
Programming for Locality and Parallelism with 
Hierarchically Tiled Arrays   

Gheorghe Almasi(1), Luiz De Rose(1), Jose Moreira(1) and David Padua(2)

(1){gheorghe,laderose,jmoreira}@us.ibm.com

IBM T. J. Watson Research Center
P. 0. Box 218

Yorktown Heights, NY 10598-0218

(2)padua@uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

This paper introduces a new primitive data type, hierarchically tiled arrays (HTAs), which
could be incorporated into conventional languages to facilitate parallel programing and
programming for locality. It is argued that HTAs enable a natural representation for many
algorithms with a high degree of locality. Also, the paper shows that, with HTAs, parallel
computations and the associated communication operations can be expressed as array
operations within single threaded programs. This, is then argued, facilitates reasoning
about the resulting programs and stimulates the development of code that is highly read-
able and easy to modify. The new data type is illustrated using examples written in an
extended version of MATLAB. 

1.0  Introduction.

This paper introduces a new primitive data type which could be incorporated into conven-
tional languages to facilitate parallel programing and programming for locality. This new
data type facilitates the representation and manipulation of arrays that are organized as a
hierarchy of tiles. These hierarchically tiled arrays (HTAs) are a generalization of the
recursively blocked arrays arising in some linear algebra algorithms with a high degree of
locality. Our proposal is to use HTAs to facilitate the expression of both locality and paral-
lelism. In a nutshell, our idea is to distribute the outermost tiles of a hierarchically tiled
array for parallelism, and used the inner tiles for locality and message aggregation. In the
case of sequential programs all tile levels will be used for locality.

The two main sources of inspiration for this project were the extensive body of work on
blocked linear algebra algorithms [Gust97, ABDD92] and two recently proposed lan-
guages, Co-Array Fortran [NuRe98] and Unified Parallel C (UPC) [CDCY99]. Our pro-
posal follows these two languages in that it represents communication explicitly as array
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 1



assignments. The use of array assignments to represent communication has at least two
advantages over the library-based, approach of MPI [GrES99]. First, thanks to APL
[Iver62] and Fortran 90 we have at our disposal a wealth of powerful array operators that
can serve to unify and simplify the many communication and collective operations of
MPI. Second, making the operations part of the language enables compiler support that
simplifies the notation and improves error detection.

We, however, do not follow Co-Array Fortran and UPC in the use of the SPMD program-
ming paradigm. Instead, our proposal resembles the programming model of the old SIMD
machines, but instead of limiting the parallelism to simple arithmetic or logic array opera-
tions, we take advantage of the MIMD nature of today’s parallel machines and allow in the
expression of parallelism the use of complex array operations represented as user-defined
functions. Abandoning the SPMD model has the drawback of removing some control on
the parallelism from the programmer, but the single thread programming model has the
great advantage of enforcing structure and leading to programs that are more readable and
easier to develop and maintain. Furthermore, we expect that much of the potential loss of
performance can be avoided with relatively simple compiler and run-time techniques. 

Our approach differs from that of the High Performance Fortran [HiKT92, KoMe92] in
that it makes all communication and array distribution is explicit and therefore it requires
much less from the compiler than High Performance Fortran. Although making communi-
cation explicit complicates programming there is no better alternative at this time given
the failure of High Performance Fortran. Furthermore, languages for parallel program-
ming with explicit communication will always be necessary much in the same way that
assembly language programming is still necessary today for conventional programming.
The availability of a lower level language is useful as a fall back position whenever the
compiler fails to do the right thing and as a means to experiment with alternative solutions
that can later be incorporated into a compiler.

Hierarchically tiled arrays can be easily incorporated into several programming languages
including Fortran 90, APL, and MATLAB. In this paper we focus on extending MATLAB

with hierarchically tiled arrays for two main reasons. First is that an extended MATLAB

system would make a great tool for prototyping parallel programs. Such a tool is sorely
needed and although many MATLAB programmers may not be interested in parallelism, we
believe that many parallel programmers would be interested in a good prototyping tool.
The second reason is that MATLAB has many features that make it a convenient platform
for a first implementation of our ideas. 

In the rest of this paper, we describe hierarchically tiled arrays (Section 2), present mecha-
nism for their representation in memory (Section 3) and then illustrate their use in pro-
gramming for locality (Section 4) and parallelism (Section 5).
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 2



2.0  Hierarchically tiled arrays

In this section we define hierarchically tiled arrays (Section 2.1), and discuss how to build
them (Section 2.2), access their components (Section 2.3), and how they can be used in
expressions and values assigned to them (Section 2.4). 

2.1  Definition of hierachically tiled array

We define a tiled array as an array that is partitioned into subarrays in such a way that
adjacent subarrays have the same size along the dimension of adjacency.  Although the
literature usually assumes that array tiles have the same shape (Fig. 1(a)), we do not
require this in our definition because there are important cases where using tiles of differ-
ent sizes (Fig 1(b)) is advantageous. Notice that our definition implies that m-dimensional
arrays are partitioned by (m-1)-dimensional hyper planes that are perpendicular to one of
the dimensions. Furthermore, “randomly” partitioned arrays such as that shown in Fig. 2
do not fall under our definition of tiled arrays.   

We define hierarchically tiled arrays (HTA) as tiled arrays where each tile is either an
unpartitioned array or a hierarchically tiled array. Although this definition allows differ-
ent tiles to be partitioned in different ways, most often HTAs will be homogeneous, that is
adjacent submatrices at each level will not only have the same size as their neighbors
along the dimension of adjacency, but they will also agree in the number and position of
the partitions along that dimension. 

A two-level hierarchy where neighboring tiles are partitioned differently, and therefore
depicts a non-homogeneous HTA, is shown in Fig. 3(a). In this figure, the outer tiles are
separated by the dashed lines and the inner tiles by the dotted lines. There are three mis-
matches in Fig. 3(a). One is between outermost tile {1,2}, which is not partitioned at all,
and tile {1,1} which is partitioned into two parts along the vertical dimension which is the
dimension of adjacency between these two tiles. The other two mismatches are between
outermost tiles {1,1} and {2,1} and between tiles {2,1}, and {2,2}. Fig. 3(b) is an example

Figure 1. Two tiled arrays. 

(a) (b)

Figure 2. A partitioned array.
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 3



of homogeneous HTA where the number of tiles and the sizes of all tiles match along the
dimensions of adjacency.

2.2  Construction of HTAs

A simple way to obtain homogeneous HTAs is to tile the matrix at the lowest level of the
hierarchy first and then proceed recursively by tiling the resulting array of tiles. This bot-
tom-up process, illustrated in Fig 4, always generates homogeneous HTAs. 

We can alternatively start from the top and successively refine each partition. The top
down approach is more flexible than the bottom up approach in that it enables the genera-
tion of both homogeneous and nonhomogeneous HTAs.

In an interactive array language such as MATLAB, HTAs can be built following either
approach if the appropriate functions are available. For the bottom up approach we define
the function tile that accepts as parameters an m-dimensional HTA or unpartitioned array
and m vectors, p1, p2, ... , pm, (one for each dimension of the HTA) and returns an HTA par-

titioned by the hyperplanes defined by pi(k), , . These partition

dimension i of the array right after element pi(k). For example, given a 10 × 12 matrix, D,
the statements

C = tile(D,[2,4,6,8],[3,6,9]);
B = tile(C,[3],[1,2,3]); (2.1)
A = tile(B,[1],[1]);

will generate the three HTAs shown in Fig. 4. 

Our tile function is identical to MATLAB’s mat2cell except that mat2cell can only be
used to create one level of tiling. 

Figure 3. Two level tiled arrays. 

(a) (b)

Figure 4. Bottom up tiling.

1 i m≤ ≤ 1 k size pi( )≤ ≤
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 4



For the top down approach we define the function hta which accepts m natural numbers
as parameters, d1, d2, ... ,dm, and returns a d1 × d2 × ... × dm array whose elements are
empty tiles that can hold HTAs or unpartitioned arrays. Before presenting an example of
top down creation of HTAs, we need to describe how to address the tiles in an HTA. The
outermost tiles of an HTA can be addressed using subscripts enclosed by curly brackets.
An additional set of subscript should be added for each level of the HTA that needs to be
addressed. Thus, the tile containing element E(5,4) if E is partitioned as shown in Fig. 1
(a) would be accessed as E{3,2}. Also, the inner tile containing element F(5,4) in an
array F with the shape shown in Fig 3(b), would be addressed as F{2,1}{1,2}.

We can now illustrate the top down creation of HTAs. The top two levels of an array E with
the shape shown in Fig. 3(a) could be created as follows:

G = hta(2,2);
G{1,1} = hta(2,2); (2.2)
G{2,1} = hta(2,3);
G{2,2} = hta(3);

and the elements of the upper left quadrant could be filled with two-dimensional arrays of
normally distributed random number as follows:

G{1,1}{1,1} = randn(2,3);
G{1,1}{1,2} = randn(2,6); (2.3)
G{1,1}{2,1} = randn(2,3);
G{1,1}{2,2} = randn(2,6);

A drawback of the bottom up approach as illustrated in (2.1) is that it creates intermediate
HTAs which are in most cases unnecessary. A reasonable compiler could have these tempo-
rary HTAs deleted after their only use in the creation sequence or could avoid their creation
altogether by, for example, reversing the creation process into a top down form. As can be
seen in the foregoing example, the top down approach does not suffer of this problem. 

2.3  Addressing the scalar elements of an HTA.

We discuss next how to address the scalar elements of an HTA. The simplest way to
address an element is to ignore all tiling and address the elements using conventional sub-
scripting. For example, element 4,5 of an array, H, that has been tiled as shown in Fig. 1(b)
can be addressed as H(4,5). To use tiling for addressing a scalar element, we can use the
curly bracket notation introduced above followed by conventional subscripts enclosed
within parenthesis. The conventional subscripts specify the location of the element within
the innermost tile in the hierarchy. Thus, element H(4,5) can also be addressed as
H{2,2}(2,3). We call flattening the mechanism that allows addressing an array ignoring
the tile structure. Thus, we say that flattening enables the use of H(4,5) to access element
4,5 of array H. Flattening can also be applied at an intermediate level of the hierarchy. For
example element 5,7 of an array A tiled a shown in Fig. 4 could be referenced as A(5,7),
or as A{1,2}{2}{3}(1,1) if all the levels of the tiling hierarchy are taken into account.
We could also flatten the last level of the hierarchy and address the same element as
A{1,2}{2}(5,1) or flatten the second level to get A{1,2}(5,4).
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 5



2.4  Assignments and expressions involving HTAs.

The last topic to be discussed in this section is the meaning of assignment statements and
expressions involving HTAs. Our objective is to generalize the notion of conformable
arrays of Fortran 90 and the semantics of assignments to undefined variables of MATLAB. 

Let us first present three definitions that we will need in this section. 

• We call leaf elements the elements of an HTA that do not have any components. The leaf
elements could be empty containers or arrays of scalars. In the spirit of MATLAB, sca-
lars cannot appear in isolation within HTAs and will be represented as 1 × 1 arrays. 

• We say that an HTA is complete when all of its leaf elements are arrays of scalars. Oth-
erwise, when some of the leaf elements are empty containers, the HTA is said to be
incomplete. For example, arrays A, B, and C in the sequence (2.1) are complete. On the
other hand, array A right after the sequence (2.2) is incomplete and will remain incom-
plete after the statements in (2.3) are executed, because these statements do not fill the
containers A{1,2}, A{2,1} and A{2,2}. 

• In Fortran 90, two arrays with the same shape (that is, the same number of dimensions
and the same size in each dimension) are conformable. Also, scalars (and 1 × 1 arrays
in our case) are conformable to arrays of any shape. Scalar binary operations such as
add and multiply are extended in Fortran 90 to work on conformable objects. When
both operands are arrays with the same shape, the operation is performed on corre-
sponding pairs of scalars. When one of the objects is a scalar and the other an array, the
scalar is operated with each of the elements of the array. Thus, c(1:10,

1:20:3)+d(1:10,1:7) is a valid Fortran 90 operation since the operands are both 10
× 7 arrays. Here, corresponding elements of the operands are added to each other to
produce an array that is conformable to the operands. The expression e(:,:)+5 is also
valid and will add the scalar 5 to each element of array e producing a two-dimensional
array with the shape of e.

• Two complete HTAs have the same topology if their outermost array of tiles have the
same shape and corresponding outermost tiles are HTAs with the same topology or con-
tain arrays of scalars that are conformable. This means that two HTAs will have the
same topology if the only difference between them is on the leaves where the arrays
have to be conformable, but do not have to have identical shapes.

We now proceed by discussing conformability, expressions, and assignment operations.

Conformability. Two complete HTAs are conformable if they have the same topology or
one of them is conformable to all elements at the top level of the other. Notice that the sec-
ond part of the definition is recursive. That is, if the smaller HTA does not have the same
topology to one of the top level elements, then it must have the same topology of all com-
ponents of this top level element, and so on. Informally, this definition means that two
HTAs of different sizes will be conformable if the smaller one has the same topology of all
elements of the other that are a certain level above the leaf elements. Notice also that our
definitions implies that a scalar is conformable to any complete HTA.
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 6



Expressions involving HTAs. Following Fortran 90 the meaning of scalar operations is
extended so that when the operands are both HTAs with the same topology the operation
will be performed between corresponding scalar elements and will return an HTA with the
topology of the operands. When the operands have different topologies, the smaller one is
operated with all matching objects at the bottom of the hierarchy of the larger one. For
example, adding a 2 × 3 array M is to HTA A resulting from sequence (2.1) is a valid opera-
tion that would result in M being added to all 2 × 3 arrays of scalars that are at the bottom
of the hierarchy of A. Similarly, A + 3 is valid and will add 3 to each scalar element in A.
Notice that flattening changes the topology of an HTA. Thus, while the term B by itself rep-
resents the HTA computed in (2.1) and therefore has two levels of tiling, the term
B{:,:}(:,:) represents an HTA with a single level of tiling. It is also possible to operate
on a section of an HTA. Thus, B{1,:}{2:3}+1 will operate on only one section of the HTA

and will return an HTA with the shape of the section as illustrated in Fig. 5. 

Also following Fortran 90, scalar intrinsic functions are extended to operate on complete
HTAs. These functions will operate on each scalar separately and will return an HTA with
the topology of the operand. For example, sin(A) will return an HTA with the topology of
A, but with each scalar replaced by its sine. Similarly, intrinsic array operations involving a
single array will be extended in the natural way. For example, max(A) will return an HTA

that will have the topology of A, except that every array of scalars will be replaced by a
single scalar (which takes the form of a 1 × 1 array as stated above) which contains the
maximum value of the array it replaces. 

Assignments. Next, we generalize the semantics of assignment operations. In MATLAB,
when the name of an array X appears in an expression, it refers to the whole array, but on
the left hand side of an assignment statement X refers to the variable name as a container.
Thus, in MATLAB if X is the one-dimensional array [1,2], the expressions X+1 and
X(1:2)+1 have the same meaning, adding one to each element. On the other hand, while
X(1:2)=3 will change X into [3,3], X=3 will change X into the scalar 3. We extend this
semantics to HTAs by assuming that references to containers that appear in expressions
represent their content while on the left hand side of an assignment statement they repre-
sent the containers themselves. Thus, B=5, where B is the HTA constructed in (2.1) will
replace B with the scalar 5. However, B{:,:}{:,:}=5 will replace each of the 2 × 3 arrays
inside B by a 1 × 1 array containing 5 and B{:,:}{:,:}(:,:)=0 will replace each of the 2
× 3 arrays inside B with a 2 × 3 array of zeros. 

Figure 5. Operating on a section of an HTA.

 
+1

+1

+1 +1 +1

+1 +1 +1
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 7



3.0  Mapping HTAs onto Memory

To specify how an HTA is to be mapped onto the memory of a machine, we could add a
parameter to the functions for building HTAs introduced in the foregoing section or create
a function variant for each type of mapping. We will follow the second approach in this
paper.

We consider two classes of mappings. First, we discuss the mapping onto the main mem-
ory of a conventional uniprocessor or a shared memory multiprocessor. This mapping
associates a unique memory location to each subscript value. Most programming lan-
guages assume a linear mapping, M, that for an n-dimensional array maps a particular
value of the subscripts  onto a memory location as follows:

The values of M0 and ck will depend on which dimension varies more rapidly as we
traverse the consecutive locations where the array lies. Thus, in the row major order of the
C language, for a two-dimensional array with shape d1 × d2 containing elements of length
l, the coefficients will be c1 = d2 l ,  c2=l, and M0 = 0 since the indices are assumed to start
at 0. In the column major order of Fortran we have for the same array that c1 = l, c2= d1 l
and M0=(-d1-1) l, if the array indices are assumed to start at 1. The main advantage of the
linear mapping is that computation of the memory location is simple and successive ele-
ments of an array along any dimension can be computed by addition without the need for
multiplication. Compilers take advantage of this property via the strength reduction opti-
mization.

Linear mapping can be done at any particular level of an HTA by laying out the tiles at this
level in consecutive memory locations following a row major order or a column major
order. We will assume that the functions tile and hta allocate objects in a row major
order. To obtain column major order we would have to define new functions such as
tileColumMajor,     htaColumMajor, and randnColumMajor. Other layout functions
that are advantageous for some classes of algorithms such as C-order, U-order, Hilbert
order, and Z or Morton order can be attained similarly by creating the appropriate func-
tions (e.g. tileCOrder, htaHilbertOrder) and extending the compiler to generate the
corresponding address expressions.

Next, we discuss mapping onto the different nodes of a multicomputer or distributed-
memory multiprocessor. To this end, we will assume that the nodes of the target machine
form an m-dimensional mesh. The mesh (virtual) organization is by far the most fre-
quently assumed topology in parallel programming. In our extension to MATLAB, we will
use descriptors of node arrangement that is created by the nodes function and could be
assigned to a variable. The invocation nodes(d1, d2, ..., dn) returns a descriptor of a d1 ×
d2 × ...× dn mesh of nodes. 

i1 i2 … in, , ,( )

M i1 i2 … in, , ,( ) M0 ckik

k 1=

n

∑+=
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 8



For parallel programming, the top level of an HTA can be distributed across the nodes of a
distributed memory machine using functions htaD and tileD. In the simplest case, when
the top level of that HTA has the same shape as the node mesh, the meaning of the distribu-
tion operation is the obvious one: Each tile at the topmost level of the HTA is allocated to a
different node. For example, to distribute HTA A created in (2.1) across a 2 × 2 node mesh
we could modify the sequence as follows: 

P = nodes(2,2);
C = tile(D,[2,4,6,8],[3,6,9]);
B = tile(C,[3],[1,2,3]); (3.1)
A = tileD(P, B,[1],[1]);

Here, tile A{i,j} is allocated to node (i,j), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2. Similarly, to distribute the
top level of HTA G created in (2.2), one tile per node, we could modify sequence (2.2) as
shown next. Here, again tile G{i,j} is allocated to node (i,j), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.:

P = nodes(2,2);
G = htaD(P,2,2);
G{1,2} = hta(2,2); (3.2)
G{2,1} = hta(2,3);
G{2,2} = hta(3);

If the top level of the HTA has the same number of dimensions, but fewer components than
the mesh of nodes where it is to be distributed, allocation will take place on consecutive
processors starting at node 1 on each dimension. If the top level of the HTA has fewer
dimensions than the mesh, then the top level HTA is extended with additional dimensions
of size one to match the number of dimensions of the mesh. It is invalid for the top level of
the HTA to have more dimensions than the mesh where it is to be distributed. If the top
level of the HTA has more elements along one of the dimensions than the number of pro-
cessors along that dimension, we assume a cyclical distribution.

4.0  Programming for Locality with HTAs

Following the pioneering work of McKellar and Coffman [McCo69], linear algebra com-
putations are today usually organized to access arrays one tile at a time [ABDD92,
Gust97, WhPD00]. The same approach has been studied as a compiler optimization tech-
nique where loops are automatically restructured so that arrays are accessed by tiles rather
than in the more natural but less efficient row or column order [AbKL81,WoLa91,
McCT96]. Although in some cases these algorithms require that the arrays to be manipu-
lated be stored by tiles, in many cases this is not necessary and the reorganization of the
computation usually suffices to significantly improve the memory hierarchy performance
of the algorithms. Nevertheless, for large arrays, storage by tiles is desirable when the unit
of transfer (page or cache line) is large [McCo69] or to avoid cache collisions [WhPD00]. 

The HTA notation of this paper should produce significantly more readable code when pro-
gramming for locality. At the same time, our notation enables the layout of arrays in block
order which should help performance for large arrays as was just mentioned. We now
illustrate the benefit of HTA when programming for locality using the simple case of
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 9



matrix multiplication. The typical matrix multiplication algorithm, implemented as a tri-
ply nested loop has the following form:

for i=1:n
for j=1:n

for k=1:n
c(i,j)=c(i,j)+a(i,k)*b(k,j); (4.1)

end
end

end

Here and in the following examples, we assume that c is initially all zeros. To improve the
performance of this algorithm when the operand matrices are large, programmers or com-
pilers can stripmine these loops and interchange them [PaWo96] to achieve the following
code:

for I=1:q:n
for J=1:q:n

for K=1:q:n
for i=I:I+q-1

for j=J:J+q-1
for k=K:K+q-1

c(i,j)=c(i,j)+a(i,k)*b(k,j);
end

end
...

end

This, loop is clearly much more complex than the original loop and would be even more
complex had we not assumed that the size of the matrix, n, is a multiple of the block size,
q. In contrast, the algorithm implemented on a tiled array stored as a single level HTA

would have the following form:

for I=1:m
for J=1:m

for K=2:m
c{I,J} = c{I,J} + a{I,K}*b{K,J}; (4.3) 

end
end

end

This is a much simpler and easier to read form of the same algorithm. One reason for the
simplicity is the use of the HTA notation. It also helps that in MATLAB * stands for the
matrix-matrix multiply operator. Notice that, for the algorithm to work not all tiles have to
have the same size nor be square. Clearly, before code (4.3) executes, a, b and c must be
created using functions such as hta, tile or one of their memory mapping variants.

Several levels of blocking can be useful in dealing with several levels of the memory hier-
archy. The simplest way to extend the code in (4.3) to handle several levels of blocking is
to replace a{I,K}*b{K,J} with an invocation to a user written function, say matmul, to
get  

t = t + matmul(a{I,K},b{K,J});
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 10



The function would have a header of the form

function t=matmul(a,b)

and the body would the code in (4.3). Additional blocking levels could clearly be handled
using recursion, that is by replacing a{I,K}*b{K,J} with matmul(a{I,K},b{K,J}) in
the body of the function. A function, ismatrix, that checks if its parameter is an array of
scalars can be used to terminate the recursion as follows:

function t=matmul(a,b)
if ismatrix(a)

t=a{I,K}*b{K,J});
return

end
m=size(a,1);
t=hta(m,m);
t{:,:}=0;
for I=1:m

for J=1:m
for K=1:m 

t{I,J} = t{I,J} + matmul(a{I,K},b{K,J});
end

end
end

5.0  Parallel Programming with HTAs

The only construct we use to express parallelism are array or collective operations on dis-
tributed HTAs. We assume that the main thread of our parallel programs will execute on a
client sequential machine that could be a workstation. All variables, except distributed
HTAs, will be assumed to reside in the memory of this client. The distributed HTAs on the
other hand will be contained in the memory of a parallel server. All operations on elements
of a distributed HTA will take place in the server as dictated by a simple version of the
owner-computes rule: the operations that compute values to be stored in an object must be
performed in the node containing the object. We assume that the compiler will take care of
generating the code that is executed in the server and of inserting message-passing primi-
tives so that the needed values are moved to the location before they are needed for the
computation. 

For example, assume that HTAs A and B have the topology of Fig 1(a) and that their tiles are
distributed across a two-dimensional array of nodes or processors. One way to achieve this
is to first allocate the top layer of A and B using he following sequence

P=nodes(5,4)
A=htaD(P,5,4)
B=htaD(P,5,4)

and then assign a 2 × 3 array of scalars to each tile. 

Consider the statement
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 11



A{:,:}=A{:,:}.*B{:,:};

This statement means that for 1≤i≤5 and 1≤j≤4 tile A{i,j} and tile B{i,j}, should be
multiplied element by element (.* is the element-by-element multiplication operator in
MATLAB) and the result should replace tile A{i,j}. Since the result of multiplying A{i,j}
by B{i,j} is to be stored in A{i,j}, the multiplication must take place in the node con-
taining A{i,j}. Also, these multiplications can proceed in parallel with each other since
the operation appears in an array statement. Notice that in this case no communication is
necessary to execute the statement.

On the other hand, the statement

A{1:4,:}=A{1:4,:}.*B{2:5,:};

requires communication. Therefore, the compiler must generate the appropriate message-
passing primitives so that for 1≤i≤4 and 1≤j≤4 tile B{i+1,j} be copied to a temporary in
the node containing A{i,j} before the operation can take place.

Consider finally the statement

A{:,:}=A{:,:}.*X;

where X is a variable residing in the client. In this case the compiler will have to generate a
broadcast operation to send the value of X to all nodes before the operation can take place.

Before proceeding with the examples, we need to make an additional extension to MAT-

LAB. As mentioned above, in MATLAB when the operands are arrays, the * operator repre-
sents matrix multiplication and .* represents element by element multiplication. With the
introduction of tiled arrays, we introduce additional level in the data hierarchy and the
meaning of * and .* must be extended. We will assume that * between to HTAs with the
topology of Fig 1(a) will produce the effect of matrix multiplication at the tile level. Thus,
we will assume that c{:,:}=a{:,:}*b{:,:} or simply c=a*b will have the same effect as
loop 4.3. If we just wanted to multiply corresponding submatrices, we will write
c{:,:}=a{:,:}.*b{:,:} or c=c.*b. This will be equivalent to the loop

for I=1:m
for J=1:m;

c{I,J}=a{I,J}*b{I,J}; 
end

end

Notice that in the loop the operands of * are matrices and therefore the operator stands for
matrix multiplication, the same meaning it has in MATLAB. Finally, if we just want to mul-
tiply corresponding scalars in two-level HTAs, we would write c=a..*b.

Next, we present two examples of parallel programs using HTAs. The first is a dense
matrix-matrix multiply and the second is a matrix vector multiply where both the matrix
and the vector are sparse.

For our first example, we will implement the SUMMA algorithm. The algorithm has a very
simple representation using HTAs. To explain the algorithm, consider first the matrix mul-
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 12



tiplication loop (4.3) with the innermost loop (loop K) moved to the outermost location
(recall that we assume c is initialized to zero)

for K=1:m
for I=1:m;

for J=1:m
c{I,J} = c{I,J} + a{I,K}*b{K,J}; 

end
end

end

The inner two loops increment the array c{:,:} so that for 1≤I≤m and 1≤J≤m tile c{I,J}
is incremented by a{I,K}*b{K,J} on each iteration of the outermost loop. Notice that for
each I, J, and K, the tiles a{I,K} and b{K,J} are each used in the computation of m dif-
ferent tiles of c. Also, the inner two loops are a parallel operation on the two-dimen-
sional array of tiles c which can be easily represented in array form if a and b are
appropriately replicated. The introduction of the replication operations, leads directly to
the SUMMA algorithm.

In our notation, we can achieve the replication using a function that we call tileSpread.
This function has the same semantics as the Fortran 90 spread function except that tile-
Spread operates on distributed arrays of tiles instead of on arrays of scalars like spread.
We will use tileSpread to create a two-dimensional array of tiles from a one-dimen-
sional array of tiles. The first parameter is the one-dimensional array to be replicated. The
second parameter determines whether the one-dimensional array will be replicated as col-
umns or as rows. The value of the second parameter will be 2 in the first case and 1 in the
second. The third parameter determines how many copies to create. 

for K=1:m
     t1{:,:}=tileSpread(a{:,K},2,m);
     t2{:,:}=tileSpread(b{K,:},1,m);
      c{:,:}=c{:,:}+t1{:,:}.*t2{:,:};
end

The tileSpread function when applied to distributed HTAs could be implemented in
many different ways depending on the characteristics of the target machine and the map-
ping of the source HTA onto the parallel machine. 

The previous loop can be written in a simpler form: 

for K=1:m
c{:,:} = c{:,:} + a{:,K}*b{K,:}; 

end

This representation leaves the decision of how to implement the broadcasting of a and b to
the compiler while in the previous loop the programmer exercises some control by choos-
ing the appropriate routine. It is of course possible to have even more control over the way
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 13



the broadcast is done if desired. Thus, the following code sequence achieves the same goal
as the statement t1{:,:}=tileSpread(a{:,K},2,m);:

t1{:,K}=a{:,K};
for L=K+1:m
     t1{:,L}=t1{:,L-1};
end
for L=K-1:-1:1
     t1{:,L}=t1{:,L+1};
end

The second example will be a matrix vector multiplication where both the vector and the
matrix are sparse. Coding is significantly simplified by the way MATLAB handles sparse
computations. In fact, sparse matrices are operated in MATLAB using the same syntax used
for dense computations. The MATLAB interpreter automatically selects the appropriate
procedure to handle sparse data. 

Let us assume first that the data is originally in matrix a and vector b, both located in the
client. Array a will be distributed by blocks of rows across the nodes of the target
machine. To this end, a is assigned to HTA c that is just a distributed linear arrangement of
containers. Also, vector b will be distributed by blocks of elements using HTA v. There is a
vector dista in the client that specifies which rows of a are to be assigned to c{I}. These
are rows dista(I) to dista(I+1)-1. Similarly, array distb specifies which elements of
b will be assigned to v{I}. The first step of the code would, therefore, contains the follow-
ing statements:

Step 1: P=node(n);
c=htaD(P,n);
v=htaD(P,n);
for I=1:n

c{I}=a(dista(I):dista(I+1)-1),:);
v{I}(distb(I):distb(I+1)-1)=b(distb(I):distb(I+1)-1);

end

If matrix a or vector b are too large to fit the client, the previous loop could be easily
replaced by an I/O function that will read the data directly to the components of c and v.

The matrix vector multiplication will be performed in chunks. In fact, each node, I, will
compute a chunk of the vector by multiplying c{I} by v. However, only the elements of
the vector corresponding to nonzero columns of c{I} are needed. If we provide to each
node a copy of vector distb, by analyzing c{I} and correlating the result with distb the
node can easily determine, for each J, which elements of v{J} will be needed to perform
the c{I}*v operation. The result of this analysis will be stored in HTA w. Node I will
assign to each w{I}{J} a vector containing the indices of the elements needed from v{J}.
We assume the existence of a function need that computes w{I}. This function should be
asy to write by a programmer familiar with MATLAB. The second step of our algorithms is
then to call the function need as follows:

Step 2: forall I=1:n
w{I}=need(c{I},distb)

end
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 14



Here, we have used the forall construct with the same meaning it has in Fortran 90. MAT-

LAB does not have such a construct, but we have found it necessary in many cases to
implement parallel algorithms. 

The next step in the algorithm is to send the data in w{I}{J} (contained in node I) to node
J for all I and J. In this way, node J will know which elements of its vector block, v{J},
are needed by node I. We will store this information in HTA x so that x{I}{J} will con-
tain a vector of the indices of the elements needed by node J from node I. Clearly, x is the
transpose of w, therefore step 3 of the computation will just be:

Step 3: x=tileTranspose(w);

In the next step each node, I, gathers, for all J, into y{I}{J} the elements of v{I} needed
by node J. Then this data is sent to the appropriate node using another transpose operation:

Step 4: forall I=1:n
for j=1:n

y{I}{J} = v{I}(x{I}{J}(:));
end

end
z=tileTranspose(y);

Finally, each local vector is extended with the data that just arrived into z and the matrix
vector multiplication can be performed:

Step 5: forall I=1:n
v{I}(x{I}(:)) = z{I}(:);

end
v{:}=c{:}*v{:};

6.0  Conclusions

The parallel programming approaches that have attracted most attention in the recent past
fall at the two extremes of the range of possible designs. On one hand there is the SPMD,
message-passing programming model. MPI is by far the most popular implementation of
this model, but not the only one. Two parallel programming languages, Co-Array Fortran
and UPC, are other examples of this model. The incorporation of communication primi-
tives into programming languages like Co-Array Fortran and UPC significantly reduces
the amount of detail that must be specified for each communication operation in the
library-based approach of MPI. However, in our opinion, Co-Array Fortran and UPC do
not go far enough due to their adoption of the SPMD model which can easily lead to
unstructured code. This lack of structure could be the result of communication taking
place between widely separated sections of code with the additional complication that a
given communication statement could interact with several different statements during the
execution of a program. In theory at least, the lack of structure possible with SPMD pro-
grams could be much worse than anything possible with the use of goto statements in
conventional programming. In other, perhaps more colorful, words what we are saying is
that the use of the SPMD programming model could lead to four-dimensional spagetti
code.
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 15



The other class of parallel programming models on the spotlight mostly follows a single-
threaded model. Languages in this class include the OpenMP directives [CDKM00] and
High Performance Fortran. One difficulty with OpenMP is that it assumes a shared mem-
ory support that is not always available in the hardware of today’s machine.The shared-
memory model could be implemented in software, but that often leads to highly inefficient
parallel programs. A second, and much more serious, limitation of OpenMP is that the
directives do not explicitly represent the notion of locality. This is a very important notion
for parallel programming since distributed memory is a physical necessity in large-scale
multiprocessors. It could be said that the compiler could take care of rearranging the code
and distributing data to take care of locality, but a proven compiler technology for this pur-
pose is not at hand today. High-Performance Fortran is based on sequential source code
complemented with directives mainly for specifying how data is to be distributed. It is the
task of the compiler to transform the sequential code into SPMD form and generate all the
necessary communication primitives. Unfortunately, from the poor reception given to HPF
it seems that automatically producing highly efficient code from HPF source is beyond the
capabilities of today’s technology.

Our proposal lies somewhere between these two extremes. The programming model is
single-threaded, but communication and distribution is explicit. Therefore, the require-
ments from the compiler should be more modest that those of HPF. Our experience in the
programing of both dense and sparse kernels is that the use of array notation and the incor-
poration of tiling in a native data type significantly improve readability when program-
ming for locality and parallelism. This is clearly due to the importance of tiling for parallel
programming and for locality, a fact that has become increasingly evident in the recent
past. 

7.0  References

[AbKL81] W. A. Abu-Sufah, D. J. Kuck, D. H. Lawrie. On the Performance Enhancement
of Paging Systems Through Program Analysis and Transformations. IEEE
Transactions on Computers 30(5): 341-356(1981).

[ABDD92]E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S.
Hammarling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users' Guide. SIAM, Philadelphia, 1992.

[CDCY99]W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Intro-
duction to UPC and Language Specification 
CCS-TR-99-157, IDA Center for Computing Sciences, 1999. 

[CDKM00]R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon. Parallel
Programming in OpenMP.Morgan Kaufmann; (October 2000) 

[GrES99] W. Gropp, L. Ewing and A. Skjellum. Using MPI, The MIT Press, 2nd Edi-
tion, 1999.
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 16



[Gust97] F. G. Gustavson, Recursion Leads to Automatic Variable Blocking for Dense
Linear-Algebra Algorithms, IBM J. Res. & Dev. 41, No. 6, 737–755 (Novem-
ber 1997).

[HiKT92] S. Hiranandani, K. Kennedy and C. Tseng Compiling Fortran D for MIMD
Distributed--memory Machines. CACM, 35(8):66-80, August 1992.

[Iver62] K.E. Iverson, A Programming Language. Wiley, 1962.

[KoMe92] C. Koelbel and P. Mehrotra. An Overview of High Performance Fortran, ACM
SIGPLAN FORTRAN Forum, Vol. 11, No. 4, December, 1992.

[PaWo86] D. Padua and W. Wolfe. Advanced Compiler Optimizations for Supercomput-
ers. Communications of the ACM, 29(12), 1986.

[McCo69] A. C. McKellar and Edward G. Coffman Jr.: Organizing Matrices and Matrix
Operations for Paged Memory Systems. CACM 12(3): 153-165 (1969)

[McCT96] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424-453, July 1996.

[NuRe98] R. W. Numrich and J, Reid. Co-Array Fortran for parallel programming.
ACM SIGPLAN FORTRAN Forum, Vol. 17 (1998) 1--31

[WhPD00]R. Clint Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical
optimizations of software and the atlas project. Available as http://www.netlib.
org/lapack/lawns/lawn147.ps, 19 September 2000. 

[WoLa91] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. SIGPLAN
Notices, 26(6):30--44, June 1991. Proceedings of the ACM SIGPLAN '91
Conference on Programming Language Design and Implementation.
Programming for Locality and Parallelism with Hierarchically Tiled ArraysJuly 13, 2003 17


	Programming for Locality and Parallelism with Hierarchically Tiled Arrays
	1.0 Introduction.
	2.0 Hierarchically tiled arrays
	2.1 Definition of hierachically tiled array
	2.2 Construction of HTAs
	2.3 Addressing the scalar elements of an HTA.
	2.4 Assignments and expressions involving HTAs.
	Conformability.
	Expressions involving HTAs.
	Assignments.


	3.0 Mapping HTAs onto Memory
	4.0 Programming for Locality with HTAs
	5.0 Parallel Programming with HTAs
	6.0 Conclusions
	7.0 References


