where

Expt’{ T (R, k) : Expte'f ** (R, k) :
(pk, sk) + G(1%) (pk, sk) + G(1%)
(M, 51, 52) < AT (pk) (M, 51, 52) < S1(pk)
<+ M T+ M
Y < Epi(z)
y A2 (s2,9) (v, 2) < Sa(s2)
x < Dar(y) x <+ Di(y,2,2)
Return 1iff (y € y) A R(z,x, M, s1)| Return 1 iff R(x,x, M, s1)

and D', (y,z,x) returns the decryption of each y; € y for which z; = = or
zi = L, and returns L for each other index. We say that II is wnm-atk-secure
if for every polynomial q(k), and every A that runs in time q(k) and outputs a
valid message space M samplable in time q(k), there exists a polynomial-time
algorithm S such that for every R computable in time q(k), Adv%g’}tk(R, k) is
negligible. /

The proofs of the following lemmas will appear in the full version of the paper.

Lemma 1. For any atk € {cpa, ccal, cca2}, snm-atk = wnm-atk = ind-atk.

Lemma 2 (ind-ccal # wnm-cpa). If there exists an ind-ccal-secure encryption
scheme, then there exists an ind-ccal-secure encryption scheme that is not wnm-
cpa-secure.

3 Actually, it is much easier to see that they are not comparison-based non-malleable
(cnm) [, and then use the result in [4] that simulation-based non-malleability im-
plies comparison-based non-malleability. Also, note that our separation result in
Lemma Bl holds not just in the random oracle model, but in the standard model.
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Lemma 3 (wnm-ccal # snm-cpa). If there exists an snm-ccal-secure encryp-
tion scheme, then there exists a wnm-ccal-secure encryption system that is not
snm-cpa-secure.

3.2 Constructions

In Section [l we introduced several constructions for wnm-secure encryption,
denoted “Mult-Range”, “Mult-Adjacent”, and “Add-Square”. Our goal in this
section will be to prove Lemma [l

Lemma 4. The Mult-Range, Mult-Adjacent, and Add-Square schemes are all
wnm-atk secure, for atk € {cpa,ccal}.

In fact, we prove a more general result. We show a general construction
of weakly non-malleable encryption schemes, of which the three constructions
above are special cases. We first introduce a notion called “uniquely identifiable
subset,” which we will use in our general construction.

We say a sequence of sets X = { Xy} r=0, Xr C {0,1}*, is efficient if there
exists a polynomial p(-) such that membership in X}, can be tested in time p(k).
For simplicity, we often abuse notation by referring to the sequence { X} as “the
efficient set X7 and omitting the subscript k, although it should be understood
that X is a sequence of sets. We extend this notation to groups, too, i.e., when we
say “X is an efficient finite group,” it should be understood that X = {X}} is in
fact a sequence of finite groups, whose membership can be efficiently determined.
Furthermore, for efficient sets X and S, we use the phrase “S is a subset of X”
as shorthand for “for every k, Sy is a subset of Xj.”

Definition 3 (Unique Identifiability). Let X be an efficient finite group with
identity element e, and let S be an efficient subset of X. We say S is a uniquely
identifiable subset of X, if for every A € X\{e}, there exists at most one x) € S,
such that A -xx € S and for any other x € S;x # xx, \-x ¢ S. Here “” is the
group operation. We call x) the soft spot for . If no such xy exists, we write
this as ) = L. We denote the soft spot of X by ss()\).

Furthermore, we say S is an efficient uniquely identifiable subset of X, if
there exists a polynomial-time algorithm A that outputs x on input .

Putting the definition in our context, X is the space of all messages and
S is the set of all “valid” messages. The group operation “” is a “mauling”
function the converts an encryption of x to an encryption of A - z, and we call
A the “mauling factor.” The unique identifiability indicates, therefore, for every
mauling factor A, there is at most one valid message x) that can be mauled into
another valid one (all other valid messages are mapped to invalid ones). For an
efficient uniquely identifiable subset, one can in fact find z efficiently.

Next, we give several examples of efficient uniquely identifiable subsets, which
are closely related to the Mult-Range, Mult-Adjacent, and the Add-Square
schemes.
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Ezample 1 (Mult-Adjacent). Let X = Zy x Z with the group operation being
component-wise multiplication in Z3, i.e., (zo,21) - (y0,y1) = (%0 - Yo, 1 Y1)-
Let S = {(z,z+1) |z € Z}}.

Ezxample 2 (Add-Square). Let X = Z, x Z,, with the group operation being
component-wise addition in Z,, i.e., (zo, 1) - (Y0,y1) = (zo + Yo, 1 + y1). Let
S ={(z,2?) |z € Zp}.

Ezample 3 (Mult-Range). Let X = Zy with multiplication as the group opera-
tion. Let S = {a, ..., b}, where a > (b —a)? and p > 2b%.

Lemma 5. All three examples above are efficient uniquely identifiable systems.

The proof of Lemma [ is straightforward for Mult-Adjacent and Add-Square;
Mult-Range is not straightforward, however. The proof will be provided in the
full version of the paper.

Now we present our general construction of wnm encryption schemes.

Construction 1 Let X be an efficient finite group. Let S be an efficient
uniquely identifiable subset of X, and H : {0,1}* — X be a hash function. Let
G be a trapdoor permutation generator. We construct an encryption scheme as
follows. G runs G, to get (f,f~1,d), and sets pk = <f,d>, and sk = f~*.
The plaintext space of Epy is SA 1o encrypt a message m, E,(m) generates
r < d(1%) and returns <f(r), H(r) - m>, where “” is the group operation in X.
To decrypt a ciphertext ¢ = (o, 8), Dgx(c) computes m = - (H(f(a))™1),
returns m if m € S, and L otherwise.

Lemma 6. Following the notation in Construction[d, if H(-) is a random oracle,
then Construction [ is wnm-atk secure, for atk € {cpa, ccal}.

The proof of this result is in Appendix [AZ]].

3.3 Applications

In this section we show that weak non-malleability suffices to implement a se-
cure contract bidding system between two bidders. Intuitively, in an ideal con-
tract bidding system, each of two bidders would submit its bid to a trusted
authority through a secure channel (so that the messages are both secret and
authenticated). In a real contract bidding system, however, it may be the case
that a dishonest bidder may be able to see the encrypted bid from an hon-
est bidder before it submits its own bid. In either case, we assume there is a

4 More precisely, we assume a one-to-one correspondence between plaintexts and ele-
ments of S, and efficient encoding and decoding functions to map plaintexts to and
from elements of S.
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public “award” function over these input bids. Depending on the application,

the award function varies. For example, the simplest award function can be

Award((xo, 1)) = (Yo, y1), where y; = x; if x; = min{xzg, z1} and y; = 0 other-

wise. This indicates the rule that the lowest bidder wins, with the award being

his bid, and the other bidder loses and thus has zero award. (We assume a unique
minimum between the bids, otherwise nobody wins.) Other forms of the award
function exist.

We specify our contract bidding system as follows:

Setup: A bidding system consisting of two bidders By, B; and an award func-
tion Award. There is also a bidding upper bound U > 0, such that the only
valid bids are integers between 0 and U. Both bidders are given U and the
award function Award.

Award function: The function Award : {1,0,1....U}?> — {0,1,...,U}? takes
the bids from the bidders and computes their awards, respectivelyld We
say an award function is fair, if for any x = (xg,x1) and any i € {0, 1},
Award(x| | ))[i] < Award(x)[i], and Award(x|,, ,)[i] < Award(x)[i].
Here we use x|,,}; to indicate the vector obtained by replacing the ith
entry of x by y and we use x[i] to indicate the ith entry of x. Intuitively,
the fairness indicates that B; would not gain any advantage in profit by
changing his bid to L or to B;_;’s bid. We note that fairness is a reasonable
requirement for bidding systems to be “useful.”

Real Adversary: To model security, we consider an adversary A = (A1, As)
that corrupts bidder Bj. A; receives the public key pk and U, and outputs a
polynomial-time samplable distribution M of bids, from which a bid bidg is
chosen for By. As is then given the ciphertext of bidyg and outputs encrypted
bid ebid; for B;. The profit of the adversary is the award of B;.

Definition 4 (Secure Contract Bidding). Let CBS be a contract bidding
system with bidding upper bound U and encryption scheme II = (G,E,D).
CBS s secure if for every fair award function Award, every polynomial q(k),
every adversary A = (A1, As) that runs in time q(k), there exists a polynomial-

time simulator S = (81,S82) such that Advﬂf’ngBs(k) is negligible[d where
AV cas (k) < BIExptees (k) — ExptEs (k). and
Eth:ZE:ICBS(k) : EXPtg??:IBs(k) :

(pk, sk) « G(1")

(M, 5) - A (pk, U) (M, 5) & S (1)

bidg < M bidg < M

ebidg Epk(bid())

ebid1 < .A2 (ebido, 8) bid1 < 82 (S)

bid; < D, (ebidy)

return Award((bido, bid1))[1]| return Award((bido, bid1))[1]

® We insist that the award function be a positive function. However, this is entirely
arbitrary, since one can always “shift” the award function by a constant without
changing its nature.

5 Tt may be negative, in which case we also consider it to be negligible.
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It is clear that if the encryption scheme I is malleable, then the system
might not be secure. For example, consider the scheme where message m is
encrypted as <f(r), H(r) + m mod p>, where f(-) is a trapdoor permutation
and H a random oracle. It is an ind-cpa-secure scheme, but the real bidding
system is not secure, since an adversary seeing the bid <«, > from bidder By
can submit bid <a, 3 — 1>, and underbid By by 1. It is also obvious that if IT
is snm-cpa-secure, then the bidding system is secure. The next theorem shows
that in fact wnm-cpa-security suffices.

Theorem 1. Let II = (G, E, D) be a wnm-cpa-secure encryption scheme, with
a domain that includes the integer range [0, U] where U is polynomially bounded
by k. Then a contract bidding system CBS with bidding upper bound U and
encryption scheme II is secure.

The proof of this result is in Appendix [A22] We mention that our result only ap-
plies to the case of a single auction, and specifically does not claim that repeated
auctions will be secure if they use the same encryption scheme. Obviously, for
repeated auctions to be secure, we would need some kind of cca2 security for our
encryption scheme.

We also mention that the result does not apply to contract bidding schemes
with multiple bidders that may collude. Intuitively, this is because they may each
make guesses which cover the possible choices of the honest bidder, and a wrong
guess for one party does not reduce the award of the party that guesses correctly.
To solve the problem with multiple bidders using a wnm-secure cryptosystem,
one could either allow randomization in the bids (e.g., each bid would be of the
form (bid, ), where r < {0,1}*, which would ensure that the adversary has a
negligible chance of guessing the full plaintext), or one could change the model
to levy penalties for invalid bids.

4 Tag-Based Non-malleability

In this section, we introduce tag-based non-malleability as an alternative to
standard non-malleability. Informally, in a tag-based encryption system, the en-
cryption and decryption operations take an additional “tag.” A tag is simply
a binary string of appropriate length (i.e., its length has to be polynomially
bounded by the security parameter), and need not have any particular inter-
nal structure. We define security for tag-based encryption in manners analogous
to security for standard encryption systems. In particular, we define tag-based
non-malleability (Definition [H) and tag-based indistinguishability (Definition [l
with respect to cpa, ccal, and cca2 attacks. The only changes we make to the
definitions for standard encryption are: (i) in a cca2 attack, instead of requiring
that the adversary A not query the decryption oracle with the ciphertext y that
A receives as a challenge, we require that A not query the decryption oracle
with a (ciphertext,tag) pair using the same tag with which y was encrypted;
(ii) for tag-based non-malleability, instead of requiring that A not output the
ciphertext y it receives, we require that As not output any (ciphertext,tag) pair
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for decryption using the tag with which y was encrypted. Informally, one simply
changes the “equality of two ciphertexts” in the standard definitions to “equality
of the tags of two ciphertexts,” and we have a tag-based definition.

4.1 Definition

Tag-based encryption schemes A tag-based encryption scheme II is a triple
(G,E, D) of algorithms, the first two being probabilistic, and all running in
expected polynomial time. G takes as input 1* and outputs a public key pair
(pk, sk), i.e., (pk,sk) +— G(1¥). E takes a public key pk, a message m, and a tag
t as input and outputs an encryption ¢ for m associated with ¢; we denote this
¢ < Epi(m,t). D takes a private key sk, a ciphertext ¢, and a tag ¢ as input and
returns either a message m such that c is a valid encryption of m associated with
t, if such an m exists, and otherwise returns L; we denote this m « Dgy(c, t).

Definition 5 (tnm-cpa, tnm-ccal, tnm-cca2). Let II = (G,E,D) be an en-
cryption scheme, let R be a relation, let A = (A1, A2) be an adversary,

and let & = (81,82) be an algorithm (the “simulator”). For k € N define

AdVETEK(R, k) PrExpti™ (R, k) = 1] — Pr[Expt® (R, k) = 1], where

Expty 7" (R, k) : Exptd ™ (R, k) :
(pk, sk) < G(lk) (pk, sk) < G(lk)
(M, t, s1,82) <—A?1(pk:) (M, t, 51, s2) < S1(pk)
T+ M <+ M
Yy Epi(x,t)
(Y7t) <;'/4;92(‘9%2/7 t) (yat) <;‘5'2(8271&)
X < Dsp(y, t) x < Dgp(y, t)
Return 1 iff (¢ € t) A R(x,x, M,s1)| Return 1 iff R(z,x, M, s1)

We require that O not be queried with the t given to As. We say that IT is
secure in the sense of tnm-atk if for every polynomial q(k), every R computable
in time q(k), and every A that runs in time q(k) and outputs a valid message
space M samplable in time q(k), there exists a polynomial-time algorithm S such
that Advi{s 3 (R, k) is negligible.

Definition 6 (tind-cpa,tind-ccal,tind-cca2). Let IT = (G, E, D) be a tag-based
encryption scheme, and let A = (Ay, A2) be an adversary. For k € N define

AVt (k) def o | Pr[Expt3'7% (k) = 1] — 1 where

ExptE'L{‘,d]}atk(k) :
(pk, sk) < G(1%)
(zo, x1,t,8) A?l (pk)
b&{0,1}
Y Epk(Ib, t)
b — A2 (20, 21,1, 5,y)
Return 1iff b =8’
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We require that |xo| = |z1|, and that O is not queried with tagt. We say that IT
is secure in the sense of tind-atk if for every polynomial q(k) and every adversary

A that runs in time q(k), Adv%%‘atk(k) is negligible.

Theorem 2 (tnm-atk = tind-atk). If an encryption scheme is tnm-atk-secure,
then it is tind-atk-secure, for atk € {cpa,ccal,cca2}.

4.2 Constructions

We give two constructions of tag-based encryption schemes, both achieving tnm-
cca2-security. The first one is based one-way trapdoor permutations in the ran-
dom oracle model. It is similar to the semantically secure (ind-cpa) encryption
scheme from Bellare and Rogaway [2], but enjoys a higher level of security. The
second is a modification of the Cramer-Shoup scheme [8/9], but simpler.

Construction 2 Let G, be a trapdoor permutation generator. Let X be a finite
group and H : {0,1}* — X a hash function. We construct an encryption scheme
as follows. G runs G, to get (f, f~1,d), and sets pk = <f,d>, and sk = f~1.
All messages are restricted to be elements in X. To encrypt a message m with
tag t, Epr(m) generates r < d(1%) and returns <f(r), H(r,t) - m>, where “”
is the group operation in X. To decrypt a ciphertext ¢ = (o, ), Dsk(c) returns
m=f3-(H(f(a),t)).

Lemma 7. Let H be a random oracle. If f is a trapdoor permutation, then the
scheme in Construction [2is tnm-cca2-secure.

The intuition behind the proof of Lemmal[7]is that the simulator can simulate
the decryption oracles using the knowledge of the random oracle queries, and
the fact that the adversary cannot make an Os(+) query with the same tag as in
the challenge encryption. Details will be given in the full version.

Construction 3 Let G be a finite group in which the DDH assumption holds[]
We define an encryption scheme as follows.

Ges(Gy): Let g be the generator of G, (included in the description of Gy ).
Generate go & G4 and a,b,c,d,e yal Zq, and set U+ g*(g2)®, V + g°(g2)%,
and W < g°. Let the public key be <g, g2, U, V,W> and the secret key be
<a,b,c,d,e>.

Eogg..uv,ws(m,t): Generate r £ Zg and x4+ g", y<(g2)", w+ W™m, and
v UV, Return <x,y,w,v> as the ciphertext.

Deapedes(<z,y,w,v>,1): If v # x9Ttybdt return L, else return w/z°.

” Note that one possible group G4 may be found by generating a large prime p such
that ¢ divides p — 1, and letting G, be the subgroup of order ¢ in Zj,.
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Informally, our construction removes the collision-resistant hash function
from the original Cramer-Shoup construction, and replaces the hash value
a = H(z,y,w) by the tag tB

Lemma 8. The encryption scheme in Construction[3 is tnm-cca2-secure.

The proof of this lemma almost directly follows the proof of security for the
original Cramer-Shoup construction; we omit it here.

4.3 Applications

Intuitively, tag-based encryption schemes (and in particular, tnm schemes) are
useful in systems that already have authentication, i.e., in systems where Bob
cannot impersonate Alice and send messages using Alice’s identity. We stress
that even with authentication, we still need non-malleability. For example, in
the contract-bidding scenario in both and the previous section, we still need
to make sure that Bob cannot underbid Alice by mauling her message. With
a tnm system, we can use the sender’s identity as the tag to achieve this goal.
Suppose Alice sends a encrypted message ¢ = Ep,(m, Alice) to Charlie. A ma-
licious Bob may be able to maul ¢ into another ciphertext with the same tag,
i.e., Alice — this is allowed in the definition — but this would not be useful for
him since he cannot fake Alice’s identity. Bob needs to produce some message
with the tag Bob, but tnm stipulates that Bob will not have any advantage in
doing so. To demonstrate this, we show how to use a tnm-cca2 scheme (in fact, a
tind-cca2 scheme) to construct a protocol that realizes the secure message trans-
mission functionality in the Fayrp-hybrid model, in the universal composability
framework. Previously, this was done using an ind-cca2 encryption scheme [5].

Universal-composability framework. The universal composability frame-
work was proposed by Canetti [5] for defining the security and composition
of protocols. To define security one first specifies an ideal functionality using
a trusted party that describes the desired behavior of the protocol. Then one
proves that a particular protocol operating in a real-life model securely realizes
this ideal functionality. Here we briefly summarize the framework.

A (real-life) protocol 7 is defined as a set of n interactive Turing Machines
Py, ..., P,, designating the n parties in the protocol. It operates in the presence
of an environment Z and an adversary A, both of which are also modeled as
interactive Turing Machines. The environment Z provides inputs and receives
outputs from honest parties, and may communicate with 4. A controls (and
may view) all communication between the parties. (Note that this models asyn-
chronous communication on open point-to-point channels.) We will assume that
messages are authenticated, and thus A may not insert or modify messages be-
tween honest parties. (This feature could be added to an unauthenticated model

8 We assume that ¢ € Zq. Otherwise, we would need a collision-resistant hash function
to hash the tag.
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using a message authentication functionality as described in [5].) A also may
corrupt parties, in which case it obtains the internal state of the party.

The ideal process with respect to a functionality F, is defined for n parties
Py,...,P,, an environment Z, and an (ideal-process) adversary S. However,
Py, ..., P, are now dummy parties that simply forward (over secure channels)
inputs received from Z to F, and forward (again over secure channels) outputs
received from F to Z. Thus the ideal process is a trivially secure protocol with
the input-output behavior of F.

UC secure message transmission. The functionality Fy_syr is given in
Figure[Il Intuitively, this functionality allows multiple parties to send messages
securely to a single receiver. Both the secrecy and the integrity of the messages
are guaranteed. See [5] for more discussions.

Fui—smt proceeds as follows, running with parties Pi, ..., P,, and an adversary A:

— In the first activation, expect to receive a value (receiver,id) from some party
P;. Then send (receiver,id, P;) to the all parties and the adversary. ;From
now on, ignore all (receiver,id) values.

— Upon receiving a value (send,id, m) from some party P;, send (id, P;,m) to
P; and (id, Pj,|m|) to the adversary.

Fig. 1. Functionality Fy—smt

Canetti [5] constructed a protocol that securely realizes this functionality in
the (Faurn, Feke)-hybrid model. He also showed that any ind-cca2 encryption
scheme can securely realize the Fpig functionality. Therefore, one can construct
a protocol using an ind-cca2 encryption scheme to securely realize Fy_syr in
the FauTu-hybrid model. Here, we show that one can instead use a tag-based
tind-cca2 encryption scheme.

Given a tind-cca2 encryption scheme II = (G, E, D), the protocol ¢ runs as
follows. In this description, we include the identity of the receiver in the ses-
sion identifier. (i) When a party P; receives an input (receiver,id|F;), it runs
(pk, sk) < G(1%), and sends (key,id|P;,pk) to all other parties using FauTh.
Any messages of this type with an identifier not in the correct format are ig-
nored. (ii) On receiving the first message (Py P;, (key, id| Py, pk')) from FaurH,
Pj records (Py,id, pk’) and outputs (receiver,id| Py, Pyr). Any messages of this
type with an identifier not in the correct format are ignored. Subsequent mes-
sages of this type with identifier id|P; are ignored. (iii) After this, when P; re-
ceives an input (send,id| Py, m), P; runs ¢ < Ep(m, P;), and invokes Faurn
to send (msg, id| Py, ¢) to Py. (iv) On receiving a message (P;, P;, (msg, id|P;, c))
from Favurn, P; runs m < Dy (c, Pj) and if m # L, outputs (id|P;, P;,m). Intu-
itively, the protocol uses the identity of the senders as the tag for the encryption.
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Theorem 3. The protocol o securely realizes the SMT functionality in the
Favuru hybrid model, assuming static corruptions.

The proof of Theorem Blis in Appendix [A3]

4.4 Relation to Standard Definitions

We study the relation between the tag-based definitions and the standard ones.
First, we note that they are not directly comparable, due to the structural dif-
ference in encryption and decryption. However, given a standard encryption
scheme IT = (G, E, D), it is straightforward to construct a tag-based scheme
II' = (G',E’,D") with the same security as follows. G’ is the same as G;
B (m,t) calls Epp(m ot), where x oy denotes a canonical encoding of the
concatenation of two binary strings that can be uniquely parsed; D%, (c,t) calls
(m,t") < Dgi(c) to and returns m if t = ¢’ and L otherwise. It is easy to check
that IT" enjoys the same level of security (in the sense of Definition[H) as IT (in
the sense of Definition [I).

Interestingly, the other direction also holds: given a tag-based scheme, one
can construct a standard scheme, using a strong one-time signature scheme [20].

Construction 4 Let II = (G,E,D) be a tag-based encryption scheme. Let
SIG = (sig_gen, sig_sign, sig_verify) be a strong one-time signature scheme. We
construct a standard scheme II' = (G',E’', D') as follows. G' = G. To encrypt
massage m using pk, generate a signing/verification key pair (sig-vk,sig_sk) <
sig-gen(1%); encrypt m using sig-vk as the tag, i.e., ¢ < Epp(m,sig-vk); sign ¢
using sig_sk, i.e., s < sig_sign(sk,c); and output (sig_vk,c, s) as the encryption.
To decrypt a ciphertext (sig_vk,c, s), verify that s is a valid signature of ¢ with
respect to sig_vk; if not, output L; if so, return Dgy(c, sig_vk).

Theorem 4. For atk € {cpa,ccal,cca?}: if IT is tnm-atk secure, then II' is
snm-atk secure; and if IT is tind-atk secure, then II' is ind-atk secure.

The proof of this result will be given in the full version.

Construction [4 is essentially the construction first shown in [II] and later
used in [20/I0JI76] to obtain non-malleable encryption schemes, except that we
explicitly separate the underlying tag-based scheme from the “wrapper” that
uses the one-time signature scheme. Thus, in each of these papers, there is an
implicit tag-based non-malleable encryption schemef] We illustrate this with
the scheme of Lindell [17], which we denote as ITy. In I, an encryption of
message m is a tuple <co, c1,pky, pky, 1, sig-vk, o, s>. Here ¢y and ¢; are two
encryptions of m using two ind-cpa systems with public keys pk, and pk;, re-
spectively; sig_.vk is a “fresh” verification key of a strong one-time signature

9 In the (independent and concurrent) result of [6], there is actually an explicit identity-
based encryption (IBE) scheme which corresponds to our tag-based non-malleable
encryption scheme. They essentially prove the cca2 case of Theorem H] (Note: their
cpa-secure IBE scheme corresponds to our cca2-secure tnm scheme.)
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scheme; r is a random string; ¢ is an NIZK proof that either ¢y and c¢; are
the encryption of the same message, or r is the commitment of sig.vk; s is a
signature of the tuple <cy, ¢1, pkg, pk;,sig-vk,r,0>. Then in the underlying tag-
based encryption scheme IT, an encryption of message m with tag t is the tuple
<cgp, c1,pky, pky,7,t, 0>, where ¢y, c1, pky, pky, and r are all the same as be-
fore, and o becomes an NIZK proof that either ¢y and ¢; are the encryptions
of the same message, or r is the commitment of ¢. It is easy to verify that II
is tnm-cca2-secure. In fact, one can prove the security for IT almost exactly the
same way as for the security proof of IT;, observing that the use of the strong
one-time signature in Iy, is solely for enforcing that an adversary will not make
a query to the decryption oracle with a ciphertext having the same verification
key. Since in the tag-based system I1, the verification key is replaced by the tag,
by definition, the adversary cannot query the decryption oracle with a ciphertext
having the same tag. So in fact the proof for the security of II is even simpler
than the proof for for I1;. Furthermore, I}, is exactly the transformed version
of protocol IT under Construction @l Therefore, one could obtain an alternative
proof of security for IT; by pluggin IT into Theorem [l

In the full version of this paper, we will show that many known relations
between standard security definitions translate to analogous relations between
tag-based definitions.
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A  Proofs

A.1 Proof of Lemma [G]

We prove the lemma for atk = ccal, which will imply the case atk = cpa. We
use the notation of Definition Bl and Construction [l

For an adversary A = (Aj, As), we construct simulators S = (S§1,82) as
follows. The simulator S; runs A; and simulates both the random oracle H(+)
and the decryption oracle Dy in a quite standard way. More specifically, Sy
maintains a “query list” L consisting of pairs (a,t), such that H(f!(a)) =t. L
is initially . When A; makes a query r to H, Sy checks if (f(r),t) € L for some
t, and replies with ¢ if so; otherwise, S picks a random ¢+ X, adds (f(r),¢?)
to L, and replies with t. When A; makes a query y = («, 8) to Dy, S1 checks
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if (a,t) € L for some t, and replies with (3 - t~1) if so; otherwise, S; picks a
random t < X, adds (a,t) to L, and replies with (8 -t~!). Finally, when A;
outputs (M, s1, $2), Sy outputs (M, s1, (s2, L)).

Upon invocation, the simulator Sy, generates r < d(1¥), a < f(r), B+ X,
y < (o, ). Then Sy invokes Ay with parameters (sq,¥), and simulates the ran-
dom oracle for As in the same way as S; does for Aj, using the list L passed
from S;. When As outputs y < As(s2,y), Sz aborts if y € y. Otherwise, we
assume that y = (y1,¥2,..,y¢), where y; = (ay, ;) for i = 1,2,....0. Sy gen-
erates z as follows. For each i, if a; # a, then set z; < 1; otherwise compute
i < Bi - (B)71, compute its soft spot x; < ss();), and then set z; < z;. Finally
Sy sets z = (21, 21, ..., 2¢), and outputs (y, z).

Next, we prove that S is a valid simulator, i.e., that Pr[ExptﬁTI"}'atk(R, k) =
1] — Pr[Exptg?I“}'atk(R, k) = 1] is negligible in k. In order to do so, we intro-

duce a new experiment called Mix. Informally, Mix‘f"l'jg:f]tk(R, k) is the same as

Exptﬁf}"{atk(R, k), except using the simulator S to simulator the random oracle

and the decryption. Now let p_4, pmix and ps be the probabilities of success in the
real, Mix, and ideal experiments, respectively. We shall prove that both p4 — pmix
and pmix — ps are negligible k, and the lemma will follow directly.

To see that pa — pmix is negligible, note that the simulation of the random
oracle and decryption in Mix will be valid except in the case where A; has queried
H with r or Dgj with («, ") for some 3'. Since r and « are chosen randomly
after A; is executed, the probability of this is obviously negligible.

To see that pmix — ps is negligible, note that the two experiments only differ
when Ay queries H(r), and the probability of this is negligible by the security
of f. (Using unique identifiability and by viewing random oracle queries, Sy is
able to simulate the decryption exactly.)

Details will be provided in the full version of the paper.

A.2 Proof of Theorem I

First the intuition. If CBS were not secure, then there would be an adversary
A that breaks it, meaning that for some fair Award, no simulator could achieve
an expected award negligibly less than A. But we will construct an adversary
B for IT out of A, and by the wnm-security of IT, there is a simulator &’ that
approximates B for any relation. Then we will use &’ to build a simulator S
for CBS that does achieve an expected award negligibly less than A, which is a
contradiction.

Now the details. Assume CBS is not secure. Then for some ¢(k) there exists an
adversary A that runs in time ¢(k) and such that for every simulator S, there ex-
ists a non-negligible (k) and an infinite number of k’s in which Advf‘{?‘ngBs(k) >

r(k). Let Edge s cas(k,c) = PrlExptitas(k) > o — Pr{Exptieag(k) > d.
Then using the definition of expectation, there is a ¢ such that for an infinite
number of k’s, Edge 4 s cgs(k,c) > 7(k)/U. Without loss of generality, we may
assume that A, never outputs ebidg, since by the fairness of the Award function,
this cannot increase its advantage.
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Define relation R.(z,x, M, s1) to return 1 iff |x| = 1 and Award(z, x[0])[1] >
c. Consider the following adversary B for the wnm-cpa-security of I1.

Bi(pk) : Ba(s,y) :
(M, s) + Ai(pk,U)| ebid; < Ax(y, s)
return (M, L, s) return ebid;

Since IT is wnm-cpa-secure, there exists a simulator &’ = (S}, S85) such that
Advy"s 7 (Re, k) is negligible for all ¢. Because R.(x,x, M, s1) returns 1 only if
|x| = 1, we assume without loss of generality that S} returns one-element vectors
y and z, i.e., values y and z. Now let a simulator §” = (Sy,SY) for the contract
bidding system be defined as follows.

SY(U): Sy (s):
(pk, sk) + G(1%)
(M. s1,52) « Si(pk)|  (y,2) < Sh(s)
return (M, s2) return D (y)

Note that by the fairness of Award, the award can never decrease when bid;
is changed from _L to a valid bid, and so it is easy to see that Pr[Exptﬁﬁf'CBs(k) >
c > Pr[Exptgi‘f"I{atk(Rc,k) = 1]. Using this fact, one can see that for all c,
Edge 4 s cps(k,¢) < Advy's 7 (R, k), and thus by the discussion above, for
all ¢, Edge 4 s cgs(k,c) is negligible. This is a contradiction, so CBS must be
secure.

A.3 Proof of Theorem

Let A be an adversary that interacts with parties running o in the Fayry-hybrid
model. We will construct an adversary S in the ideal process for Fy_syr such
that no environment Z can distinguish whether it is interacting with A and o
in the Fayru-hybrid model, or with § and Fy_gmT in the ideal process. For
simplicity, we assume there exists only one instance of Fy_syr with identi-
fier id|P; for some P;. It is straightforward to extend the behavior of S to the
case of multiple instances. S runs a simulated copy of A and maintains a tuple
(pk™, sk™, owner), where pk™ is the “session public key”, sk* is the corresponding
secret key, and owner is the index of the party who “owns” it.[=] The session key
pair (pk™, sk™) is initialized to L. Then S forwards messages from Z to A, as well
as messages from A to Z. Furthermore, S also sees the public part (also known
as “header” [7]) of all the messages from uncorrupted parties to Fy_syr and
may decide when and if to forward these messages. We refer the readers to [7]
for more detailed discussions. In the case of Fy_sm, all messages to Fy—smr
are public, except the “payload message” m in (send,id,m). S also simulates
the ideal functionality FauTu.

Next, we describe the behavior of S in more detail. Note that S simulates
FauTh as normal except as detailed below.
10 Since we assume there is only one instance of Fyi—gmt ideal functionality, there is

only one instance of protocol o, and thus there is only one key. Also, in the case of
identifier id|P;, owner = 1.
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Simulating Communication with Z: S directly forwards any messages be-
tween Z and A.

Key Generation: If P; is uncorrupted and S sees a message (receiver, id|P;)

from P; to Fuv_smt, S forwards this message to Fyv_sur. If pk™ #
1 it does nothing else. Otherwise S generates (pk,sk) < G(1%), sets
(pk™, sk™) + (pk,sk), and owner<+ i, and simulates Fauyrmg to send
(key, id|P;, pk) to all other parties.
If P; is corrupted and S sees P; send a message (key,id|P;, pk) to Favurw,
S simulates Fayry. Furthermore, if pk* = L and pk # L, then S sends
message (receiver,id) to Fy—smt on behalf of P; and sets owner + i and
(pk*,sk™) < (pk,?). Here “sk™ =?” indicates that S does not know the cor-
responding secret key.

Delivery of the public key: When A delivers a message (B;, P;, (key,
id|P;, pk)) from FayuTu to an uncorrupted party P; that has not received
such a message previously, S records the tuple (Pj, (P;,pk)) and delivers
(receiver, id|P;, P;) from Fyi—svt to Pj.

Message transfer from an uncorrupted party: If S sees an uncorrupted
party P; send a message (send,id|P;, —) to Fy—swmt, where “—” indicates
the “private” part of the message that S does not see, and if S has stored a
tuple (P;, (P;,pk’)), S does the following. First S forwards the send message
to Fm—smr, and receives the length £. Next, if P; is corrupted, then S receives
the message (id, m, P;) from Fy—gmvr to the ideal P;, sets ¢ <= Eppr (m, P;). If
P; is uncorrupted, then S sets ¢ < Epj- (0!, P;). Finally, S simulates Fayrn
to send (id|P;, ¢) to P;.

Message transfer from a corrupted party: If S sees a corrupted party P;
(controlled by A) send message (id|P;,c) to P; through Faurh, we may
assume that P; is uncorrupted, since otherwise & does not need to do any-
thing. In this case, S sets m - D= (c, Pj) and if m # L, sends message
(send, id, m) to Fy—smr, forwarding the message (id, Pj, m) to the ideal P;
when A forwards the corresponding message to P; from Fayry.

Now we show that if any Z can distinguish whether it is interacting with A
and o in the Fayrp-hybrid model, or with § and Fy_smT in the ideal process,
then this can be used to construct an adversary B = (B1,Bz2) that breaks the
tind-cca2-security of IT.

Intuitively, this is true because the only possible difference between the ideal
process and the real world is in the case when an uncorrupted party P; sends
a message m to another uncorrupted party P;. In the real world, an encryption
of m is sent through Faurn; in the ideal process, S simulates this message
using a encryption of 0, since S does not know m. Notice that the tag for this
encryption is always P;, the identity of an uncorrupted party. S also performs
decryptions, but only for messages from corrupted parties. Therefore, S only
decrypts messages with corrupted parties’ identities as tags, and in particular,
no ciphertexts with tag P; are decrypted by S. Then, by the tind-cca2-security
of IT, the simulation of § is indistinguishable from the real world.
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We now describe the proof more formally. B takes a public key pk and de-
cryption oracle, plays the role of Fyj—syr and runs S with the following changes.

Assume that [ messages are sent using Fa_syr. Bi choose h & {1,...,1}. If an
uncorrupted party P; needs to generate a key pair, pk is used as the public key.
Let id|P; be the associated identifier. Then for the first h — 1 messages to P,
with id from uncorrupted parties, B has S encrypt the actual messages, instead
of the all zeros message. On the hth message to P; with id|P;, say from an un-
corrupted Pj, By outputs the all zeros message, the real message, the tag P;,
and its internal state. Then B uses the challenge ciphertext in the message to
P;, and continues to run S as normal, encrypting all zeros messages again. B
and Ba both call the decryption oracle on messages to F; from a corrupted F;.
Note that the tag in this case is always different from the tag returned by B.
Finally, By outputs whatever Z outputs. Note that if h = 0 and the bit chosen
in the tind-cca2 experiment is 0, B runs like S, and if h = £ and the bit chosen
in the tind-cca2 experiment is 1, B runs like A in the real protocol. Then by a
standard hybrid argument, if Z distinguishes whether it is interacting with A
and o in the FayTg-hybrid model, or with S and Fy_syr in the ideal process,
B breaks the tind-cca2-security of IT.
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