
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Binary Merge Model Representation of the Graph
Colouring Problem

I. Juhos, A. Tóth, J.I. van Hemert

REPORT SEN-E0409 AUGUST 2004

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Binary Merge Model Representation of the Graph
Colouring Problem

ABSTRACT
This paper describes a novel representation and ordering model that, aided by an evolutionary
algorithm, is used in solving the graph k-colouring problem. Its strength lies in reducing the
number of neighbors that need to be checked for validity. An empirical comparison is made with
two other algorithms on a popular selection of problem instances and on a suite of instances in
the phase transition. The new representation in combination with a heuristic mutation operator
shows promising results.

2000 Mathematics Subject Classification: 90C27
1998 ACM Computing Classification System: I.2.8, F.2.2
Keywords and Phrases: graph colouring;evolutionary computation;phase transition
Note: Published in Evolutionary Computation in Combinatorial Optimization (2004), pages 124-134.

Binary Merge Model Representation of the

Graph Colouring Problem

István Juhos1, Attila Tóth2, and Jano I. van Hemert3

1 Dept. of Computer Algorithms and Artificial Intelligence, University of Szeged
2 Department of Computer Science, University of Szeged (jgytfk)

3 National Institute for Mathematics and Computer Science, Amsterdam (cwi)

Abstract. This paper describes a novel representation and ordering
model that, aided by an evolutionary algorithm, is used in solving the
graph k-colouring problem. Its strength lies in reducing the number of
neighbors that need to be checked for validity. An empirical comparison
is made with two other algorithms on a popular selection of problem
instances and on a suite of instances in the phase transition. The new
representation in combination with a heuristic mutation operator shows
promising results.

1 Introduction

Constraint satisfaction problems form a well studied class of problems [1]. Within
this class the graph k-colouring problem is one of the most popular problems.
The second dimacs challenge [2] has been devoted to it, which has led to a
standard file format for representing problem instances. Here we will use this file
format, together with problem instances from the challenge.

In this paper we introduce a novel approach to representing candidate so-
lutions for the graph k-colouring problem in an evolutionary algorithm. The
approach is based on effective reduction rules. The order in which these reduc-
tion rules are executed determines the quality of the solution. This order will be
determined by an evolutionary algorithm.

To show that the approach based on reduction rules has a performance that
is competitive with other approaches, we perform a comparison with two algo-
rithms that are known to perform well. The comparison is based on the effec-
tiveness and efficiency of the algorithms.

The structure of the remainder of the paper is as follows. In the next section
we give a definition and short overview of graph k-colouring. In Section 3, we
introduce the new representation. This will be incorporated into an evolutionary
algorithm described in Section 4, which we will compare empirically to other
methods in Section 5. In Section 6 we provide conclusions.

2 Graph k-colouring

The problem class known as graph k-colouring is defined as follows, given a graph
〈V, E〉 where V = {v1, ..., vn} is a set of nodes and E = {(vi, vj)|vi ∈ V ∧ vj ∈
V ∧ i 6= j} is a set of edges, where every edge lies between two nodes. The graph

k-colouring problem is to colour every node in V with one of k colours such that
no two nodes connected with an edge in E have the same colour.

Many algorithms to solve this problem were created and studied. Early al-
gorithms are complete, i.e., they always find a solution if one exists. However,
it was proven that such algorithms exhibit an exponential effort to either find
a solution or proof that no solution exists, when the problem is scaled up. As
a result many algorithms studied today use a stochastic process to guide them
towards suboptimal solutions or, hopefully, towards an optimal solution. Exam-
ples of such methods include Tabu-search [3], simulated annealing [4] and ant
colony optimisation [5].

One popular approach for dealing with graph k-colouring is evolutionary
computation [6] Unfortunately, evolutionary algorithms are not necessarily very
good in solving constraint satisfaction problems [7] as they may suffer from
a number of flaws that keeps them from reaching optimal solutions [8]. One
problem that is appropriate for graph k-colouring is when the problem at hand
contains symmetry [9]. For the latter, symmetry is defined as the invariance
to the solution when permuting he colours. Besides symmetry, other structural
properties make it difficult to find solutions efficiently. As we know that graph k-
colouring exhibits a phase transition depending on the ratio of constraints to the
maximum number of possible constraints

(

n
2

)

[10], where the number of solvable
problem instances quickly drops to zero. At that transition constraint solvers
require the most search effort to find solutions for solvable problem instances.
Recent investigations [11] have shown that the size of the backbone in graph
k-colouring may be a good explanation towards explaining the rise in difficulty
at the phase transition.

3 Representing the Graph k-Colouring Problem

3.1 Binary Merge Model

Graph colouring algorithms make use of adjacency checking during colouring,
which plays a significant role in performance. The number of checks depends on
the representation of the problem. The model introduced here directly addresses
this issue. Generally, when assigning a colour to a node all adjacent nodes must
be scanned to check for an equal colouring, i.e., constraint check needs to be
performed. Thus, we have to perform at least as many checks as the number
of coloured neighbours and at most as many as |V | − 1. In the new model, this
number of checks is between one and the number of colours used up to this point.

The Binary Merge Model (bmm) implicitly uses hyper-nodes and hyper-edges
(see Figure 1(b)). A hyper-edge connects a hyper-node with other nodes, regard-
less whether it is normal or hyper. A hyper-node is a set nodes that have the
same colour. If h is a hyper-node and v is a normal node that are connected by a
hyper-edge then, and only then, h contains at least one normal node connected
to v. Our algorithm concentrates on the relation between hyper-nodes and nor-
mal nodes. Thus, the adjacency checks can be done along hyper-edges instead of
edges, whereby we spare many checks because during colouring, the initial set
of edges is folded into hyper-edges.

The colouring of a graph is stored in a Binary Merge Table (bmt) (see Fig-
ure 2). Every cell (i, j) in this table takes as value either 0 or 1. The columns
refer to the nodes and the rows refer to the colours. The value in cell (i, j) is
1 if and only if node j cannot be assigned colour i because of the edges in the
original graph 〈V, E〉. In the initial colouring every node is assigned a unique
colour by setting the (i, i) cells to 0.

If the graph is not a full graph, then it might be possible to decrease the
number of necessary colours. This amounts to reducing rows in the bmt. To
make reduction of the rows possible we introduce a Binary Merge Operation,
which attempts to merge two rows whereby reducing the number of colours with
one. It is successful only when the two nodes are not connected by an edge or
by a hyper-edge. An example is found in Figure 1(b) and the related Figure 2.

Definition 1. Binary Merge Operation ∪ merges an initial row i to an arbitrary
(initial or merged) row r if and only if (r, i) = 0 (i.e., the hyper-node r is not
connected to the node i) in bmt. If rows i and r can be merged then the result
is the union of i and r.

Formally, let I be the set of initial rows of bmt and R be the set of all possible
|V | size binary rows (vectors), then a binary merge operation is defined as,

∪ : R × I → R

r′ := r ∪ i, where r′, r ∈ R, i ∈ I, or by components

r′k := rk ∨ ik, k = 1, . . . , |V |, where ∨ is the logical OR operator

Regarding the time complexity of this operation, we can say that it is pro-
portional to a binary or operation on a register of l bits. If l is the number of
bits in one such operation and under assumption that the time complexity of
that operation is one, the merge of two rows of length n by l length parts takes
⌈n/l⌉ to complete. If m is the number of rows left in mt, then n − m binary
merge operations are performed, where m ∈ {χ, . . . , n}.

3.2 Permutation Binary Merge Model

The result, i.e., the colouring of a graph, after two or more binary merge opera-
tions, depends on the order in which these operations were performed. Consider
the hexagon in Figure 1(a). In Figure 2 the bmts are shown that correspond
to the graphs in Figure 1. Now let the sequence of the rows 1, 4, 2, 5, 3, 6 be the
order in which rows are considered for the binary merge operation and consider
the following merging procedure. Take the first two rows in the sequence, then
attempt to merge row 4 with row 1. As these can be merged the result is 1 ∪ 4
(see Figure 1(b)). Now take row 2 and try to merge this with the first row, i.e.,
(1 ∪ 4). This is unsuccessful, so row 2 remains unaltered. The merge operations
continues with the next rows 5, 3, and finally, 6. The allowed merges are 1 ∪ 4,
2 ∪ 5, and 3 ∪ 6. This sequence of merge operations results in the 3-colouring of
the graph depicted in Figure 1(c). However, if we use the sequence 1, 3, 5, 2, 4, 6
then the result is the 2-colouring in Figure 1(d) with the merges 1∪3, (1∪3)∪5,
2 ∪ 4, and (2 ∪ 4) ∪ 6. The defined merge is greedy, it takes a row and tries to

find the first row from the top of the table that it can merge. The row remains
unaltered if there is no suitable row. After performing the sequence P of merge
operations, we call the resulting bmt the merged bmt.

x
5

x
3

x
6

x
1

x
2

x
4

a
a
a

a
a
a

aaaaaaaaaaaaaaaa

(a)
Hexagon
graph

x
5

x
3

x
6

x
1

x
2

x
4

a
a
a

a
a
a

(b) x1 ∪ x4

x
1

x
4

x
3

x
6

x
5

x
2

(c)
3-colouring

x
6

x
2

x
4

x
5

x
3

x
1

(d)
2-colouring

Fig. 1. Example of the result of two different merge orders. Double-lined edges are
hyper-edges and double-lined nodes are hyper-nodes.

(a) x1 x2 x3 x4 x5 x6

r1 0 1 0 0 0 1
r2 1 0 1 0 0 0
r3 0 1 0 1 0 0
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 0 0 1 0

(b) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 1 0 1 0 0 0
r3 0 1 0 1 0 0
r5 0 0 0 1 0 1
r6 1 0 0 0 1 0

(c) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 ∪ r5 1 0 1 1 0 1
r3 ∪ r6 1 1 0 1 1 0

(d) x1 x2 x3 x4 x5 x6

r1 ∪ r3 ∪ r5 0 1 0 1 0 1
r2 ∪ r4 ∪ r6 1 0 1 0 1 0

Fig. 2. The Binary Merge Tables that correspond to the graphs in Figure 1

Finding a minimal colouring for a graph k-colouring problem using the bmt
representation and binary merge operations comes down to finding the sequence
of merge operations that leads to that colouring. This can be represented as
a sequence of candidate reduction steps using the greedy approach described
above. The permutations of this representation form the Permutation Binary
Merge Model. We proof that this model is a valid representation of the graph
k-colouring problem, i.e., that any valid k-colouring can be represented with it.

Lemma 1 (Equivalence). An arbitrary valid k-colouring of a graph G can be
associated with a merged Binary Merge Table.

Proof (constructive). Consider a k×n bmt, where n is the number of the nodes
and k is the number of colours used in the colouring. Let a cell (c, i) = 1 if
and only if node i has an adjacent node that is coloured with c, otherwise let it
contain 0.

Lemma 2 (Solvability). If O is an optimal colouring of the graph G, i.e.,
it uses the k colours, then there exists a sequence of merge operations P that
reduces the initial Binary Merge Table such that O is obtained by P .

Proof (constructive). Suppose O is an optimal solution. Construct a merged bmt
B according to O, this exists because of Lemma 1. The binary merge operation
is reversible if we keep track of the merges. Let this reverse operation be called
“unmerge”. Unmerge all merged rows in B until the number of rows is equal to
the number of nodes of G. At first, apply unmerge to the last row of B as many
times as it contains nodes. Then, continue to unmerge the previous row and so
on. By applying the unmerge operation sequences we get a sequence of merge
operators P that leads back to O. Note that there may exist several sequence that
lead to O because unmerge can be applied in any optional order.

4 Evolutionary algorithm to guide PBMM

The search space of the model in Section 3.2 is of size n! and contains many
local optima. We use an evolutionary algorithm (pbmm-ea)4 to search through
the space of permutations. The genotype is thus the permutations of the rows.
The phenotype is a valid colouring of the graph after using the greedy method
on the permutation to select the order of binary merge operations.

An intuitive way of measuring the quality of an individual p in the population
is by counting the number of rows remaining in the final bmt. This equals to
the number of colours k(p) used in the colouring of the graph, which needs to be
minimised. If we know that the optimal colouring is χ then we may normalise
this fitness function to g(p) = k(p) − χ.

This function gives a rather low diversity of the individuals in a population
because it cannot distinguish between two individuals that use an equal number
of colours. We address this problem by introducing a new multiplier. This mul-
tiplier is based on the heuristic that we want to get rid of highly constraint rows
in order to have more chance of successful merges later. This involves merges of
rows where many 1s are merged. Let z(p) denote the number of 1s in the final
bmt B then the fitness function becomes f(p) = (k(p) − χ)z(p).

We use a steady-state evolutionary algorithm with 2-tournament selection,
which incorporates elitism. The stop condition is that either an individual p exists
with f(p) = 0 or that the maximum number of 3 000 generations is reached.
The latter means that the run was unsuccessful, i.e., the optimal colouring was
not found. The population size depends on the problem and will be set in the
experiments.

Two variation operators are used to provide offspring. First, the 1-point
order-based crossover (ox1) [13, in Section C3.3.3.1] is applied. Second, the
other variation operator is a mutation operator. We test two different mutation
operators yielding two variants of the evolutionary algorithm. The probability of
crossover depends on the choice of mutation operator. During tuning, we tried
probabilities from 0 to 1 in several combinations. In case of dgs mutation, the
results showed that a higher probability of mutation and a lower probability of
crossover lead to better solutions.

pbmm-ea/swap This variant first applies with a probability of 0.6 ox1 and
then with a probability of 0.3 the simple swap mutation, which selects at
random two different items in the permutation and then swaps them.

4 pbmm-ea is developed using the eo [12] framework

pbmm-ea/dgs Difficulty Guided Swap. This variant applies with a probability
of 0.3 ox1 and then always applies a heuristic mutation operator that is sim-
ilar to the simple swap mutation, but it always chooses a node related to the
last merged row and forces it to be ahead of its position in the permutation.
To accomplish this it chooses at random a previous row identifier for swap.
The idea being that these last merged rows are the most difficult to merge.

5 Empirical comparison

5.1 Benchmark algorithms

Stepwise Adaptation of Weights saw is put forth in [6] as a very promising tech-
nique for colouring graph 3-colouring problems by showing its competitiveness
against an early version of dsatur and the Grouping Genetic Algorithm by
Falkenauer [14]. We provide a brief overview of the concept of saw and refer to
[6] for a detailed description of the algorithm and specific versions of it.

The basic idea behind saw is to learn on-line about the difficulty of con-
straints in a problem instance. This is achieved by keeping a vector of weights
that associates the weight wi with constraint i. In the context of graph k-
colouring every edge i ∈ E is assigned a weight wi. These weights are initialised
as one. A basic evolutionary algorithm is used to solve a given problem instance.
Every T generations it is interrupted in order to change the vector of weights
using the best individual of the current population. Every constraint i violated
by this individual is incremented by one. Then, the evolutionary algorithm con-
tinues using this new vector. The fitness of an individual equals the sum of the
weights of all the constraints it violates. By adapting this fitness function using
the vector of weights, a dynamic process occurs that may prevent the evolution-
ary algorithm to get stuck in local optima. The saw-ea is the same version as
described in [6].

clq-dsatur is an improvement [15] over the original dsatur, which orig-
inates from Brélaz [16]. It uses a heuristic to dynamically change the ordering
of the nodes and then applies the greedy method to colour the nodes. It works
as follows, one node with the highest saturation degree, i.e., number of adjacent
colours, is selected from the uncoloured subgraph and it is assigned the lowest in-
dexed colour that still yields a valid colouring. If there exists more than one most
saturated nodes, the algorithm chooses a node with the highest degree among
them. At first clq-dsatur tries to find the largest clique, i.e., the subgraph that
is a full-graph, in the graph. It allocates different colours for the nodes in the
clique. Then, uncoloured nodes are dynamically ordered by saturation of colour
and subproblems are created as in the original dsatur algorithm. This uses
backtracking to discover a valid colouring. More details about this algorithm is
found in [17].

5.2 Means of comparisons

The performance of an algorithm is expressed in its effectiveness and its efficiency
in solving a problem instance. The first is measured using the success ratio, which

is the amount of runs where an algorithm has found the optimum divided by
the total number of runs. The second is measured by keeping track of how many
constraint checks are being performed on average, for a successful run. This
measure is independent of hardware and programming language as it counts the
number of times an algorithm requests information about the problem instance,
e.g., it checks if an edge exists between two nodes in the graph. This check, or
rather the number of times it is performed, forms the largest amount of time
spend by any constraint solver. A constraint check is defined for each algorithm
as checking whether the colouring of two nodes is allowed (satisfied) or not
allowed (violated).

The two variants of pbmm-ea and the saw-ea are both stochastic algorithms.
Therefore we perform 10 independent runs with different random seeds for each
problem instance. The number of constraint checks are averaged over these 10
runs. The complete method clq-dsatur suffices with 1 run.

5.3 DIMACS Challenge

We would like to present the performance of the pbmm-ea variants on differ-
ent kinds of real life problem instances. The test suite consists from problem
instances taken from “The Second dimacs Challenge” [2] and Trick’s graph
colouring repository [18]. In Table 1 we show the results for 34 problem in-
stances.

The second goal is to test the supposed benefit of the difficulty guided muta-
tion operator over the simple swap mutation. For all runs we set the population
size for the pbmm-ea variants to two, but for the queens instances this gives
very poor results due to the equal degree in the graph, which is also visible for
the benchmark algorithm. Consequently we increase the population size to 12
for queen6 6 and to 70 for queen7 7 and queen8 8 to show the difference on such
graph structures. This sets a guideline for the next test suite.

For large graphs the pbmm-ea variants are much faster than the clq-dsatur
and saw-ea. The two pbmm-ea variants do not differ significantly except for
the miles and queens graphs where the difficulty guided swap variant shows
its improvement over the simple swap mutation. Also, the latter is not able to
always find a solution for two of the queen graphs.

5.4 Phase transition

To test the algorithms on really difficult graphs, we generate, using Culberson’s
generator [10], a test suite of 3-colourable graphs with 200 nodes that show
a phase transition. The graphs are equipartite, i.e., for each colour the same
amount of nodes, to some approximation, will be coloured. It consists of 9 groups
of graphs where each group has 25 instances. The connectivity is changed from
0.020 to 0.060 by steps of 0.005 over the groups. The population size for pbmm-
ea/dgs is set to 100 for these difficult graphs.

In Figure 3 we show the results for saw-ea, pbmm-ea/dgs and clq-dsatur.
The latter is clearly the most useful algorithm as it always finds a solution and
it takes the least number of constraint checks to do so. The results for the three

Table 1. Average number of constraint checks required for solving various problem
instances using clq-dsatur, saw-ea, pbmm-ea/swap and pbmm-ea/dgs. Entries with
“–” refer to where the algorithm never found the chromatic number, in all other cases
the success ratio is one. The last three entries are used to show the difference in the
two mutation operators.

clq- pbmm-ea
Graph |V | |E| χ dsatur saw swap dgs

fpsol2.i.1 496 11 654 65 1 311 037 49 028 13 831 17 793
fpsol2.i.2 451 8 691 30 1 078 861 1 745 560 12 196 11 513
fpsol2.i.3 425 8 688 30 973 200 1 414 220 69 964 10 276
inithx.i.1 864 18 707 54 3 640 097 155 996 15 552 21 490
inithx.i.2 645 13 979 31 2 328 921 739 201 8 447 12 475
inithx.i.3 621 13 969 31 2 150 844 304 910 9 725 12 135
mulsol.i.1 197 3 925 49 292 942 6 265 5 964 8 525
mulsol.i.2 188 3 885 31 229 907 21 707 4 110 5 667
mulsol.i.3 184 3 916 31 224 934 51 042 4 874 5 619
mulsol.i.4 185 3 946 31 228 474 128 130 4 084 5 606
mulsol.i.5 186 3 973 31 232 835 11 120 4 141 5 536
zeroin.i.1 211 4 100 49 289 622 13 165 6 670 8 040
zeroin.i.2 211 3 541 30 289 191 65 053 11 870 4 942
zeroin.i.3 206 3 540 30 277 504 52 493 22 556 11 197
anna 138 493 11 89 024 15 579 2 903 1 242
david 87 406 11 34 557 56 872 9 957 2 493
homer 561 1 629 13 1 484 278 11 906 400 71 572 5 038
huck 74 301 11 25 783 1 210 788 1 015
jean 80 254 10 29 939 11 390 746 949
miles250 128 387 8 76 961 983 894 21 556 3 051
miles500 128 1 170 20 89 025 9 724 950 191 011 20 398
miles750 128 2 113 31 136 866 7 922 930 946 683 103 376
miles1000 128 3 216 42 462 986 15 476 000 1 551 235 164 312
miles1500 128 5 198 73 404 051 886 155 167 487 67 721
myciel3 11 20 4 798 32 49 73
myciel4 23 71 5 4 273 135 120 186
myciel5 47 236 6 22 104 447 265 447
myciel6 95 755 7 117 163 5 920 708 955
myciel7 191 2 360 8 638 536 52 997 4 074 3 245
games120 120 638 9 101 070 3 227 1 492 1 926
queen5 5 25 160 5 8 797 8 835 4 630 2 000

queen6 6 36 290 7 202 170 – 740 550 139 711
queen7 7 49 476 7 1 015 209 3 195 320 6 326 9121 744 273
queen8 8 64 728 9 57 989 844 – 30 412 7792 9 558 255

1 success ratio of 0.9
2 success ratio of 0.4

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 300 400 500 600 700 800

su
cc

es
s

ra
tio

average number of edges in the graph

SAW
PBMM-EA/DGS

(a) Success ratio, note that clq-
dsatur always finds a solution

-5e+07

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

 300 400 500 600 700 800

nu
m

be
r

of
 c

on
st

ra
in

t c
he

ck
s

average number of edges in the graph

SAW
PBMM-EA/DGS

CLQ-DSATUR

(b) Average number of constraint
checks with 95% confidence intervals

Fig. 3. Results for 225 random equipartite graph 3-colouring problems of size 200 where
for each problem instance 10 independent runs are performed

algorithms in Figure 3(b) are significantly different and allow us to make a clear
ranking on efficiency for the three algorithms.

Both evolutionary algorithms show a sharp dip in the success ratio in the
phase transition (see Figure 3(a)), which is accompanied with a rise in the aver-
age number of constraint checks. pbmm-ea/dgs starts out over 34 times faster
than saw-ea. When the number of edges increases this difference decreases to
7 times as fast. clq-dsatur seems to have the least problems with this phase
transition. However, it shows a sudden rise in constraint checks at 814 edges.

6 Conclusions

We introduced a new model to tackle the graph k-colouring problem that serves
as an efficient representation that helps to reduce constraint checks. We verify
this efficiency by embedding it in an evolutionary algorithm and performing an
empirical comparison on two test suites. The results from the first test suite
show a performance in speed and accuracy that is quite favourable, especially
on the large real world problem instances with more than 400 nodes. However in
the second test, where we look at equipartite graphs in the phase transition, the
success ratio shows the typical dip we often observe for stochastic algorithms.

Set against one other popular evolutionary algorithm for constraint satis-
faction, the stepwise adaptation of weights method, and against an improved
version of a popular complete method, clq-dsatur, the model combined with
an evolutionary algorithm that also uses a heuristically guided mutation oper-
ator yields promising results. For larger problem instances it is even up to 50
times faster than saw-ea and clq-dsatur. For difficult equipartite graphs, i.e.,
that lie in the peak of the phase transition, it is slower and less effective than
clq-dsatur, but it is much faster than saw-ea.

The benefits of the new representation depend highly on the quality of the
evolutionary algorithm that is guiding it and the structure of the graph. Further
work is needed to tune this evolutionary algorithm and to map the performance
against different graph properties.

Acknowledgements

We would like to thank Tezuka, Masaru and Phillip Tann for their collaboration
in the first version of the model [19], to Michele Sebag, École Polytechnique
and János Csirik, University of Szeged for valuable suggestions, and to Marc
Schoenauer for his help with the eo library [12]. This work was supported by the
Hungarian National Information Infrastructure Development Program through
High Performance Supercomputing as the project cspai/1066/2003-2004.

References

1. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)
2. Johnson, D., Trick, M.: Cliques, Coloring, and Satisfiability. American Mathemat-

ical Society, dimacs (1996)
3. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-

puting 39 (1987) 345–351
4. Chams, M., Hertz, A., Werra, D.D.: Some experiments with simulated annealing

for coloring graphs. European Journal of Operational Research 32 (1987) 260–266
5. Vesel, A., Zerovnik, J.: How good can ants color graphs? Journal of computing

and Information Technology - cit 8 (2000) 131–136
6. Eiben, A., van der Hauw, J., van Hemert, J.: Graph coloring with adaptive evolu-

tionary algorithms. Journal of Heuristics 4 (1998) 25–46
7. van Hemert, J.: Comparing classical methods for solving binary constraint satis-

faction problems with state of the art evolutionary computation. In et al., S.C.,
ed.: Applications of Evolutionary Computing. Volume 2279 of lncs. (2002) 81–90

8. van Hemert, J., Bäck, T.: Measuring the searched space to guide efficiency: The
principle and evidence on constraint satisfaction. In et al., J.M., ed.: Proceedings
of Parallel Problem Solving from Nature VII. Number 2439 in lncs (2002) 23–32

9. Marino, A., Damper, R.: Breaking the symmetry of the graph colouring problem
with genetic algorithms. In Whitley, D., ed.: Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference. (2000) 240–245

10. Culberson, J.: Iterated greedy graph coloring and the difficulty landscape. Tech-
nical Report tr 92-07, University of Alberta, Dept. of Computing Science (1992)

11. Culberson, J., Gent, I.: Frozen development in graph coloring. Theoretical Com-
puter Science 265 (2001) 227–264

12. Keijzer, M., Merelo, J., Romero, G., Schoenauer, M.: Evolving objects library.
Internet Publication (2002)

13. Bäck, T., Fogel, D., Michalewicz, Z., eds.: Handbook of Evolutionary Computation.
Institute of Physics Publishing Ltd, Bristol and Oxford University Press, New York
(1997)

14. Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley (1998)
15. Trick, M.: Easy code for graph coloring. Internet Publication (1995) Last Modified:

November 2, 1994.
16. Brélaz, D.: New methods to color the vertices of a graph. Communications of the

acm 22 (1979) 251–256
17. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.

informs Journal on Computing 8 (1996) 344–354
18. Trick, M.: Computational series: Graph coloring and its generalizations (2003)

http://mat.gsia.cmu.edu/COLORING03.
19. Juhos, I., Tóth, A., Tezuka, M., Tann, P., van Hemert, J.: A new permutation

model for solving the graph k-coloring problem. In: Kalmár Workshop on Logic
and Computer Science. (2003) 189–199

