
On the Evolution of Evolutionary Algorithms

Jorge Tavares1, Penousal Machado1,2, Amı́lcar Cardoso1,
Francisco B. Pereira1,2, and Ernesto Costa1

1 Centre for Informatics and Systems of the University of Coimbra,
Pólo II - Pinhal de Marrocos, 3030 Coimbra, Portugal

2 Instituto Superior de Engenharia de Coimbra,
Quinta da Nora, 3030 Coimbra, Portugal

{jast, machado, amilcar, xico, ernesto}@dei.uc.pt

Abstract. In this paper we discuss the evolution of several components
of a traditional Evolutionary Algorithm, such as genotype to phenotype
mappings and genetic operators, presenting a formalized description of
how this can be attained. We then focus on the evolution of mapping
functions, for which we present experimental results achieved with a
meta-evolutionary scheme.

1 Introduction

We propose the evolution of several components of an Evolutionary Computation
(EC) algorithm, and present the results attained in the evolution of the genotype-
phenotype mapping procedure [1].

In order to achieve competitive results, it is often required the development
of problem specific operators and representations, and parameter fine tuning.
As a result, much of the EC research practice focuses on these aspects. In an
attempt to overcome these difficulties researchers have proposed the evolution of
the EC parameters, operators and representations. We believe that the evolution
of these components may contribute to performance improvements, give insight
to the idiosyncrasies of particular problems, and alleviate the burden of EC
researchers.

The paper is structured as follows: In section 2 we make a brief perusal
of related research; Next we study different ways of evolving EC components,
presenting a formalization; The experimental results are presented in section 4,
which also comprises their analysis; Finally, we draw some overall conclusions
and give pointers for future research.

2 Related Work

The area of Adaptive Evolutionary Computation (AEC) focuses on the evolution
of specific parameters of EC algorithms. Angeline [2] makes a formal definition
and classification of AEC, proposing three levels of adaptation: population-level,
individual-level and component-level. The population-level consists on dynami-
cally adjusting, as evolution progresses, a set of parameters that are shared by

the entire population. Likewise, at the individual-level, there is an adjustment of
parameters that determine how the manipulation of the representational com-
ponents of each individual is performed. At the component-level the way each
component of an individual behaves when a modification occurs is evolved. The
main objective of AEC, independently of the level, is to improve the efficiency
and efficacy of the evolutionary algorithm in some specific problem.

There are several AEC that allow the dynamic resizing of the genotype, al-
lowing its expansion and contraction according to environmental requirements.
The phenotype, typically, remains static. Angeline and Pollack [3] propose the
co-evolution of a high-level representational language suited to the environment,
and of a dynamic GA where the genotype size varies. This is attained by the use
of two specialized genetic operators, which create stable modules from portions of
the developing genotypes, serving as an abstract addition to the representational
language. Also related to genotype-phenotype mapping, is the work of Altenberg
[4] about the notion of “evolvability” - the ability of a population to produce
variants fitter than previous existing one’s. In [5, 6] Altenberg explores the con-
cept of Genome Growth, a constructional selection method in which the degree
of freedom of the representation - i.e. the genes - is increased incrementally. The
genes that promote the phenotype fitness are kept, resulting in genotype to phe-
notype mappings that are less epistatic, thus allowing better adaptation. This
work is directly connected to the concepts presented by Dawkins in [7], where
he clearly differentiates genetics, the study of the relationships between geno-
types in successive generations, from embryology, the study of the relationships
between genotype and phenotype in any one generation. This leads us to the
concept of embryogeny, the process of growth that defines how a genotype is
mapped onto a phenotype, and to the work of Bentley. In [8], the use of such
growth processes within evolutionary systems is studied. Three main types of
EC embryogenies are identified and explained: external, explicit and implicit. A
comparative study between these different types, using an evolutionary design
problem, is also presented.

Another aspect that can be subject of self adaptation is the set of genetic op-
erators. The most straightforward approach is to try to select, from a pre-defined
set, the most useful operator according to the environment. A paradigmatic ex-
ample of this type of approach can be found in [9], which describes an AEC
algorithm that dynamically chooses the crossover operator to apply, and adjusts
the crossover probability. The self adaptation of crossover parameters is also de-
scribed in [10], where the adaptation of parameters governing the selection of a
crossover point, and amount of crossover operations is described.

The evolution of the genetic operators is the obvious next step. In [11] GP
is extended to a co-evolutionary model, allowing the co-evolution of candidate
solutions and genetic operators. The language used to build the genetic oper-
ators, is defined so that the diversity of the population of candidate solutions
is preserved. The evolving genetic operators are applied to the population of
candidate solutions, and also to themselves. Another approach to the evolution
of genetic operators is described in [12]. In this study, an additional level of

recombination operators is introduced, which performs the recombination of a
pool of operators.

3 Evolving EC Components

Historically EC is divided into four families namely: Evolution Strategies (ES);
Evolutionary Programming (EP); Genetic Algorithms (GA); and Genetic Pro-
gramming (GP). In spite of their differences they can all be seen as particular
instances of the Generic Evolutionary Algorithm (GEA) presented in figure 1.

t← 0
G(0) ← generate random(t)
P (0) ← map(G(0))
F (0) ← eval(P (0))
while stop criterion not met do

G′(t) ← sel(G(t), P (t), F (t))
G′′(t) ← op(G′(t))
G(t + 1) ← gen(G(t),G′′(t))
P (t + 1) ← map(G(t + 1))
F (t + 1) ← eval(P (t + 1))
t← t + 1

end while
return result

Fig. 1. Generic Evolutionary algorithm.

The first step is the creation of a random set of genotypes, G(0). These
genotypes are converted to phenotypes through the application of a mapping
function (map). In most cases there isn’t a clear distinction between genotype
and phenotype, so this step is typically omitted. The next step consists on the
evaluation of the individuals. This is performed at the phenotype level using a
fitness function, eval.

The main evolutionary cycle follows. We begin by selecting a set of parents,
using sel. The next step consists in the application of genetic operators, op, such
as crossover and mutation. This operation is performed at the genotype level and
yields a new set of genotypes, G′′(t). The next steps consist in the generation
of the phenotypes and their evaluation. The evolutionary cycle continues until
some termination criterion is met.

We propose evolving the following aspects of the evolutionary algorithm:
mapping function, genetic operators, selection procedure, replacement strategy,
and evaluation function.

3.1 Meta-Evolution

The most obvious approach to the evolution of EC components is the use of
Meta-Evolution.

We are interested in evolving one of the components of EC, for instance the
mapping function, and that we resort to GP to evolve populations of these func-
tions. Each genotype, G

map
i , is an encoding of a candidate mapping function;

once expressed, via mapmap, it results in a phenotype, P
map
i . We need to de-

fine: selmap, opmap and genmap. Like mapmap and evalmap these functions are
static. Therefore, we can use standard GP selection, operators and replacement
strategy. We also need to develop a way to assigning fitness to different mapping
functions, evalmap.

Since we are mainly interested in mapping functions that promote the discov-
ery of good solutions for the original problem we can, for each individual being
evaluated, run an EC algorithm in which P

map
i is used as mapping function. By

changing the GEA presented in figure 1 so that we can pass as arguments one,
or several, of the following functions: map, sel, op, gen and eval, we can use an
evalmap such as the one presented in figure 2. The fitness of each phenotype is
the result of a lower level EC. This result can indicate, for instance: the fitness of
the best individual (at the lower level); the time necessary to reach the optimum;
the average fitness of the last population; etc.

evalmap(P map)
for i = 1 to #(P map) do

F
map

i ← GEA(P map

i)
endfor
return F map

Fig. 2. Meta-level fitness function.

It should be more or less obvious that we can employ the exact same strat-
egy to evolve: sel, op, gen or eval. If we are evolving evaluation functions, the
lower level EC is guided by P eval

i . However, we are interested in a P eval
i which

allows the discovery of individuals which are fit accordingly to some original
fitness function. As such, the return value of GEA should reflect its performance
according to this original function.

The main problem of the architecture presented in this section is its high
computational cost. In the next section we make a brief description of alternative
approaches, which are, potentially, less time consuming.

3.2 Other Approaches

One of the alternatives is to use a standard EC approach in which the each
genotype, Gi is composed by:

– Gsol
i – the encoding of a candidate solution to some original problem, and

– G∆
i – where ∆ is a tuple; each of its elements being an encoding of one of the

following functions {map, sel, op, gen, eval}. Different elements correspond
to different functions.

Likewise, the phenotype of an individual, Pi, is composed by a candidate
solution, P sol

i , and by a set of functions P ∆
i . We designated this approach as

Dual Evolution.
Assuming that map is part of ∆, the phenotype is calculated in two steps.

First, a static mapping function is applied to G∆
i yielding P ∆

i . Then, the mapping
function associated with the individual, P

map
i , is applied to Gsol

i , resulting in
P sol

i . Needless to say, if map is not a part of ∆, a static mapping function is
used. If op is part of ∆, the generation of descendants must be changed. This
can be done pretty much in the same way: apply conventional EC operators to
G∆

i , and apply P
op
i to Gsol

i .
The integration of other elements can pose some problems. Since both com-

ponents, (∆, sol), of the individual share a single fitness value, the evolution of
eval, sel or gen, can easily lead to stagnation. For example, if an individual is
responsible for its own evaluation, then all it must do to dominate the population
is assign himself a extremely high value.

Another alternative to consider is resorting to a co-evolutionary approach,
which can be considered as an intermediate level between the previously de-
scribed approach and Meta-Evolution. In a co-evolutionary approach we would
have one population composed by candidate solutions to a given problem. Each
of the remaining populations would be composed by a specific EC component
that we wish to evolve. This approach, which we deem as very promising, will
be further analyzed in a later opportunity.

4 Experimental Results

In this section we describe the experimental results attained so far, and make its
analysis. To test our ideas we decided to apply meta-evolution to evolve mapping
functions. The task of the lower level GA algorithm is to find the maximum value
of a mathematical function, f(x). This function is defined over the interval [0, 1],
and is the sum of fpeak(x) and fwave(x), which are specified as follows:

fpeak(x) = max(0, |1 − 2|x − peak| − (1 −
1

r
)| × 0.1 × r) (1)

fwave(x) = cos(2π × r × (x − peak)) (2)

fwave creates a sine wave with r repetitions over the [0, 1] interval, returning
values between −1 and 1. By adding fpeak we change the values of one of the
repetitions, making it reach a maximum value of 1.1. In figure 3 we present a
graph of f(x). To increase the complexity of the problem, variable r is set to
100, which means that the wave function repeats itself 100 times in the [0, 1]
interval.

Fig. 3. Test function, r = 5, peak = 0.5

By changing the value of the variable peak we can change the coordinate of
the maximum of f(x). This ability to change the maximum is fundamental. If
this value doesn’t change the GP algorithm could find programs that output a
constant x value corresponding to the maximum of f(x). This isn’t, obviously,
the desired behavior. What we aim to achieve is a GP program that transforms
the search space in a way that helps the GA to find the maximum value. Thus,
for each value of x the GP programs should compute a new value, x′. The re-
organization of the search space induced by the x to x′ transformation should
make the task of finding the optimum easier.

To ensure that it is possible to find a good mapping function we decided to
design one by hand. After some though about the regularities of the function to
be optimized, we were able to develop the following function:

goptimal(x) =
x + floor(frac(x × 10000)× r)

r
(3)

Where frac returns the fractional part. This function has the effect of folding
the space r times, and then expanding it back to [0, 1]. By using this mapping
function the topology of the search space is changed, resulting in a new search
space with a less convoluted fitness landscape. In figure 4 we present a chart of
this mapping function (goptimal(x)), and of the search space resulting from the
application of this mapping (f(goptimal(x))).

Fig. 4. On the left goptimal(x); on the right f(goptimal(x)), r = 5.

4.1 Meta-evolution

Following the model described in 3.1, we use GP to evolve populations of mapping

functions. To assign fitness, we run, for each GP individual, mappingj a GA.
Each GA genotype, Gsol

i , is a binary string of size 50, encoding a value, G′sol
i , in

the [0, 1] interval. The GP individual is used as mapping function for the GA.
The value G′sol

i will be mapped to x′

i (thus, x′

i = mappingj(G
′sol
i)). x′

i is then
used as the x coordinate for the function being optimized by the GA, f , which
was described in the previous section.

In order to get a good estimate of the quality of the mapping functions we
perform 30 runs of the GA for each GP individual. To prevent the specialization
of the GP individuals, the value of peak is randomly chosen at the beginning of
each GA run. The fitness the GP individual is equal to the average fitness of the
best individual of the last population of the low level GA.

We use the following function and terminal sets:

– f-set = {+,−, %,×, f loor, frac}, where % is the protected division.
– t-set = {G′sol

i , 1, 10, 100}, where G′sol
i is a variable holding the value of the

GA genotype that is currently being mapped.

The use of this f-set ensures that the GP system has the possibility of dis-
covering mappings similar to goptimal(x), and thus useful mappings.

The settings for the GP algorithm were the following: Population size =
100; Number of generations 500; Swap-Tree crossover; Generate Random Tree
mutation; Crossover probability = 70%; Mutation probability=20%; Maximum
tree depth = 10.

The settings for the GA where the following: Population size = 100; Number
of generations = 50; Two point crossover; Swap Mutation; Crossover probability
= 70%; Mutation probability={1%, 2.5%, 5%}.

4.2 Results and Analysis

The chart on figure 5 shows the evolution of the fitness of the best individual
during the evolutionary process. An overview of the results shows that the GP
algorithm is able to improve the fitness of the mapping functions. This indicates
that the GP is able to find useful mappings for f(x).

The main objective of our approach is to find a mapping function that con-
sistently improves the performance of the GA algorithm. To evaluate the exper-
imental results we need some reference points. Therefore, we conducted a series
of experiments in which the mapping function was not subjected to evolution.
In these tests we used the following static mapping functions: goptimal, already
described; and gidentity with gidentity(x) = G′sol. These results will be compared
with the ones obtained using as mapping functions the best individuals of each
GP run, gevolved.

Table 1 shows the average fitness of the best individual of the last population
of a traditional GA (Number of generations = 100) using as mapping functions
gidentity , goptimal and gevolved. The results are averages of 100 runs for the static

Average Fitness of Best Generation Individual

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1 10 100 1000

Generation

F
it

n
e
s
s 1%

2.5%

5%

Fig. 5. Evolution of the fitness of the best individual. Averages of 30 independent runs

mappings and of 3000 runs for the evolved mappings (100 runs per each evolved
mapping).

Table 1. Average fitness of the best individual of the last population. The entries in
bold indicate a statistically significant difference between these values and the corre-
sponding gidentity values (α = 0.01).

Mutation gidentity goptimal gevolved

1% 1.02713 1.08763 1.04738

2.5% 1.03442 1.09731 1.07736

5% 1.03995 1.09964 1.09020

As expected using goptimal considerably improves the performance of the al-
gorithm, yielding averages close to the maximum attainable value, 1.1. Table
1 clearly shows that the use of the evolved mapping functions significantly im-
proves the performance of the GA. However, the results attained are inferior to
the ones achieved using goptimal. This difference diminishes as the mutation rate
increases.

To get a better grasp of how the use of the evolved mapping functions alter
the GA, we present, in figure 6, the evolution of the fitness of the best individual
during the GA run.

The most striking difference between the curves for evolved and static map-
pings is that: for static mappings the fitness increases abruptly in the first gen-
erations, stagnating for the remainder of the run; with the evolved mappings the
fitness increases steadily during the entire run. An analysis of the evolution of
the average fitness of the GA populations gives insight to how the evolved map-
pings are improving the GA performance. As figure 7 shows, the use of evolved
mappings decreases significantly the average fitness of the populations. These
results, in combination with the ones presented in figure 6, indicate that the

Mutation 1%

1

1.02

1.04

1.06

1.08

1.1

0 20 40 60 80 100
Generation

F
it
n
e
s
s

Identity Optimal Evolved

Mutation 2.5%

1

1.02

1.04

1.06

1.08

1.1

0 20 40 60 80 100
Generation

F
it
n
e
s
s

Identity Optimal Evolved

Mutation 5%

1

1.02

1.04

1.06

1.08

1.1

0 20 40 60 80 100
Generation

F
it
n
e
s
s

Identity Optimal Evolved

Fig. 6. Evolution of the fitness of the best individual.

evolved mappings improve the performance of the GA by promoting phenotypic
diversity, preventing the early stagnation of the GA runs.

Mutation 1%

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Generation

F
it
n
e
s
s

Identity Optimal Evolved

Mutation 2.5%

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Generation

F
it
n
e
s
s

Identity Optimal Evolved

Mutation 5%

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Generation

F
it
n
e
s
s

Identity Optimal Evolved

Fig. 7. Evolution of the average fitness of the GA populations.

The evolved mappings aren’t similar to goptimal, which can’t be considered
surprising. As is often the case when analyzing the results of a GP program, it
isn’t clear how the evolved mappings solve the problem of improving the GA
performance. The charts suggest that reducing the number of GA generations
used in the GP fitness assignment procedure, thus increasing the difficulty of the
evolved mappings task, may lead to mappings closer to goptimal. Additionally,
taking into account the average of the GA populations when assigning a fitness
value for the GP individuals may also prove useful to achieve mappings closer
to goptimal.

5 Conclusions and Further Work

In this paper we discussed the extension of the canonical EC algorithm, pre-
senting a formalization. The proposed changes involve the evolution of several
components of EC which are typically static. The evolution of these compo-
nents may prove useful in improving the EC performance, lessen the burden of
researchers, and provide meaningful clues about the characteristics of the prob-
lems being solve.

The attained results are promising, and provide indications for the improve-
ment of the approach. Future research will include: making a wider set of ex-

periments; applying the proposed approach to a different set of domains; using
dual evolution and co-evolution to evolve EC components.

References

1. Banzhaf, W.: Genotype-phenotype-mapping and neutral variation – A case study
in genetic programming. In Davidor, Y., Schwefel, H.P., Männer, R., eds.: Parallel
Problem Solving from Nature III. Volume 866., Jerusalem, Springer-Verlag (1994)
322–332

2. Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Com-
putational Intelligence: A Dynamic Systems Perspective. IEEE Press (1995)

3. Angeline, P.J., Pollack, J.B.: Coevolving high-level representations. In: Artificial
Life III. Volume XVII of SFI Studies in the Sciences of Complexity. (1994) 55–71

4. Altenberg, L.: The evolution of evolvability in genetic programming. In Kinnear,
K.E., ed.: Advances in Genetic Programming. MIT Press, Cambridge, MA (1994)
47–74

5. Altenberg, L.: Evolving better representations through selective genome growth.
In: Proceedings of the 1st IEEE Conference on Evolutionary Computation. Part 1
(of 2), Piscataway N.J., IEEE (1994) 182–187

6. Altenberg, L.: Genome growth and the evolution of the genotype-phenotype map.
In Banzhaf, W., Eeckman, F.H., eds.: Evolution as a Computational Process.
Springer-Verlag, Berlin (1995) 205–259

7. Dawkins, R.: The evolution of evolvability. In Langton, C.G., ed.: Artificial Life,
SFI Studies in the Sciences of Complexity. Volume VI., Addison-Wesley (1989)
201–220

8. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies
for an evolutionary design problem. In Banzhaf, W., Daida, J., Eiben, A.E., Gar-
zon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proceedings of the Genetic
and Evolutionary Computation Conference. Volume 1., Orlando, Florida, USA,
Morgan Kaufmann (1999) 35–43

9. Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proc. of the
Fourth Annual Conference on Evolutionary Programming, Cambridge, MA, MIT
Press (1995) 367–384

10. Angeline, P.J.: Two self-adaptive crossover operators for genetic programming. In:
Advances in Genetic Programming 2. MIT Press, Cambridge, MA, USA (1996)
89–110

11. Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation.
CPM Report 98-32, Centre for Policy Modelling, Manchester Metropolitan Uni-
versity, UK, Aytoun St., Manchester, M1 3GH. UK (1998)

12. Kantschik, W., Dittrich, P., Brameier, M., Banzhaf, W.: Meta-evolution in graph
GP. In: Genetic Programming: Second European Workshop EuroGP’99, Berlin,
Springer (1999) 15–28

