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Abstract. When smart objects participate in context-aware applica-
tions, changes in their real-world environment can have a significant im-
pact on underlying networking structures. This paper presents a commu-
nication platform for smart objects that takes an object’s current real-
world context into account and adapts networking structures accordingly.
The platform provides (1) mechanisms for specifying and implement-
ing context-aware communication services, (2) a tuplespace-based com-
munication abstraction for inter-object collaboration, and (3) support
for linking communication and context-recognition layers. For specifying
context-aware communication services, a high-level description language,
called SICL, and a compiler that generates corresponding code for smart
objects were realized. The tuplespace-based infrastructure layer for inter-
object collaboration hides low-level communication issues from higher
layers and facilitates collaborative context recognition between cooper-
ating objects. The paper also presents examples of context-aware com-
munication services and evaluates the platform on the basis of a concrete
implementation on an embedded device platform.

1 Introduction

As pointed out by Weiser and Brown[12], Pervasive Computing ”is fundamen-
tally characterized by the connection of things in the world with computation”.
Smart everyday objects exemplify this vision of Pervasive Computing because
they link everyday items with information technology by augmenting ordinary
objects with small sensor-based computing platforms (cf. Fig. 1). A smart object
can perceive its environment through sensors and communicates wirelessly with
other objects in its vicinity. Given these capabilities, smart objects can collabo-
ratively determine the situational context of nearby users and adapt application
behavior accordingly. By providing such context-aware services, smart objects
have the potential to revolutionize the way in which people deal with objects in
their everyday environment.

But networks of collaborating smart objects are extremely difficult to man-
age: some objects are mobile, often with distinct resource restrictions, commu-
nication is dynamic, takes place in a highly heterogeneous environment, and



must not rely on a constantly available supporting background infrastructure.
Furthermore, as the term Pervasive Computing suggests, there are potentially
huge numbers of smart objects in communication range of each other, which
even aggravates the problem of keeping communication efficient.

Our approach to addressing this problem is to consider the real-world con-
text of smart objects in the design of communication services. The underlying
motivation is that with the integration of computation into everyday items, the
real-world situation of smart objects increasingly affects their communications
in the virtual world. Thus, everything that happens to an object in the real
world (whether and how, when and how often it is used, its current location and
whether there are potential users in range) might influence its behavior in the
virtual world.

Fig. 1. A smart object: an everyday item augmented with a sensor-based computing
platform.

Location-based routing protocols [1] already consider sensory information to
improve the effectiveness of networking services. Also, Katz [6] points out that
mobile systems must be able to ”exploit knowledge about their current situa-
tion to improve the quality of communications”. Context-aware communication
services, however, take such adaptiveness to a new level, because the variety of
sensors carried by smart objects makes it possible to determine their current
situation with unprecedented accuracy. In context-aware environments, changes
in the real-world situation of smart objects also increasingly affect their behavior
in the virtual world.

In this paper, we present a platform for building context-aware communica-
tion services. It consists of (1) components for the description and generation
of context-aware communication services, (2) a tuplespace-based communication
abstraction for inter-object collaboration, and (3) mechanisms that enable com-
munication services to access context information. Regarding service generation,
we developed a description language, called SICL, for the design of context-aware
services, and a compiler that, given an SICL program, automatically generates
code for smart objects. The tuplespace-based infrastructure layer for inter-object
collaboration is the basis for deriving context information from multiple sensor



sources. It also hides low-level communication issues from context-recognition
and application layers. Furthermore, we present concrete examples of context-
aware communication services that show how to link communication and context
layers.

The rest of this paper is structured as follows: In the next section we review
related work. Section 3 gives an overview of our platform for building context-
aware communication services. Section 4 presents a description language for
context-aware services. In section 5, we describe the tuplespace-based infras-
tructure layer for inter-object collaboration. Section 6 gives concrete examples
of context-aware communication services, and section 7 concludes the paper.

2 Related Work

In [8] and [10], we proposed to consider the real-world context of smart objects
in the design of specific networking protocols. In this paper, we build on our
previous work, generalize our approach, and describe necessary infrastructural
components that facilitate context-aware communication services.

Beigl et. al [3] reports on a networking protocol stack for context commu-
nication, and suggests to consider situational context in order to improve its
efficiency. Thereby, contexts such as the battery level, the current processor
load, and the link quality serve as indicators for adapting networking parame-
ters. We do not focus on such virtual-world parameters, but are more interested
in adaptiveness based on the real-world situation of objects. Furthermore, we
concentrate on providing the distributed infrastructure and high-level services
that allow such kind of adaptiveness.

The Stanford Interactive Workspaces [5] project introduces a tuplespace-
based infrastructure layer for coordinating devices in a room. This tuplespace is
centralized and runs on a stationary server, whereas we distribute the tuplespace
among autonomous smart objects and do not assume that there is always a server
in wireless transmission range.

Want et al. [11] augments physical objects with passive RFID tags to provide
them with a representation in the virtual world. A similar approach is taken in
the Cooltown project [14]. Our approach to building smart objects, however, is
that of the Smart-Its [15] and MediaCup [2] projects, where active instead of
passive tags are used to augment everyday objects. This allows them to imple-
ment more sophisticated applications and to autonomously process information.
Consequently, smart objects do not depend on always available background in-
frastructure services that implement applications on their behalf.

3 Architecture Overview

Smart objects usually implement context-aware applications. Thereby, they de-
rive the context of nearby users in collaboration with other smart objects and
other sensor sources distributed throughout their environment. A context-aware



application then adapts its behavior on the basis of the derived context. A typi-
cal software architecture for smart objects therefore consists of a communication
layer, a context and perception layer, and an application layer. Fig. 2 shows how
the main tasks of these separate layers have been addressed in our platform. In
the following, we give a more detailed overview of these layers and show how
they influence the design of context-aware communication services.

Application
- basic application behavior
- adaptive application behavior 

Context and Perception
- access local sensors
- derive high-level context 

Context-Aware Communication
- context-based adaptiveness
- topology construction, etc. 

Infrastructure for 

inter-object collaboration

Application
- SICL (Smart-Its Context Language)

- separation of concerns
- application generation 

Context and Perception
- context represented as tuples
- tuple operations
- sensor access library

Context-Aware Communication
- communication services enriched 
with context rules 

Distributed tuple space spanning 

collaborating objects

Implementation

Fig. 2. A software architecture for smart objects and its implementation.

Application Layer. The application layer supports programmers in imple-
menting context-aware services. Generally, context-aware applications have four
parts: (1) basic application behavior, i.e., functionality that does not depend
on context changes, (2) adaptive application behavior, which describes how an
application reacts to changing situational context, (3) a section that specifies
how to derive context from local and remote sensor readings, and (4) a part that
specifies how to access sensors. We have implemented the Smart-Its Context
Language (SICL) that separates these concerns and helps programmers to write
more legible and structured code (cf. Fig. 2). Given a description of the four
main parts of a context-aware service in SICL, a compiler automatically gen-
erates low-level C-code for an embedded platform. Our goal was to implement
context-aware communication services using the same description language, and
to link communication and application layer by exporting communication mod-
ules as sensors (cf. Sect. 6).

Context and Perception Layer. The context and perception layer derives
the current situational context of a nearby person or of a smart object itself.
Sensor access and context recognition is specified in SICL as part of an applica-
tion. However, the SICL-compiler generates the actual code for the context and
perception subsystem, which operates on the smart objects. The subset of the
generated code responsible for querying sensors and fusing data makes up the
context and perception layer. It provides information about an object’s context



to the application layer, which is then able to adapt according to this information
(cf. Fig. 2). In our current implementation, context information is represented
as tuples and the derivation of higher-level context information as tuple trans-
formations. Thereby, SICL statements are translated into corresponding rules
for merging and finding context tuples. Such tuples might originate from other
smart objects and the results of a tuple operation might also be of potential in-
terest to other smart objects in vicinity. The challenge is therefore to implement
multi-sensor context awareness on sets of cooperating smart objects.

Support for Inter-Object Collaboration. We address this challenge of
multi-sensor context awareness with an infrastructure layer providing cooperat-
ing entities with a distributed data space (cf. Fig. 2). This data space allows
objects to share data as well as resources, and to fuse sensory data originating
from different smart objects. This data space has been implemented as a dis-
tributed tuplespace. The distributed tuplespace hides low-level communication
issues from higher layers, and it is also a means to group sensor nodes. As the
accuracy of sensory data sharply decreases with increasing distance – e.g., a sen-
sor that is only two meters away from a user is usually much better suited for
deriving his/her context than a sensor that is 20 meters away – smart objects
that collaborate to determine a certain context are often in close proximity of
each other, for example in the same room or vicinity of a user. Such objects
can therefore be grouped into a tuplespace that operates on a dedicated wireless
channel, which makes tuplespace operations very efficient (cf. Sect. 5).

Communication Layer. The communication layer is responsible for low-
level communication issues, such as device discovery, topology construction, con-
nection establishment, and data transfer. As a Bluetooth-enabled device plat-
form [4] is used in our experiments, the communication layer consists in its basic
form of a Bluetooth protocol stack. The context-aware communication platform
considerably extends this protocol stack with mechanisms that adapt according
to results from the context layer. Thereby, communication services contain rules
for the context-layer that describe how to derive relevant context and how to
change networking parameters in certain situations. For example, when smart
objects find out that they are in the same room (information that is derived by
the context layer), the wireless network topology can be automatically changed
such that communication between these devices is more efficient (cf. Sect. 6.3).
We call communication services that take input from the context layer into ac-
count context-aware.

4 A Description Language for Context-Aware Services

Developing context-aware communication services in a language that natively
supports embedded platforms (usually C) often leads to unnecessarily complex
and error-prone code. Consequently, we have designed a high-level description
language – the Smart-Its Context Language (SICL) – which facilitates the de-
velopment of context-aware services and applications.



While developing a range of such context-aware applications [4, 9], we found
that they all have a similar recurrent structure. This structure consists of four
parts that deal with (1) basic application behavior, (2) the context-aware adap-
tiveness of an application, (3) access to local sensors, and (4) context recogni-
tion. Unfortunately, the C programming language does not encourage application
programmers to clearly separate these different concerns, which often leads to
illegible, unstructured and error-prone code. For these reasons, we decided to au-
tomatically generate C code from a more concise higher-level description of the
specific application parts. Thereby, SICL aims at simplifying the implementation
of a context-aware application in the following ways:

– It separates basic application behavior from adaptive application behavior
and therefore leads to better structured code for context-aware applications.

– It allows an application programmer to specify the context-recognition pro-
cess in a clear and legible way in the form of simple tuple transformations.

– The adaptive part of an application, that is, how the application reacts to
results from the context recognition process, can be clearly formulated.

– SICL enables a programmer to specify how to access sensors.

1: smart object name;

%{
4: C declarations

%}

/* sensor statements */
8: define [remote|local] sensor name {
9: tuple type declaration;
10: sensor access function;
11: sensor access policy;
12: };

/* tuple transformations */
15: func1(arg11, . . . , arg1m1 ), . . . , funcn(argn1, . . . , argnmn )

tup1 < field11, . . . , field1p1 > + . . . + tupq < fieldq1, . . . , fieldqpq >
→ tupq+1 < field(q+1)1, . . . , field(q+1)pq+1 >;

/* adaptation rules */
20: tup < field1, . . . , fieldp >→ func(arg1, . . . , argn);

%%

24: C code

Fig. 3. The basic structure of an SICL program.

As a result, it becomes easier, faster, and less error-prone to implement
context-aware applications – and context-aware communication services in par-
ticular – on an embedded sensor node platform. Fig. 3 shows the basic structure
of an SICL program and Fig. 4 presents a concrete example. An SICL program
consists of the following main parts that reflect the previously identified tasks
of a typical context-aware application:



Sensor access. Sensor statements (cf. lines 8-12 in Fig. 3) describe how to
deal with local and remote sensors. In our program model, sensor readings are
embedded into tuples and used in transformations to derive new tuples that
finally represent higher-level context information. As sensor tuples are not gen-
erated in tuple transformations, their type – i.e., the type of every field in a
sensor tuple – must be specified (cf. line 9 in Fig. 3). Also, if a sensor is local, a
function must be given that reads out a sensor, creates a tuple with the specified
type, and writes it into the distributed tuplespace. It is also possible to deter-
mine when to read out a sensor by either providing the amount of time between
consecutive sensor readings or by leaving it to the system to access the sensor
as often as possible.

smart object egg_box;

%{
#include "sensors.h";
#include "gsm.h";
%}

define sensor acceleration {
<type, subt, leng, accX, accY>;
void get_and_write_accel();
/* read out as often as possible */
best effort;

};

eggs_damaged(x,y)
=============================================
acceleration<t, s, l, x, y> => damaged<x, y>;

damaged<x, y> -> send_damaged_message_to_phone(x, y);

%%

Fig. 4. A very simple SICL program that monitors the state of a smart product
by means of an acceleration sensor and sends a message to a mobile phone when
the product has been damaged.

Context recognition. Tuple transformations (cf. line 15 in Fig. 3) describe
how tuples are transformed and new tuples are created. This reflects the process
of deriving high-level context information by fusing sensor readings from different
nodes. Thereby, it is unimportant at which specific smart object a tuple has
been created, because an infrastructure for inter-object collaboration makes it
available to all collaborating nodes.

The basic structure of a transformation rule is as follows. The left-hand side
of a rule lists the tuples that must be available for the rule to be executed, and
the right-hand side specifies the tuple that is to be generated. A set of functions
can be specified that operate on the fields of left-hand side tuples. The tuple
transformation is then only carried out when all these functions return true.
When more than one rule can be executed, the rule first specified in the SICL
description is executed first.



Adaptive application behavior. Adaptation rules (cf. line 20 in Fig. 3)
represent the adaptive part of a context-aware application in that they describe
how an application needs to react when a certain context is derived. An adap-
tation rule simply consists of a tuple on the left hand side, which stands for a
certain situational context, and a function on the right hand side that is executed
when a corresponding context is derived.

Basic application behavior. The basic application behavior of a smart ob-
ject is provided in form of ordinary C code. SICL allows to embed corresponding
C declarations and definitions into an SICL program. The SICL compiler gener-
ates C code from the other parts of an SICL description, which is then compiled
and linked with the C code representing the basic application behavior.

The SICL compiler was implemented using lex and yacc and is exceptionally
slim, consisting of only around 2’500 lines of code.

5 Tuplespace-Based Inter-Object Collaboration

As mentioned before, context-aware services – and context-aware communication
services in particular – need a platform to disseminate information to other
nodes, to access sensors at various smart objects, and to process these sensory
data. This section describes the infrastructure component that facilitates this
kind of cooperation among smart objects: a distributed tuplespace on context-
based broadcast groups.

5.1 Basic Approach

The distributed tuplespace handles all basic communication-related issues re-
quired for inter-object collaboration. It hides low-level communication issues
from higher layers and serves as a shared data structure for collaborating smart
objects. Thereby, every object provides a certain amount of memory for stor-
ing tuples, and the tuplespace implementation handles the distribution of data
among nodes. The context and perception layers access local sensors and em-
bed the corresponding data into tuples, which are written into the space and
are therefore accessible from all smart objects participating in the distributed
tuplespace.

We extend the basic concept of distributed tuple spaces by grouping nodes
into a space according to their current context, and by assigning such groups
a dedicated broadcast channel (cf. Fig. 5). For example, nodes that are in the
same office room can be automatically grouped into one distributed tuplespace.
We argue, that such networking structures, which take the real world context of
smart objects into account, are better suited for the demands of context-aware
applications.

Because Pervasive Computing networks are likely to be dense, nodes in the
same distributed tuplespace communicate on a dedicated wireless channel. This
minimizes the amount of collisions with other nodes in the same area and con-
siderably improves the effectiveness of tuplespace operations (cf. Sect. 5.4). In
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Fig. 5. Grouping of collaborating smart objects into distributed tuple spaces that op-
erate on different communication channels.

case of frequency-hopping spread spectrum techniques a channel is defined by a
unique frequency hopping pattern. For multi-frequency communication modules,
a channel is usually defined by a single frequency. The communication modules
used on the Berkeley Motes [13], for example, support multiple frequencies but
do not implement frequency hopping patterns.

5.2 Efficiency Discussion

An infrastructure for inter-object collaboration must consider the energy con-
sumption of nodes and the effectiveness of data exchange (i.e., how fast data can
be transferred between objects). We argue that our approach is effective with
respect to both aspects in typical Pervasive Computing networks, which share
the following characteristics:

1. Tight collaboration between adjacent nodes. Sensor readings origi-
nating from smart objects that are in close proximity of a user are likely to
provide the most accurate information for characterizing the user’s situation.
Therefore, in order to realize context-aware applications, primarily objects
that are in close vicinity need to exchange data. Consequently, cooperating
objects are often in range of each other.

2. Short-range communication. Because energy-consumption is a major
concern in the envisioned settings, smart objects exchange data using short-
range wireless communication technologies. A major property of correspond-
ing communication modules is that their energy consumption for sending
data is approximately as high as that for receiving data.

Criterion (1) suggests that collaborating smart objects are often in range of
each other. Consequently, collaborating nodes that are grouped in a distributed
tuplespace can reach each other by broadcasting data. Because nodes in a tuple-
space transmit on dedicated channels they are also the only nodes that can



receive such data. Tuplespace operations can therefore be implemented by broad-
cast protocols, which are more efficient than unicast-based solutions (cf. Sect.
5.4).

Because sending data is approximately as energy-consuming as receiving data
(cf. criterion (2)), nodes can directly transmit data to other nodes in range with-
out wasting energy. That means, objects would not save energy by reducing their
transmission range and routing data over intermediate nodes, because receiving
is so expensive. Consequently, when grouping nodes on broadcast channels their
actual distance is not important as long as they can reach each other. Group-
ing of nodes into broadcast channels does therefore not have to consider node
distance but can take other parameters – such as context – into account. As a
result, our approach to grouping nodes according to their context rather than
distance is energy-efficient. Please note, that this is not true for general wireless
networks because for long-range communication technologies it is usually more
energy-efficient to reduce the transmission range and to transmit data over mul-
tiple short distance hops instead of over one long-distance hop [7].

5.3 Implementation

In the following, we describe an implementation of such a distributed tuplespace
on context-based broadcast groups for the BTnode device platform [4].

BTnodes communicate with each other using the Bluetooth communication
standard. Nearby Bluetooth units can form a piconet, which is a network with a
star topology of at most 8 active nodes. Thereby, Bluetooth distinguishes master
and slave roles. The master of a piconet is the node in the centre of the star
topology; slaves cannot communicate directly with each other but only over the
master. The master also determines the frequency hopping pattern of a piconet
and implements a TDD (time division duplex) scheme for communicating with
slaves. Consequently, a slave can only transmit data when it was previously
addressed by the master, and only the master can broadcast data to all units in
a piconet. The frequency hopping pattern of a piconet implements a dedicated
channel, which results in very few collisions with other piconets in the same
area. Multiple piconets can form so called scatternets. Thereby, bridge nodes
participate in more than one piconet and switch between piconet channels in a
time division multiplex (TDM) scheme.

Our implementation tries to group collaborating smart objects into one pi-
conet. This corresponds to the aim, according to which tightly cooperating ob-
jects shall be grouped such that they operate on a dedicated broadcast channel.
Because of its pseudo-random frequency hopping pattern, a piconet constitutes
such a dedicated channel on which the master can broadcast data. As Bluetooth
nodes in a piconet can be as much as 20m away from each other, in the envi-
sioned settings cooperating objects can be grouped into a piconet most of the
time. However, due to the low number of nodes in a piconet, it might become
necessary to organize nodes into a scatternet.

Every smart object provides a certain amount of memory for the distributed
tuplespace implementation (cf. Fig. 6). As embedded systems often do not pro-
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Fig. 6. Overview of the distributed tuplespace implementation: multiple local tuple
spaces are connected to form a distributed tuplespace.

vide a reliable dynamic memory allocation mechanism, the memory for the tuple-
space is statically allocated. We have implemented our own memory management
mechanism for tuples, which poses some restrictions on the storage of tuples. Be-
cause of the memory restrictions of embedded systems, for example, tuple fields
have always a predefined size. That is, although a tuple may consist of an arbi-
trary number of fields, the type information and the actual value of a field are
restricted in size. The memory restrictions also imply that after a time – espe-
cially when sensors are read out often – the tuplespace will be full. In this case,
the oldest tuples are deleted in order to allow new tuples to be stored. However,
it is also possible to protect tuples that should not be automatically deleted. We
call such tuples ’owned’; they have to be manually removed from the tuplespace.
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Fig. 7. Basic protocol for distributed tuplespace operations.

The DTS implements typical tuplespace operations such as write, read, or
take, but also offers functions such as scan, consumingScan, and count, which



originate from other widely-used tuplespace implementations. In our implemen-
tation, there are different versions of these functions that operate on different
spaces: the tuplespace local to an object, an explicitly specified remote tuple-
space, or the distributed tuplespace as a whole. In the following, however, we
focus on functions that operate on all nodes in a distributed tuplespace and de-
scribe the underlying protocol based on an example for a read operation (cf. Fig.
7). When a slave wants to execute a read operation on the distributed tuple-
space, it must send the request first to the master of its piconet. Next, the master
broadcasts a ready? message to all nodes on the broadcast channel and waits
for their response. The explicit response is necessary because broadcast traffic in
wireless networks is usually unacknowledged. When all nodes acknowledged the
request, the master broadcasts the actual operation together with all necessary
parameters to its slave and awaits the results (cf. Fig. 7).

We would like to emphasize that the concepts of our implementation are in
no means restricted to a specific communication standard. In fact, porting our
code to other device platforms, as for example the Berkeley motes [13], would
be possible because they do also support multiple communication channels.

5.4 Evaluation

Based on measurements, this section tries to evaluate the performance of the
presented implementation.

A central question is whether the broadcast-based implementation for data
sharing is superior to a more simpler, unicast-based solution. The read opera-
tion presented in the previous section, for example, queries all nodes for tuples
matching a given template. However, read only requires one matching tuple.
In Fig. 8 we compared the broadcast-based solution with a unicast-based read
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operation, which queries all nodes after another and stops as soon as it receives
a result from one node. In the experiment, there was always a matching tuple on
one of the nodes. This node was picked with equal probability from all available
nodes, and the read operation was invoked directly at the master.

As can be seen, the broadcast-based implementation clearly outperforms the
unicast-based version, especially with increasing number of nodes. A reason for
this is that because of the broadcast, fewer packets are transmitted over the
medium when there are many nodes on the broadcast channel. However, this
fact alone does not fully explain the graphs in Fig. 8. We also noticed that the
whole process of sending a unicast packet and receiving a response from one
node always takes about 35 ms. On the other hand, sending a broadcast packet
and receiving the results takes between 50 and 70 ms for two to seven nodes. We
think that this is due to the Bluetooth modules used on the BTnodes, which seem
to delay packets before delivering them to the microcontroller when packets are
not streamed. Also, the time division duplex scheme implemented in Bluetooth
decreases the efficiency of the unicast-based protocol.

We have also made measurements regarding the performance of tuplespace
operations executed during the context recognition process. As mentioned be-
fore, SICL rules (cf. Fig. 3 in Sec. 4) are translated by the SICL compiler into
tuplespace operations for obtaining relevant tuples, merging them, and writing
the corresponding results back to the space. Given a typical SICL program, usu-
ally all global tuplespace operations except consumingScan are executed during
this process. The reason for this is that the context recognition layer cannot de-
cide by the time it is scanning for tuples whether to remove them from the space
or not. It can only do this when it has evaluated these tuples, and then only
deletes selected tuples by calling the take operation instead of consumingScan.
Please note that SICL offers a special operator for deleting tuples after a rule has
been successfully evaluated. Fig. 9 shows the number of tuplespace operations
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executed during the context-recognition process with respect to the number of
collaborating nodes. To test the performance of the tuplespace operations un-
der heavy load, the underlying context-recognition code was generated from an
SICL program such that global tuplespace operations are continuously issued by
all participating nodes without periods of low activity. The generated code was
uploaded to and executed on all collaborating nodes, not only on the master.
The measurements in Fig. 9 show that the number of executed tuplespace oper-
ations that require communication with other nodes only decreases from around
1000 to 750 when the number of slaves increases from two to six. Because the
presented grouping procedure reduces the number of nodes in a DTS, this is a
very promising result. Also, the time needed for executing tuplespace operations
on the local space is negligible because of the memory-restrictions of smart ob-
jects. The number of local operations only depends on the structure of the SICL
program.

6 Context-Aware Communication Services

Context-aware communication services are communication services that take an
object’s current situational context into account. They can either adapt their
behavior according to changes in the real-world environment or parameterize
conventional communication services with context information. For example, a
service for context-aware device discovery could return not only the devices cur-
rently in range but could also determine which of them share the same symbolic
location. Context-aware communication services can also completely substitute
conventional communication mechanisms (cf. Sect. 6.2). In this section, we de-
scribe how we linked the communication and context layers in order to allow com-
munication services to access and process context information. We also present
two examples of context-aware communication services.

6.1 Linking Communication and Context Layer

We designed the context-aware communication platform with the aim of being
able to realize context-aware communication services in the same way as other
context-aware applications. The first step towards this goal is to think of a com-
munication module as a sensor. A sensor monitors its environment and provides
information about its surroundings. In this respect, a communication module
does not differ from acceleration sensors or microphones, because it can provide
information about what other smart objects are currently in its environment.
Therefore, we can export the device discovery functionality of a communication
module as a sensor statement in SICL (cf. Fig. 10). Thereby, the sensor state-
ment specifies when to read out the communication module – i.e., when to check
for other objects in range – and implicitly makes this information available to all
other objects by means of the infrastructure layer for inter-object collaboration.
Consequently, a tuple that contains the address of a discovered module must
also contain the address of the module that actually found it. This can be seen



in Fig. 10, where the tuple generated by the sensor contains the lower and upper
address part of the inquiring unit (lapi and uapi) as well as the corresponding
information for the module discovered (lapd and uapd).

define sensor communication_module {
<lapi, uapi, lapd, uapd>;
void start_inquiry();
every 60000 ms;

};

Fig. 10. Linking communication and context layer by treating communication
modules as sensors: sensor statement for a communication module in SICL.

By linking communication and context layer in this way, communication
services can take advantage of all the services and infrastructural components
presented in the previous sections. Thus, they can access derived context infor-
mation and sensor readings from collaborating objects.

6.2 Context-Aware Device Discovery

In some communication technologies, device discovery can be extremely slow.
Especially for frequency-hopping technologies – such as Bluetooth – where there
is no dedicated frequency at which devices advertise their presence, a lengthy
discovery phase is a major drawback. This problem can be addressed by coop-
erative approaches to device discovery that are still based on the conventional
discovery mechanism [10], or by completely substituting this conventional mech-
anism with a context-aware communication service. In the following solution,
the context-aware discovery mechanism does not use the discovery mechanism
of the communication module at all.

smart object door;
...
define sensor rfid {

<lap, uap>;
void read_device_address_from_rfid();
best effort;

};

object_already_in_room(lap, uap)
================================
rfid<lap, uap> => old<lap, uap>;

object_not_in_room(lap, uap)
================================
rfid<lap, uap> => new<lap, uap>;

old<lap, uap> -> remove(lap, uap);
new<lap, uap> -> join(lap,uap);
...

Fig. 11. The code for the smart door in SICL.



In the smart door application, a door is augmented with a BTnode and
an attached RFID reader, which serves as sensor for the BTnode. Other smart
objects have an RFID tag attached that contains their actual device address,
such as their Bluetooth address. When they enter a room through the smart door,
the device address is read out of the tag by the RFID reader and made available
to other objects in the room through the distributed tuplespace shared by all
objects inside the room. The smart door also tries to include the arriving object
into the distributed tuplespace shared by objects in the room. The corresponding
code for the smart door in SICL is depicted in Fig. 11.

The technology break of using another technology for device discovery is of
course an overhead because it requires that every smart object is additionally
equipped with an RFID tag, but it is faster than conventional Bluetooth device
discovery. It is also possible to combine this RFID-based approach with the
conventional device discovery mechanism. Thereby, discovery results are enriched
with context information by not only identifying the objects in range, but also
those that share a certain symbolic location.

6.3 Context-Aware Topology Construction

As already discussed in section 5, it is a goal of the platform for inter-object col-
laboration to group smart objects according to their current context. Thereby,
a network topology is created such that nodes that are likely to cooperate are
grouped on one channel (in Bluetooth, this corresponds to grouping nodes in dif-
ferent piconets). Because smart objects provide context-aware services to nearby
users, the recognition of the user’s context is one of the main reasons for com-
munication when a user is present. Consequently, nodes that are in the same
room are more likely to cooperate because their sensory data is better suited for
characterizing the situation of a nearby person. In contrast, collaboration across
room borders is less likely because sensor readings from another room are often
less accurate. The context-aware service for topology construction presented in
this section therefore groups nodes in clusters that share the same symbolic lo-
cation. The goal is to show how the presented platform components support the
implementation of such a service.

At first, the communication service assumes that relevant objects participate
in one distributed tuplespace. The location of smart objects is then determined
by audio input from a small microphone attached to smart objects. The micro-
phone is read out once every minute on every object in the tuplespace. Thereby,
a sampling rate of about 5 kHz for the duration of one second was used (cf. Fig.
12). As the access to the microphone has to be synchronized – i.e., it has to take
place at the same time – a node triggers the sampling by writing a special tuple
in the tuplespace. As a result, the microphone is then simultaneously read out
at every node in the tuplespace.

The corresponding results are again made available to all participating nodes
via the infrastructure for inter-object collaboration. Because transmitting the
whole data stream is impossible, a small number of features are extracted from
the audio stream that are embedded into a tuple and written into the space.
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Fig. 12. Audio output of a microphone sensor and the extracted features shared via
the infrastructure for inter-object collaboration.

In our implementation, we simply use the average volume as the main feature.
Because this feature provides only limited information and synchronization prob-
lems can lead to inaccurate information, one sensor reading is not sufficient to
really deduce which objects are in the same room. Instead, only after several con-
secutive sensor readings is it possible to draw a conclusion about the location
of a node. The cluster head (in Bluetooth the master node) accesses this sort
of history information by querying the distributed tuplespace and, if necessary,
issues a command for organizing nodes into different clusters.

7 Conclusion

In this paper, we presented a context-aware communication platform for resource-
restricted, wirelessly-communicating smart objects. The described platform con-
sists of three parts: (1) a high-level description language, called SICL, for the
development of context-aware communication services, (2) a tuple-based com-
munication abstraction that hides low-level communication issues from higher
layers, and (3) examples of context-aware communication services.

The description language SICL helps application programmers to clearly sep-
arate the main aspects of a context-aware application: basic and adaptive appli-
cation behavior, context-recognition, and sensor access. So far, our experiences
with the language are very promising, and the examples given in this paper
show that it is practical for the development of context-aware communication
services. However, the main advantage of SICL is that it relieves programmers of
implementing the low-level communication issues necessary to fuse sensory data.
Instead, it provides a simple tuple-based approach for data handling. This ap-
proach is realized by a distributed tuplespace that groups collaborating objects



based on their current context. The distributed tuplespace is also the main plat-
form for inter-object cooperation and hides low-level communication issues from
higher layers. According to the measurements presented in Sect. 5, it supports
efficient collaboration among autonomous smart objects.

The concepts described in this paper have been implemented on a resource-
restricted device platform, which has been used in several applications to aug-
ment everyday objects with computation. Experiments have shown that our
implementation is practical and works well in the envisioned settings.
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