
Extending Grammatical Evolution to Evolve
Digital Surfaces with Genr8

Martin Hemberg1 and Una-May O’Reilly2

1 Department of Bioengineering, Bagrit Centre, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK

martin.hemberg@imperial.ac.uk
2 Computer Science and Artificial Intelligence Lab, Massachusetts Institute of

Technology, Cambridge, MA 02139, USA
unamay@ai.mit.edu

Abstract. Genr8 is a surface design tool for architects. It uses a grammar-
based generative growth model that produces surfaces with an organic
quality. Grammatical Evolution is used to help the designer search the
universe of possible surfaces. We describe how we have extended Gram-
matical Evolution, in a general manner, in order to handle the grammar
used by Genr8.

1 Genr8:The Evolution of Digital Surfaces

We have built a software tool for architects named Genr8. Genr8 ’grows’ dig-
ital surfaces within the modeling environment of the CAD tool Maya. One of
Genr8’s digital surfaces, is shown on the left of Figure 1. Beside it, is a real
(i.e. physical) surface that was evolved first in Genr8 then subsequently fabri-
cated and assembled. A surface in Genr8 starts as an axiomatic closed polygon. It
grows generatively via simultaneous, multidimensional rewriting. During growth,
a surface’s definition is also influenced by the simulated physics of a user defined
’environment’ that has attractors, repellors and boundaries as its features. This
integration of simulated physics and tropic influences produces surfaces with an
organic appearance.

In order to automate the specification, exploration and adaptation of Genr8’s
digital surfaces, an extended version of Grammatical Evolution (GE) [7] has been
developed. The purpose of this contribution is to describe how and why we used
and extended GE. We proceed as follows: In Section 2 we explain how Genr8
creates a surface via a generative process. A surface, because of this generative
process, is difficult to design by hand and the search space of possible surfaces is
vast. In Section 3 we give the reasons why evolutionary computation is ideally
suited to address this problem. We also explain why GE, with several extensions,
conveniently resolves the issues of representation and mapping we face when
using EC. Following, we show some design results and summarize.

Fig. 1. Left hand side, a Genr8 surface grown in an environment where it has been
pulled down by gravity on top of a spherical boundary. Right, a physical model made
by Jordi Truco at the Architectural Association in London. The design process started
with Genr8 and the evolved digital surface was subsequently exported so that a physical
model could be manufactured.

2 Digital Surface Growth

Genr8 simulates organic growth and creates digital surfaces. Its growth process
is reactive: it takes place in a simulated physical environment. Surface growth is
generated by a HEMLS - a Hemberg Extended Map L-System. A HEMLS is a
more complex version of the widely known Lindenmayer System (or L-system)
[8]. An L-system is a grammar, consisting of a seed (or axiom) and a set of
production rules, plus a rewrite process in which productions rules are applied
to the seed and its successive states.

An L-system generates strings of symbols and is computer language ori-
ented. It can be transformed into a visual representation by interpreting the
seed and rewrite process graphically. The graphical interpretation is based on
the metaphor of the seed being drawn in 3D space by a turtle subsequently
moving through 3D space according to directions specified by the production
rules and (re)drawing lines as it goes along. The turtle’s directional movement
is based on a set of instructions that are presented in Table 1. An example of a
graphical L-system is given in Figure 2. Realistic images of plants, flowers and
trees have been generated as a generated sequence line segments by specially
designed L-systems [8].

A Map L-system models 2D cellular structures such as leaves via planar
graphs, in contrast to the 3D linear segmented structures of an L-system. All
rewrite rules are applied simultaneously to the planar graph (which has an inter-
nal representation as a graph) and then any unconnected new edges are either
joined or eliminated. An example Map L-system is shown in Figure 3.

Since our goal was creative, responsive surface design, we extended a Map L-
system to a HEMLS. The most important feature incorporated into a HEMLS is
how the physics of our simulated environment is factored into the rewriting of an
edge. The designation of the vertices of the new edge is altered in accordance with

Fig. 2. An example of how a graphical L-system grows from [9]. The top image shows
the seed, consisting of three segments. During each growth step, each segment is re-
placed by the original three segments of the seed. Growth steps 2, 3 and 8 are shown.
The rewrite rule is symbolically expressed as F -> F [+ F] F. The F to the left of
the arrow is the predecessor, i.e., the symbol that will be replaced in the growth step.
The sequence to the right is the successor ; the symbols that will replace the the prede-
cessor. The Fs are segments and the + indicates that the turtle should turn at an angle
of δ = 36◦ (the numerical value is given as a parameter to the system). The [pushes
the current state (ie position) of the turtle on to a stack. When the pop symbol,] is
encountered, a state is popped from the stack and the turtle attains that state. This
push-pop mechanism enables the branching structure of L-Systems.

how the edge would be pulled by an attractor, pushed by a repellor or deflected
by a boundary in the simulated physical environment. With this additional set
of environmental factors, the surface growth mimics tropism, the response of an
organism to external stimuli. Figure 4 shows how a HEMLS surface’s growth
steps in response to five repellors.

There are additional features in a HEMLS. These include the capacity for the
grammar to be context sensitive (e.g. the left hand side of a production rule can
express multiple symbols in a specific order), the option of randomly choosing
among multiple production rules applying to the same symbol, and rewrite rules
that change between time steps.

3 Evolutionary Computation in Genr8

Genr8’s means of growing a digital surface implies using any HEMLS within
a huge universe. Constructing interesting and useful grammars by hand is a
formidable task and is unrealistic to expect of an architect. The EA component
of Genr8 serves three purposes related to this need for automation:

– It automatically generates a HEMLS with correct syntax.
– It adaptively explores some of the universe of surfaces following preferred

surfaces yet yielding creatively different ones.

Turtle Command Meaning

Ai, Bj , Ck, ... Move forward and draw a line.
+, - Turn left/right δ.
&, ˆ Pitch down/up δ.
/, \ Roll left/right δ.
∼ Change direction of the segment.
[,] Push/pop state on stack.

Table 1. Turtle commands and their meaning. A parameter δ specifies turn angle

Fig. 3. An example of a Map L-System from [8]. The rewrite rules are shown to the
left in symbolic and graphical form. Next, the seed (a square) is shown and the rewrite
rules are subsequently applied to it.

– It can be used to explicitize a surface an architect has in mind by allowing
its search process to be influenced by the architect.

These reasons are compelling to use EC but they leave open how a HEMLS
should be represented within an evolutionary algorithm. Clearly the phenotype,
i.e. the outcome, of the EC component is the digital surface. However, should
a direct representation of a HEMLS function as the genotype, i.e., the genetic
material subject to blind variation, as in [4] and [5]? This is an awkward choice
because a HEMLS is a grammar. Blind variation on a direct grammar repre-
sentation would have to be either contrived to adhere to syntax constraints or
it would result in offspring genotypes that have to be syntactically repaired or
culled afterwards. An alternative is to exploit a powerful approach used in vari-
ous genetic programming examples such as cellular encoding [1] and embryonic
circuit development [6]. In particular, we employ Grammatical Evolution [7] and
provide simple effective extensions to it.

Fig. 4. A time series capturing 7 growth steps of a HEMLS surface in an environment
with five repellors (here drawn as cylinders). The smallest surface is the axiom. The
largest surface is the final growth step.

3.1 Genr8 extends Grammatical Evolution

GE provides a means of mapping a fixed length bit string or integer sequence
(which is its genotype and thus blindly crossed over or mutated) into a pro-
gram via the use of a programming language specification given in Backus-Naur
Form (BNF). This implies that the genotypic search space is simpler in terms
of representation. Also, it implies that GE is a general means of using genetic
programming to generate an executable ’program’ in an arbitrary language. In
our case the ’programming language’ is the language that describes any HEMLS.
The ’program’ is a HEMLS. In Genr8’s BNF specification of the HEMLS lan-
guage we express both syntactic and semantic constraints for a HEMLS. These
are implicitly respected as the BNF is used to derive a HEMLS from the geno-
type. An example of a syntactic constraint is that a <RewriteRule> must have
a <Predecessor>, followed by a arrow towards the right that is followed by a
<Successor>. Semantic constraints are more powerful. One example, seen in
Figure 5, is a heuristic for symmetry that is expressed in the <Modifier> non-
terminal: a turn in one direction along one axis must be subsequently followed
by a reciprocal turn on the same axis.

In typical GE systems, the program resulting from mapping the genotype
with the BNF is executed and its outputs are compared to desired outputs. In
Genr8 the HEMLS is rewritten via graphical interpretation as a planar graph (in
a particular kind of execution) and a set of particular qualities of the resulting
digital surface are assessed according to derive a fitness value. Thus, Genr8
has two levels of mappings. Interestingly, each mapping is essentially similar

in terms of being generative. A generative system has a simple starting point
and the procedural means of becoming increasingly complex. The GE mapping
from a gentoype to a HEMLS allows a standard genetic algorithm to search in
a space of integer strings. This is simpler and more convenient with respect to
withstanding the random effects of blind variation than operating directly in the
grammar space. The use of GE preserves semantic and syntactic constraints in
the more complex representation space of a HEMLS. The HEMLS to surface
mapping supports ’growth’ and produces a digital representation that is visual.

All Genr8 BNFs have <L-System> as their seed. The <L-system> symbol
is rewritten as an <Axiom>, one or more <RewriteRule>’s and, then, some pa-
rameters for the turtle. An example HEMLS derived via this BNF is shown in
Table 2

Edge0 + Edge1 + Edge2 + Edge3
Edge0 → Edge3 [[+ + Edge0] - - Edge0] Edge1
Edge1 → Edge1
Edge2 → Edge1 [[+ + Edge0] - - Edge0] Edge3
Edge3 → Edge2
Angle 45
Sync
BranchAngle 45

Table 2. An example HEMLS derived from the BNF of Figure 5

The first line expresses the <Axiom>, i.e., an initial surface of 4 edges each
with a different label (e.g. zero through three). The next four lines are the
<RewriteRule>s, one for each edge, and the three last rows contain parameters
for the turtle. A more detailed description of the derivation and interpretation
of the grammar can be found in [2].

The BNFs used in Genr8 use two interpretations of the genome that have
not been used in previous implementations of GE. First, if there are many non-
terminals in the BNF’s production rules, an expanded (or derived) HEMLS is
likely to be very large. For instance, in the BNF of Figure 5, six of the nine
productions of the non-terminal <Modifier> themselves expand to <Modifier>.
Thus, there is a 2

3 probability of another expansion being required. In Genr8
such very complex rewrite rules in a HEMLS are generally undesirable because
they tend to produce less interesting surfaces. The conventional way in GE to
prevent this excessive expansion is to restrict the number of times the genome is
allowed to wrap around during its decoding. Once the wrapping limit is reached,
the individual is assigned the worst fitness fitness possible to make sure that
it does not survive the selection process. In Genr8, the problem is addressed
differently. A parameter called max depth limits the maximum depth of the
expanded syntax tree rather than limiting the mapping of the genotype. When
the maximum depth is one short of being reached, only BNF production rules
that use terminals are used to rewrite a non-terminal. This scheme still ensures

Fig. 5. A HEMLS language expressed in Backus Naur Form (BNF). Any derivation of
this BNF produces a HEMLS (i.e. a grammar). One derivation is shown in Table 2.

that a HEMLS will not expand indefinitely while it also puts a less abrupt
consequence to long expansion.

Second, in a BNF, the symbols {...} and [...] indicate that whatever sym-
bols (terminals or non-terminals) appears between them is to be written zero or
more times or one or more times, respectively. For example, in the BNF of Fig-
ure 5, <Successor> is rewritten as zero or more <Modifier>’s then an <Edge>.
Because of the importance of genetic inheritance (and the propogation of genetic
characteristics) in a GE system, it is important that this optional quantity stay
consistent through all decodings of a genotype (i.e., from one generation to the
next or within multiple copies of the genotype in the population). The ideal way
to achieve this consistency is to use the genotype itself to determine how many
times a symbol is written when it is optional. This is accomplished in Genr8 via
a simple algorithm that, when a { is encountered, initializes a counter to zero.
Next, the following genes on the genome are used, instead of a random number
generator, to determine how many times the symbol between the {...} should
be written. The algorithm loops and writes the symbol as long as the next gene
has a value at least two less than the counter (which itself increments each time
through the loop). This leads to a symbol being written again with decreasing
probability as it is written more and more, yet there is no fixed upper limit
on the quantity. This scheme is deterministic and ensures that the genome will
produce the same HEMLS every time it is interpreted.

The <Edge> terminal in a HEMLS BNF is also special in the sense that it
requires a label. For convenience a numerical labeling is used in Genr8. Whenever
an <Edge> is derived for a HEMLS, the label must be determined. Either an
existing label must be used or a new label must be generated. As in the case
of optional quantities of symbols, label assignment requires consistency in terms
of genotype decoding. The scheme used in Genr8 is similar to the one used
for multiple nodes described above. There is a counter that keeps track of the
current number of edge labels. The probability of introducing a new edge label
decreases with the number of edge labels already existing.

Finally, the BNFs of Genr8 are extended in one way to ensure that branches
of a HEMLS will connect. A semantic heuristic enforces the same edge being
used in different places in a production rule’s successor. For example:

<Modifier> ::= <Edge> [[+ <EdgeX>] - <EdgeX>] <Edge>

Here, the <EdgeX> terminal is used instead of the <Edge> in order to imply (and
enforce) that the edges designated by <EdgeX> need to both have the same label.
As the <Modifier> non-terminal is expanded, the first <EdgeX> is assigned a la-
bel as described previously. All subsequent <EdgeX> terminals in the production
will automatically get the same label as the first one. This informal ‘binding’ is
reminiscent of free variable binding in logic programming.

4 Genr8’s Digital and Physical Results

In the case of surface exploration a picture is sometimes worth a thousand words.
Genr8 has now been used for two years in a design course within the Emergent

Design & Technologies graduate program at the Architectural Association (AA)
in London. Figure 7 and 6 is the final example of Genr8 that space permits.
Additional images are available on the world wide web at
http://www.ai.mit.edu/projects/emergentDesign/genr8.

Fig. 6. A physical model, fabricated via CNC milling, based on a Genr8 surface. By
Linus Saavedra, AA, London, UK, 2003.

5 Summary

We have described how evolutionary computation, and in particular, extensions
of grammatical evolution, empower a digital surface exploration tool named
Genr8. Because of its responsive growth and evolutionary algorithm, Genr8’s
results are attractive, spontaneous and organic in appearance.

Genr8 also demonstrates how a creative design tool based on evolutionary
computation can be effective in three other major respects that are elaborated
upon elsewhere (see [2, 3]: Genr8’s Interrupt, Intervene and Resume (IIR) capa-
bility facilitates partner-based design between itself and its human user. Second,
the parameterized fitness function allows the user to decide what features of the

Fig. 7. A rendered image of a design for a pneumatic strawberry/champagne bar. This
is Genr8’s largest design that has been physically actualized. By Achim Menges, AA,
London, UK, 2003.

surface should be selected for. Third, Genr8 is efficiently integrated into a larger
design process so that the designer can use its results in subsequent explorations
that include, for example, physical model construction.

References

1. Frédéric Gruau. Genetic micro programming of neural networks. In KE Kinnear,
editor, Advances in Genetic Programming, pages 495–518. MIT Press, Cambridge,
MA, 1994.

2. Martin Hemberg. Genr8 - a design tool for surface generation. Master’s thesis,
Chalmers University of Technology, 2001.

3. Martin Hemberg, Una-May O’Reilly, and Peter Nordin. Genr8 - a design tool for
surface generation. In Late breaking papers, GECCO 2001, 2001.

4. Gregory S Hornby and Jordan B Pollack. The advantages of generative grammatical
encodings for physical design. In Congress on Evolutionary Computation, 2001.

5. Gregory S. Hornby and Jordan B. Pollack. Body-brain co-evolution using L-systems
as a generative encoding. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2001), pages 868–875, San Francisco, California, USA,
7-11 2001. Morgan Kaufmann.

6. John R. Koza, Forrest H Bennett III, David Andre, and Martin A Keane. Automated
design of both the topology and sizing of analog electrical circuits using genetic
programming. In John S. Gero and Fay Sudweeks, editors, Artificial Intelligence in
Design ’96, pages 151–170, Dordrecht, 1996. Kluwer Academic.

7. Michael O’Neill and Conor Ryan. Grammatical Evolution - Evolving programs in
an arbitrary language. Kluwer Academic Publishers, 2003.

8. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of
plants. Springer, 1996.

9. David J Wright. Dynamical systems and fractals lecture notes, 1996.
http://www.math.okstate.edu/mathdept/dynamics/lecnotes/lecnotes.html.

