
Compositional Development of Parallel Programs

Nasim Mahmood, Guosheng Deng, and James C. Browne

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712
{nmtanim,gsdeng,browne}@cs.utexas.edu

Abstract. This paper presents a programming model, an interface definition
language (P-COM2) and a compiler that composes parallel and distributed
programs from independently written components. P-COM2 specifications
incorporate information on behaviors and implementations of components to
enable qualification of components for effectiveness in specific application
instances and execution environments. The programming model targets
development of families of related programs. One objective is to be able to
compose programs which are near-optimal for given application instances and
execution environments. Component-oriented development is motivated for
parallel and distributed computations. The programming model is defined and
described and illustrated with a simple example. The compilation process is
briefly defined and described. Experience with one more complex application,
a generalized fast multipole solver is sketched including performance data,
some of which was surprising.

1 Introduction

This paper presents a language (P-COM2)1 and a compiler that composes parallel and
distributed programs from independently written components and illustrates their application.
P-COM2 is an interface definition language which incorporates information on behaviors and
implementations of components to enable qualification of components for effectiveness in
specific application instances and execution environments. The general strategy is somewhat
similar to composition of programs in the Web Services paradigm but the goals are quite
different. A component is a serial program which is encapsulated by an associative interface
[8,11] which specifies the properties of the component. The composition implemented by the
compiler is based on matching of associative interfaces and generates as final output either an
MPI program or multi-threaded code for a shared memory multi-processor. The CODE [26]
parallel programming system is used as an intermediate language and is the immediate target
language of the compositional compiler.

Component-oriented software development is one of the most active and significant threads
of research in software engineering [1,10,15,29]. There are many motivations for raising the
level of abstraction of program composition from individual statements to components with
substantial semantics. It is often the case that there is a family of applications which can be
generated from a modest number of appropriately-defined components. Optimization and
adaptation for different execution environments is readily accomplished by creating and
maintaining multiple versions of components rather than by direct modifications of complete

1 P-COM2 stands for Parallel COMposition from COMponents.

applications. Programs generated and maintained as compositions of components are much
more understandable and thus much more readily modifiable and maintainable.

Even though there are additional benefits to component-oriented development in the
distributed and parallel domain2, there has been relatively little research on component based
programming in the context of high performance parallel and distributed programming.
(Section 8 summarizes related work.) The execution environments for parallel programs are
much more diverse than those for sequential programs. It is often necessary to maintain
multiple versions of parallel programs for different execution environments. Program
development by composition of components enables adaptation of parallel programs to
different execution environments and optimization for different application instances by
replacement of components. Adaptive control of parallel and distributed programs [3] is also
enabled by replacement of components. Management of adaptations such as degree of
parallelism and load balancing are readily accomplished at the component level. Parallelism is
most often determined by the number of instances of a component which are executing in
parallel (SPMD parallelism). The P-COM2 language and the compiler explicitly make
provision for dynamic SPMD parallelism It has also been found that viewing programs as
compositions of components tends to lead to programs with better structuring and better
performance even for sequential versions.

P-COM2 approaches component-oriented development of parallel and distributed programs
from a different perspective than most other projects. The principal concerns and goals for the
P-COM2 project have been to enable automation or at least partial automation of composition
through a compiler, to develop a mechanism enabling runtime adaptation of parallel and
distributed programs at the component level [3] and to enable performance-oriented,
evolutionary development of parallel and distributed programs. This paper covers the first
topic, compiler-implemented composition. The P-COM2 interface definition language
incorporates information on component properties and behaviors as well as
function/procedure/method interfaces including an implicit state machine to sequence
invocations of components with internal state. Additionally the P-COM2 system targets
development of families of programs with instances of the family targeting given application
instances or given execution environments.

The P-COM2 language and compiler have been used in implementing some substantial
programs. One of the applications is to construct components and compose programs for
solving linear equations using a fast multipole solver (FMM). The FMM code can be
formulated in either a memory intensive or computation intensive formulation and at points in
between. It is complex to write a parameterized program spanning these options but they are
readily composed from parameterized components. The compiler has also been applied in the
composition of parallel method of lines (MOL) codes for solving time dependent partial
differential equations. MOL also has a great number of possible configurations and runtime
adaptations.

The remainder of the paper is organized in the following way. Section 2 explains some
terms and concepts used in the compiler. Next, the programming model, the language and the
compilation process are described in section 3, 4, and 5 respectively. Then a simple program, a
macro-parallel FFT algorithm [32], is used to introduce the programming model, the
programming language (which is an interface definition language) and the compilation process
in section 6. The components and compilation process and a short discussion of the FMM code
is given in Section 7. Section 8 discusses related work in this area. The paper is concluded and
some future directions are discussed in Section 9.

2 CORBA, Web Services, etc. which are very much component-oriented development systems, are not

commonly used for development of parallel or high performance applications.

2 Definition of Terms and Concepts

Domain Analysis: Domain analysis [5] identifies the components from which a family of
programs in the domain can be constructed and identifies a set of attributes in which the
properties and behaviors of the components can be defined. It is usually the case that
applications require components from multiple domains.

Component: A component is one or more sequential computations, an interface which
specifies the information used for selection and matching of components and a state machine
which manages the interface, the interactions with other peers and the invocation of the
sequential computations. An interaction, which may be initiated as an incoming message (or
set of messages) or as an invocation of a transaction, will trigger an action which is associated
with some state of the state machine. The action may include execution of a sequential
computation.

Sequential Computation: A computation is a unit of work that implements some atomic
functionality. A computation is a sequential program which refers only to its own local
variables and its input variables.

Associative Interface: An associative interface [8] encapsulates a component. It describes the
behavior and functionality of a component. One of the most important properties of associative
interfaces is that they enable differentiation among alternative implementations of the same
component. These interfaces are called "associative" because selection and matching is similar
to operations on content-addressable memories. An associative interface consists of an accepts
specification and a requests specification.

Accepts Specification: An accepts interface specifies the set of interactions in which a
component is willing to participate. The accepts interface for a component is a set of three-
tuples (profile, transaction, protocol).

• A profile is a set of attribute/value pairs. Components have a priori agreement on the set of
attributes and values which can appear on the accepts and requests interface of a
component.

• A transaction specification incorporates one or more function signatures including the data
types, functionality and parameters of the unit of work to be executed and a state machine
which manages the order of execution of the units of work. The state machine is defined in
the form of conditional expressions over states and function signatures. A transaction can be
enabled or disabled based on its current state and its current state can be used in runtime
binding of the components. Multiple transactions controlled by the state machine can be
used to represent complex interactions such as precedence of transactions, "and"
relationships among transactions acting as a barrier and "or" relationships between
transactions representing alternative ways of executing the component.

• A protocol defines a sequence of simple interactions necessary to complete the interaction
specified by the profile. The most basic protocol is data-flow (continuations), which is
defined as executing the functionality of a component and transmitting the output to a
successor defined by the selectors at that component without returning to the invoking
component. More complex interaction protocols such as call-return and persistent
transactions are planned but not yet implemented.

Requests Specification: A requests interface specifies the set of interactions which a
component must initiate if it is to complete the interactions it has agreed to accept. The
requests interface is a set of three-tuples (selector, transaction, protocol). A component can
have multiple tuples in its requests interface to implement its required functionality.

• A selector is a conditional expression over the attributes of all the components in the
domain.

• Transaction specifications are similar to those for accepts specifications.
• Protocol specifications are as given for accepts specifications.

Start Component: A start component is a component that has at least one requests interface
and no accepts interface. Every program requires a start component. There can be only one
start component in a program which provides a starting point for the program.

Stop Component: A stop component is a component that has at least one accepts interface and
no requests interface. A stop component is also a requirement for termination of a program.
There can be more than one stop component of a program denoting multiple ending points for
the program.

3 Programming Model

The domain-based, component-oriented programming model targets development of a family
of programs rather than a single program. The programming model has two phases:
development of families of components and specification of instances from the family of
programs which can be instantiated from the sets of components.

3.1 Component Development

The set of components which enables construction of a family of application programs may
include components which utilize different algorithms for different problem instances or
different implementation strategies for different execution environments. A program for a
given problem instance or given execution environment is composed from appropriate
components by selecting desired properties for the components and the properties of the
execution environment in the Start component. The steps for developing components are:

a. Domain Analysis – Execute the necessary domain analyses. It is usually the case that
applications require components from multiple domains.

b. Component Development – Specify and either design and implement or discover in
existing libraries, the family of components identified in the domain analysis in an
appropriate sequential procedural language.

c. Encapsulate – Encapsulate the components in the P-COM2 interface definition language
using the attributes identified in the domain analysis to specify associative interfaces
for the components. The interfaces must differentiate the components by identifying
their properties in terms of the attributes defined in the domain analysis.

3.2 Program Instance Development

The steps in specifying a given instance of an application are:

a. Analyze the problem instance and the target execution environment. Identify the
attributes and attribute values which characterize the components desired for this
problem instance and execution environment.

b. Identify the components from which the application instance will be composed. If the
needed components are not available then some additional implementations of
components may be necessary together with an extension of the domain analysis.

c. Identify the dependence graph of the application instance. The dependence graph is
expressed in terms of the components identified. Specify the number of replications
desired for parallelism and for fault-tolerance. Incorporate these specifications into the

component interfaces or as parameters in the Start component if parameterized
parallelism has been incorporated into the component interfaces.

d. Define a Start component which initializes the replication parameters, sets attribute
values needed to ensure that the desired components are selected and matched.

e. Define at least one Stop component.

4 The Interface Definition Language- P-COM2

The fundamental concepts underlying the interface definition language were given in Section
2. The syntax will be illustrated in the example in Section 6. Here we discuss what is
expressed in the interfaces specifiable in the language.

The language is rooted on the domain analyses for the program family. The domain
analyses specify problem domain knowledge. It is expected that an application developer
should be able, once familiar with the concepts of domain analysis, to generate domain
analyses for a family of codes in her/his area of expertise. The associative interfaces define the
behaviors of the components and will usually give properties of a given component's
implementation of its functionality. Properties of desired implementations such as degree of
parallelism for a given component are also specified in the associative interface as runtime
determined parameters. It is often desirable for a component to retain state across executions.
There may be precedence or sequencing relations among the transactions implemented by a
component. Precedence and sequencing information is also specified in the interface as an
implicit state machine implemented as a conditional expression over the states of the
components and the transaction specifications. Finally, the protocol specification enables
choice among interaction modes (Although only one is currently implemented).

5 Compilation Process

The conditional expression of a selector is a template which has slots for attribute names and
values. The names and values are specified in the profiles of other components of the domain.
Each attribute name in the selector expression of a component behaves as a variable. The
attribute variables in a selector are instantiated with the values defined in the profile of another
component. The profile and the selector are said to match when the instantiated conditional
expression evaluates to true.

The source program for the compilation process is a start component with a sequential
computation which implements initialization for the program and a requests interface which
specifies the components implementing the first steps of the computation and one or more
libraries to search for components. The libraries should include the components needed to
compose a family of applications specified by a domain analysis. The set of components
which is composed to form a program is primarily dependent on the requests interface of the
start component.

The target language for the compilation process is a generalized data flow graph as defined
in [26]. A node in this data flow graph consists of an initialization, a firing rule, a sequential
computation and a routing rule for distribution of the outputs of the computation. There are
two special node types, a start node and a stop node. Acceptable data flow graphs must begin
with a start node and terminate on a stop node.

The compilation process starts by parsing the associative interface of the start component.
The compiler then searches a specified list of libraries for components whose accepts interface
matches with the requests interface of the start component. The matching process is actually
not much more than a sophisticated type matching. If the matching between the selector of one

component and the profile of another component is successful, the compiler tries to match the
corresponding transactions of the requests and accepts interface. The transactions are said to
match when all of the following conditions are true. 1) The name of the two transactions is the
same. 2) The number of arguments of each of the two transactions is the same. 3) The data type
of each argument in the requests transaction is the same as that of the corresponding argument
in the accepts transaction. 4) The sequencing constraint given by the conditional expression in
the accepts transaction specification (the state machine) is satisfied. Finally the protocol
specifications must be consistent.

When compilation of the start component is completed, it is converted into a start node [26]
for the data flow graph which will represent the parallel program and each match of a requests
interface to an accepts interface results in addition of a node to the data flow graph which is
being incrementally constructed by the compilation process and an arc connecting the this new
node to the node which is currently being processed by the compiler. If there is a replication
clause in a transaction specification then at runtime the specified number of replicas of the
matched component are instantiated and linked with data flow arcs. This searching and
matching process for the requests interface is applied recursively to each of the components
that are in the matched set. The composition process stops when no more matching of
interfaces is possible which will always occur with a Stop component since a Stop component
has no requests interface. Compilation of a P-COM2 stop component results in generation of a
stop node for the data flow graph. The compiler will signal an error if a requests interface
cannot be matched with an accepts interface of a desired component. The data flow graph
which has been generated is then compiled to a parallel program for a specific architecture by
compilation processes implemented in the CODE [26] parallel programming system.

6 Example Program

This section presents an example program showing the complete process of developing a
parallel program for the fast Fourier transformation (FFT) of a matrix in two dimensions from
simple components. The algorithm presented is an adaptation of Swarztrauber's
multiprocessor FFT algorithm [32]. This problem is simple enough to cover in detail and
illustrates many of the important concepts such as stateful components and precedence
constraints. Given an N x M matrix of complex numbers where both N and M are powers of 2,
we want to compute the 2D FFT of the complex matrix. This 2D FFT can be described in terms
of 1D FFTs, which helps in parallelizing the algorithm. Let us assume that there are P available
processors where P is also a power of 2. In this case the domain analysis is straightforward and
is an analysis of the algorithm itself. The steps of the algorithm are following:

a) Partitioning the matrix row wise (horizontally) into P submatrices, one for each
processor.

b) Sending these submatrices to each of the P processors for computation. The size of
each the submatrix is N/P x M.

c) Each processor performs a 1D FFT on every row of the submatrix that it received.
d) Collecting these 1D FFT’s and then transposing the N x M matrix. The resulting

matrix is of size M x N.
e) Splitting the M x N matrix row wise into P submatrices. The size of each of the

submatrix is M/P x N.
f) Sending these submatrices to the each of the P processors for computation.
g) Again each processor performs a 1-D FFT on every row of the submatrix that it

received.

h) Collecting all the submatrices from the P processors and transposing the M x N
matrix to get an N x M matrix. The resulting N x M matrix is the 2D FFT of the
original matrix.

This simple analysis suggests that all of the instances of this algorithm can be created from
composing instances of three components: a one-dimensional FFT component, a component
which partitions and distributes matrices and a component which merges rows or columns to
recover a matrix and which may optionally transpose the recovered matrix. Let us name the
components as fft_row, distribute, and gather_transpose respectively. One could as well
formulate the algorithm with separate components for merge and transpose but that could
introduce additional communication. Or the algorithm can use any 1D FFT algorithm to
calculate the 2D FFT of the matrix. Additionally the choice of implementation for
transposition of an array may vary with execution environment. Note that each of the
components above can be reused as each of them is actually used twice in the algorithm. These
components could reasonably be expected to be found as "off the shelf" component which can
be found and reused from linear algebra and fft libraries. Other than the above three
components we need a component that will read/initialize the matrix and one component to
print out the final result. Let us name the component as initialize and print. The component to
read/initialize the array may be the Start component and the print component may be the Stop
component. The Start component will be written to specify the set of component instances
which will be composed for a given data set and target execution environment.

…… gather_transpose

initialize

distribute

fft_row

gather_transpose print

distribute

… … fft_row

Fig. 1. Data Flow Graph of 2D FFT Computation

The depencence graph of the program in terms of these components is shown in Figure 1.
This data flow graph suggests an optimization of creating a new component which combines
the functions of distribute and gather_transpose. This depending on the mapping of nodes to
processors, could eliminate two transmissions of the large matrix. As shown in Figure 1,
parallelism can be achieved through the use of multiple fft_row components. Note that the
gather_transpose component has to keep track of its state as it sends data to the distribute
component on its first execution and to the print component after its second execution.

Once we have identified the components, the next step is to complete the domain analysis
by defining a list of attributes through which we can describe the functions, behaviors and
implementations of a component and their instantiations. When some service is required it is
described in terms of the attributes in the format of accepts and requests interfaces.

The two domains from which this computation is composed are the matrix and fft domains.
There is a generic attribute "Domain" which is required for multi-domain problems. The
matrix domain has these distinct attributes:

a) Function: an attribute of type string. Describes its function.
b) Element_type: an attribute of type string. Describes the type information of the input

matrix.
c) Distribute_by_row: an attribute of type boolean. Describes whether the component

partitions the matrix by row or by col.

The fft domain has these attributes:

a) Input: an attribute of type string. Describes the input structure.

b) Element_type: an attribute of type string. Describes the type information of the input.
c) Algorithm: an attribute of type string.
d) Apply_per_row: an attribute of type boolean. Describes whether to apply the FFT

function per row or per column.
The completed domain analysis for the components is shown in Figure 2. Once the domain

analysis is done, we encapsulate the components in associative interfaces using the attributes
and transactions.

As shown in Figure 3, the requests interface of the initialize component specifies that it
needs a component that can distribute a matrix row-wise. The interface passes real and
imaginary parts of the matrix, the dimension of the matrix and the total number of processors
to the distribute component using the transaction specification. The data type mat2 is defined
as a two dimensional array data type.

Fft_row
a) Domain: fft
b) Input: matrix
c) Element_type: complex
d) Algorithm: 1d-fft
e) Apply_per_row: true

Gather_transpose
a) Domain: matrix
b) Function: gather
c) Element_type: complex
d) Combine_by_row: true
e) Transpose: true

Fig. 2. Domain Analysis of the Components

Distribute
 a) Domain: matrix
 b) Function: distribute
 c) Element_type: complex
 d) Distribute_by_row: true

Print
a) Domain: print
b) Input: matrix
c) Element_type: complex

Figure 4a shows the accepts interface of the distribute component. This distribute
component assumes that the matrix which it partitions and distributes will be merged. This is
specified in Figure 4b. The first selector interfaces to the gather_transpose component
providing the size of each of the submatrices, the total number of submatrices to collect at the
gather_transpose component and also state information which is needed in the gather_transpose
component. The second selector in Figure 4b specifies that it needs p instances of the fft_row
component and distributes the submatrices to each of the replicated components along with
their size. The construct "index [p]" is used to specify that multiple copy of the fft_row
component are needed. The construct "[]" with the transaction argument is used to transmit
different data to different copies of component. For different transmission patterns, different
constructs may be used in the language of the interface. Note that the number of instances of
the fft_row component is determined at runtime.

Fig. 3. Requests Interface of Initialize Component

selector:
 string domain == "matrix";
 string function == "distribute";
 string element_type == "complex";
 bool distribute_by_row == true;
transaction:
 int get_matrix(out mat2 grid_re,out mat2 grid_im, out
 int n, out int m, out int p);
protocol: dataflow;

Fig. 4a. Accepts Interface of distribute component

profile:
 string domain = "matrix";
 string function = "distribute";
 string element_type = "complex";
 bool distribute_by_row = true;
transaction:
 int get_matrix(in mat2 grid_re,in mat2 grid_im, in int n,
 in int m, in int p);
protocol: dataflow;

Figure 5a specifies that this implementation of fft_row component uses the "Cooley-Tukey"
algorithm [13]. The fft_row component requires no knowledge of how many copies of itself are
being used. From Figure 5b, we can see that the instance number of the fft_row component is
passed to the gather_transpose component using the variable "me".

Figure 6a illustrates the use of the ">" operator between the transactions to describe the
precedence relationship between the transactions. The second transaction cannot execute until
the first transaction is completed. The gather_transpose component collects the submatrices
one by one through the second transaction in the interface. P-COM2 incorporates precedence
ordering operations sufficient to express simple state machines for management of interactions
among components.

Fig. 4b. Requests Interface of distribute component

selector:
 string domain == "matrix";
 string function == "gather";
 string element_type == "complex";
 bool combine_by_row == true;
 bool transpose == true;
transaction:
 int get_p(out int n/p, out int m, out int p,
 out int state);
protocol: dataflow;
{selector:
 string domain == "fft";
 string input == "matrix";
 string element_type == "complex";
 string algorithm == "Cooley-Tukey";
 bool apply_per_row == true;
transaction:
 int get_grid_n_m(out mat2 out_grid_re[],out mat2
 out_grid_im[], out int n/p, out int m);
protocol: dataflow;
}index [p]

As shown in Figure 6b, the first requests interface of the gather_transpose component is
used to connect to the distribute component. The second interface connects to the print
component. The variable “state” is used to enable one of the transactions based on the current
state of the gather_transpose component.

Fig. 5a. Accepts Interface of Fft_row Component

profile:
 string domain = "fft";
 string input = "matrix";
 string element_type = "complex";
 string algorithm = "Cooley-Tukey";
 bool apply_per_row = true;
transaction :
 int get_grid_n_m(in mat2 grid_re,in mat2 grid_im,in int n,
 in int m);
protocol: dataflow;

Fig. 5b. Requests Interface of Fft_row Component

selector:
 string domain == "matrix";
 string function == "gather";
 string element_type == "complex";
 bool combine_by_row == true;
 bool transpose == true;
transaction:
 int get_grid_n_m_inst(out mat2 out_grid_re,out mat2

 out_grid_im, out int me);
protocol: dataflow;

Fig. 6a. Accepts Interface of Gather_transpose Component

profile:
 string domain = "matrix";
 string function = "gather";
 string element_type = "complex";
 bool combine_by_row = true;
 bool transpose = true;
 transaction:
 int get_p(in int n, in int m, in int p,in int state);
 >
 int get_grid_n_m_inst(in mat2 grid_re,in mat2 grid_im,
 in int inst);
protocol: dataflow;

Fig. 6b. Requests Interface of Gather_transpose Component

selector:
 string domain == "matrix";
 string function == "distribute";
 string element_type == "complex";
 bool distribute_by_row == true;
transaction:
 %{ state == 1, gathered == p }%
 int get_matrix(out mat2 out_grid_re,out mat2 out_grid_im,
 out int m, out int n*p, out int p);
protocol: dataflow;
selector:
 string domain == "print";
 string input == "matrix";
 string element_type == "complex";
transaction:
 %{ state == 2, gathered == p }%
 int get_grid_n_m(out mat2 out_grid_re,out mat2
 out_grid_im, out int m,out int n*p);
protocol: dataflow;

7 Case Study - A Generalized Fast Multipole Solver

The Fast Multipole Method (FMM) [20,21], which solves the N-body electrostatics problems
in O(N) rather than O(N2) operations, is central to fast computational strategies for particle
simulations. The FMM is also useful for iterative solution of linear algebraic equations
associated with approximate solution of integral equations. There the FMM is used for O(N)
matrix-vector multiplication. In order to adapt the FMM for applications in fluid and solid
mechanics, the classical electrostatics problem must be replaced with a generalized
electrostatics problem [17,18]. Such problems involve vector and tensor valued charges, which
means that one generalized electrostatics problem is equivalent to several classical
electrostatics problems, which share the same geometry. In particular, FLEMS code [17] relies

on the generalized electrostatics problem that is equivalent to 13 classical electrostatics
problems.

We have performed a domain analysis for the FMM for generalized (multiple charge type)
electrostatics. For example, the FMM tree has certain attributes, such as its depth and its
number of charges per cell and the application component has an attribute with values that
select between classical and generalized electrostatics. For generalized electrostatics the
number of charge types is an attribute. For each attribute, the analysis defines a range of legal
values. Components for a family of FMM codes for generalized electrostatics were derived
from the FLEMS FMM implementation. These components were given associative interfaces
that define their properties and behaviors and were annotated with domain attributes and
architectural attributes. An instance of the component family can be specified by providing
specific values for each attribute. An example of an attribute that would lead to different
implementations is the number of charge types to be processed simultaneously.

There are a family of space-computation tradeoffs which can be applied in the matrix-
structured formulation [30] of the FMM algorithm which can be chosen to optimize the code
for a given execution environment and problem specification. These include:

• Simultaneous computation of cell potentials for multiple charge types.
• Use of optimized library routines for vector-matrix multiply.
• Use of optimized library routines for matrix-matrix multiply.
• Loop interchange over the two outer loops to improve locality (Within a component).
• Number of terms in the multipole expansion.

There are many variants of these structures and interactions among them. The original
FMM implementation in the FLEMS code is approximately 4500 lines in length with the logic
distributed throughout the code. Manual construction of optimized versions for even a modest
number of execution environments would lead to rather complex code. But a small number
(eight) of components characterized by the number of charges which are simultaneously
computed and the number of terms in the multipole expansion suffice to realize an important
subset of execution environment optimized codes.
The FMM includes five translation theorems:

• Particle charge to Multipole (P2M is applied at the finest partitioning level)
• Multipole to Multipole (M2M is applied at all partitioning levels, from the finest to the

coarsest)
• Multipole to Local (M2L is applied at all partitioning levels)
• Local to Local (L2L is applied at all partitioning levels, from the coarsest to the finest)
• Local to Particle potential and forces (L2P is applied at the finest partitioning level)
Two kinds of components are needed structure the FMM computation framework. The first

category comes directly from the FMM algorithm. The five translation theorems, charges-to-
multipole, multipole-to-multipole, multipole-to-local, local-to-local, local-to-potential and
force, and direct-interaction calculation belong to this category. The second category contains
the communication components, distribute and collect which actually also derive from the
FMM algorithm since they implement distribution and collection according to the interaction
lists for each partition of the domain..

The data flow graph for the FMM code for two processors is shown in Figure 7.

Fig. 7. Data flow Graph of FMM code

An extensive set of performance studies were made comparing the original and
componentized sequential codes. Preliminary results are reported [16] and a more detailed
paper is in preparation. The performance of the sequential componentized code, contrary to
conventional wisdom, is up to 15 times faster than the original implementation which had itself
been optimized by several generations of students and post-doctoral fellows. This surprising
result is largely due to specialization of functionality based on selection of optimal components
and replacing loop implementations of matrix-matrix multiply by BLAS implementations of
matrix-matrix multiply. Table 1 shows a small sample of the performance data obtained. The
data was taken on a Linux cluster of Pentium III’s at 1.8 Gigahertz and a 100MB Ethernet
interconnect. There are approximately half a million charges in this system. There are two
factors to be noted: (i) Speedup is near-linear for the small number of processors and (ii) the
time increases less than linearly with the number of charge types due to the change due to
optimizations local to components.

Table 1. Performance data for tree depth of four.

Number of
Charge Types

Run time on
2 processors

(Seconds)

Run time on
4 processors

(Seconds)

Run time on
8 processors

(Seconds)
5 413.84 215.52 121.11

12 561.53 305.50 254.14

8 Related Research

There has been relatively little research on component based programming in the context of
parallel and distributed program. Darwin [25] is a composition and configuration language for
parallel and distributed programs. Darwin uses a configuration script to compose programs
from components. This composition process is effectively manual. In our approach, the
composition information encapsulates the components themselves, as a result the compiler can
choose the required component automatically.

The component-based software development environment [23,28] of the SciRun project
feature powerful graphical composition of data flow graphs of components which are compiled
to parallel programs. H2O [31] is a component-oriented framework for composition of
distributed programs based on web services. Triana [33] is a graphical development
environment for composing distributed programs from components targeting peer to peer
execution environments. The G2 [24] composes distributed parallel programs from web
services through Microsoft .Net. Armada [27] composes distributed/parallel programs
specialized to data movement and filtering.

The Common Component Architecture (CCA) project [6] is a major research and
development project focused on composition of parallel programs from components. One
primary goal of CCA is to enable composition of programs from components written in
multiple languages. CCA has developed interface standards. The implementations of the CCA
interface specifications are object-oriented. There are several tools, XCAT, [19] Ccaffeine [14]
and BABEL [7,9] implementing the CCA interface specification system. Component
composition are either graphical or through scripts and make files. CCA components interact
through two types of ports. The first type of port is the provides port. The provides port is an
interface that components provide to other components. The second type of port is the uses
port. It is an interface through which components connects with other components which they
require. These port type exhibit some similarities to the accepts and requests transaction
specifications. However, the details and implementations are quite different as we have focused
on incorporation of the information necessary to enable composition by compilation.

ArchJava [4] annotates ports with provides and requires methods which helps the
programmer to better understand the dependency relations among components by exposing it
to the programmer. The accepts and requests interface of a P-COM2 component incorporate
signatures as do ArchJava provides and requires. The accepts and requests interfaces also
include profiles and precedence specification carrying semantic information and enabling
automatic program composition. The attribute name/value pairs in profiles are used for both
selecting and matching components thereby providing a semantics-based matching in addition
to type checking of the matching interfaces.

The use of associative interface has been reported earlier in the literature. Associative
interface is used in one broadcast based coordination model [12]. This model uses run time
composition, whereas our paper presents compile time composition. Associative interfaces
have also been reported in composition of performance modeling [11].

9 Conclusion and Future Research

This paper has presented a programming model, a programming system and a compiler for
composing distributed and parallel programs from independently written components. The
conceptual foundations are domain analysis, support for families of programs, integration and
automation of discovery and linking and management of components with state.

The component-based development method described and illustrated in this paper is not
intended for development of small or "one-off" applications. The investment of effort in
domain model development and characterization and encapsulation of components is not trivial
and these software engineering methods are not typically a part of the development process for
high performance applications. The target applications are those where several instances of an
application are to be developed, where the application may need to be optimized for several
different execution environments or where the application is expected to evolve over a
substantial period of time. In such cases the investment of effort in domain model
development and characterization and encapsulation of components can be expected to show

return. That being said, the parallel programs which have been developed to demonstrate and
evaluate the method show good performance and are readily evolvable.

We are currently investigating the feasibility of combining runtime [12] and compile-time
composition of associative interfaces. We plan to implement a hybrid graphical composition
and compiler-based composition system. We also plan to integrate the compositional compiler
with the Broadway annotational compiler [22] to overcome the problem of "too many
components." Finally we are working on additional applications including an hp-adaptive
finite element code.

Acknowledgements

This research was supported by the National Science Foundation under grant number
0103725 “Performance-Driven Adaptive Software Design and Control” and grant number
0205181, “A Computational Infrastructure for Reliable Computer Simulations.” The
experiments were run on the facilities of the Texas Advanced Computation Center.

References

1. Achermann F., Lumpe M., et al., Piccola - a Small Composition Language, in Formal
Methods for Distributed Processing - A Survey of Object-Oriented Approaches, pp. 403-
426, Cambridge University Press, 2001.

2. Adve V. S., Bagrodia R., et al., POEMS: End-to-end Performance Design of Large
Parallel Adaptive Computational Systems, in IEEE Transactions on Software
Engineering, vol. 26(11): pp. 1027-1049, November 2000.

3. Adve V., Akinsanmi A., et al., Model-Based Control of Adaptive Applications: an
Overview, in Proceedings of the 16th International Parallel and Distributed Processing
Symposium (IPDPS 2002), April 2002.

4. Aldrich J., Chambers C., et al., ArchJava: connecting software architecture to
implementation, in Proceedings of the 22nd International Conference on Software
Engineering, pp. 187-197, May 2002.

5. Arango G., Domain Analysis: From Art Form to Engineering Discipline, in Proceedings
of the Fifth International Workshop on Software Specification and Design, pp. 152-159,
1989.

6. Armstrong R., Gannon D., et al., Toward a Common Component Architecture for High-
performance Scientific Computing, in Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computation, pp. 115-124, August 1999.

7. Babel: Components @ LLNL,
http://www.llnl.gov/CASC/components/babel.html.

8. Bayerdorffer B., Associative Broadcast and the Communication Semantics of Naming in
Concurrent Systems, Ph.D. Dissertation, Dept. of Computer Sciences, University of
Texas at Austin, December 1993.

9. Bernholdt D. E., Elwasif W. R., et al., A Component Architecture for High-Performance
Computing, in Proceedings of the Workshop on Performance Optimization via High-Level
Languages and Libraries (POHLL-02), June 2002.

10. Birngruber D., Coml: Yet another, but simple component composition language, in
Workshop on Composition Languages, WCL’01, pp. 1–13, September 2001.

11. Browne J. C. and Dube A., Compositional Development of Performance Models in
POEMS, in International Journal of High-Performance Computing Applications, vol.
14(4), Winter 2000.

12. Browne J. C., Kane K., et al., An Associative Broadcast Based Coordination Model for
Distributed Processes, in Proceedings of COORDINATION 2002, LNCS 2315, pp. 96-
110, 2002.

13. Cooley J. W. and Tukey J. W., An Algorithm for the Machine Computation of the
Complex Fourier Series, in Mathematics of Computation, vol. 9, pp. 297-301, April 1965.

14. Ccaffeine - a CCA component framework for parallel computing, http://www.cca-
forum.org/ccafe/

15. Czarnecki K. and Eisenecker U. W., Components and Generative Programming, in
Proceedings of the Joint European Software Engineering Conference and ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, Springer-Verlag
LNCS 1687, pp. 2-19, 1999.

16. Deng G., New approaches for FMM implementation, Masters Thesis, Dept. of
Manufacturing Systems Engineering, University of Texas at Austin, August 2002.

17. Fu Y., Klimkowski K. J., et al., A fast solution method for three-dimensional many-
particle problems of linear elasticity, in International Journal for Numerical Methods in
Engineering, vol. 42(7): pp. 1215-1229, 1998.

18. Fu Y. and Rodin G. J., Fast solution method for three dimensional Stokesian many-
particle problems, in Commun. Numer. Meth. Engng, vol. 16(2): pp. 145-149, 2000.

19. Govindaraju M., Krishnan S., et al., Merging the CCA Component Model with the OGSI
Framework, in Proceedings of the 3rd International Symposium on Cluster Computing
and the Grid (CCGrid2003), pp. 182-189, May 2003.

20. Greengard L. and Rokhlin V., A fast algorithm for particle simulations, in Journal of
Computational Physics, vol. 73(2): pp. 325-348, 1987.

21. Greengard L. and Rokhlin V., A new version of the fast multipole method for the Laplace
equation on three dimensions, in Acta Numerica, vol. 6: pp. 229-270, 1997.

22. Guyer S. and Lin C., An Annotation Language for Optimizing Software Libraries, in
Proceedings of the Second Conference on Domain Specific Languages, pp. 39-53,
October 1999.

23. Johnson C.R., Parker S., et al., Component-Based Problem Solving Environments for
Large-Scale Scientific Computing, in Journal on Concurrency and Computation: Practice
and Experience, vol. 14, pp. 1337-1349, 2002.

24. Kelly W., Roe P., et al., An Enhanced Programming Model for Internet Based Cycle
Stealing, in Proceedings of the 2003 International Conference on Parallel and Distributed
Processing Techniques and Applications, pp. 1649-1655, June 2003.

25. Magee J., Dulay N., et al., Structuring parallel and distributed programs, in Software
Engineering Journal, vol. 8(2): pp. 73-82, March 1993.

26. Newton P. and Browne J. C., The CODE 2.0 Graphical Parallel Programming Language,
in Proceedings of the ACM International Conference on Supercomputing, July 1992.

27. Oldfield R. and Kotz. David, Armada: a parallel I/O framework for computational grids,
Future Generation Computer Systems, vol. 18(4), pp. 501-523, 2002.

28. Parker S. G., A Component-based Architecture for Parallel Multi-Physics PDE
Simulation, in Proceedings of the International Conference on Computational Science,
Springer-Verlag LNCS 2331, pp. 719-734, April 2002.

29. Seiter L., Mezini M., et al., Dynamic component gluing, in OOPSLA Workshop on Multi-
Dimensional Separation of Concerns in Object-Oriented Systems, November 1999.

30. Sun X. and Pitsianis N, A Matrix Version of the Fast Multipole Method, in Siam Review,
vol. 43(2): pp. 289-300, 2001.

31. Sunderam V. and Kurzyniec D., Lightweight Self-Organizing Frameworks for
Metacomputing, in Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing HPDC-11 (HPDC'02), pp. 113-124, July 2002.

32. Swarztrauber P. N., Multiprocessor FFTs, in Journal of Parallel Computing, vol. 5: pp.
197-210, 1987.

33. Taylor I., Shields M., et al., Distributed P2P Computing within Triana: A Galaxy
Visualization Test Case, in Proceedings of International Parallel and Distributed
Processing Symposium (IPDPS 2003), April 2003.

