
Multiple Sequence Alignment Using SAGA:
Investigating the Effects of Operator Scheduling,

Population Seeding, and Crossover Operators

René Thomsen and Wouter Boomsma

Bioinformatics Research Center (BiRC)
Department of Computer Science

University of Aarhus
Ny Munkegade, Bldg. 540.

DK-8000 Aarhus C, Denmark
{thomsen,wb}@daimi.au.dk

Abstract. Multiple sequence alignment (MSA) is a fundamental prob-
lem of great importance in molecular biology. In this study, we inves-
tigated several aspects of SAGA, a well-known evolutionary algorithm
(EA) for solving MSA problems. The SAGA algorithm is important be-
cause it represents a successful attempt at applying EAs to MSA and
since it is the first EA to use operator scheduling on this problem. How-
ever, it is largely undocumented which elements of SAGA are vital to its
performance. An important finding in this study is that operator schedul-
ing does not improve the performance of SAGA compared to a uniform
selection of operators. Furthermore, the experiments show that seed-
ing SAGA with a ClustalW-derived alignment allows the algorithm to
discover alignments of higher quality compared to the traditional initial-
ization scheme with randomly generated alignments. Finally, the exper-
imental results indicate that SAGA’s performance is largely unaffected
when the crossover operators are disabled. Thus, the major determinant
of SAGA’s success seems to be the mutation operators and the scoring
functions used.

1 Introduction

During the last decades, the amount of available biological sequence data (DNA,
RNA, and proteins) has increased exponentially. This wealth of new informa-
tion requires automated methods that can assist practitioners in the process of
analyzing and interpreting the data. Valuable tools in this context are multiple
sequence alignment (MSA) programs, which allow for the comparison of multiple
sequences.

Among the vast number of possible applications, MSAs can be used to (i)
infer phylogenetic relationships of organisms, (ii) discover conserved motifs that
might be of great importance on the levels of transcription, translation, or struc-
ture/function, and finally (iii) assist secondary and tertiary structure prediction
methods.



Initially, the most popular methods for obtaining MSAs used dynamic pro-
gramming (DP) because DP can guarantee a mathematically optimal alignment
given the commonly used sum-of-pairs (SOP) scoring function [1]. However, DP-
based methods can only handle a relatively small number of sequences because
the size of the lookup table increases dramatically with the number of sequences
in the alignment and their length. In fact, finding the optimal MSA solution wrt.
the SOP score is known to be NP-hard [2].

In order to solve larger problem instances several heuristics have been intro-
duced. The most popular heuristic is ClustalW [3], an algorithm that belongs
to the class of progressive alignment methods [4]. These methods gradually con-
struct an alignment by first estimating the evolutionary distance between all
sequences to be aligned and then aligning the sequences in order of decreasing
similarity. Although the progressive methods are very fast they typically suf-
fer from entrapment in local optima because they optimize the alignment in a
pairwise manner, not taking the entire alignment into account.

To overcome this problem several stochastic heuristics have been applied to
MSA, such as simulated annealing [5] and evolutionary algorithms (EAs) [6, 7].
Typically, these methods start with randomly generated candidate alignments
that are gradually improved using several variation operators.

SAGA (Sequence Alignment by Genetic Algorithm) [6] introduced the idea
of operator scheduling (OS) for MSA based on the assumption that the schedul-
ing of the operators would improve the overall performance of the algorithm.
However, our preliminary experiments with several OS schemes on MSA using
the MSAEA [9] did not indicate any improvements for OS compared to choosing
the operators randomly with a uniform probability. More specifically, these ob-
servations raised the question of whether OS has any effect at all when applied
to EAs for MSA.

Moreover, Thomsen et al. [8, 9] investigated the effects of seeding an EA with
a ClustalW-derived solution. The experimental results indicated that seeding the
EA resulted in a marked improvement in runtime needed to derive solutions of
high quality. Furthermore, it was shown that the resulting alignments were sig-
nificantly better than the ClustalW seed, making the EA useful as an alignment
improver.

These findings motivated us to investigate the following aspects of SAGA:
(i) operator scheduling compared to uniform choice of variation operators, (ii)
seeding the initial population with a ClustalW-derived alignment compared to
random initialization, and finally (iii) the effect of crossover operators compared
to using mutation only. These investigations were conducted on selected MSA
benchmark problems obtained from the BAliBASE sequence alignment database
[10].

The experimental results show that operator scheduling does not improve
the overall performance of SAGA compared to a uniform selection of operators.
Moreover, the results indicate that SAGA is able to obtain better results using
seeds compared to random initialization given the same number of fitness eval-



uations. Finally, the use of crossover operators did not generally increase the
performance.

2 SAGA

In 1996 Notredame and Higgins introduced SAGA [6], one of the first evolution-
ary algorithms (EAs) for MSA. Basically, SAGA resembles a standard EA with
a population of candidate alignments (individuals) that are subjected to varia-
tion and selection. During selection the individuals compete for survival and the
most promising ones are transferred to the next generation. Contrary to other
EAs solving MSA, SAGA provides a total of 25 variation operators (19 mutation
and 6 crossover) with a variety of functionality, such as modifying gap regions
(adding, deleting, moving gaps) and combining promising regions. A complete
description of the operators is beyond of the scope of this paper, see [6] for a
detailed description. The default initialization mode in SAGA is to randomly
initialize all individuals by prefixing a randomly chosen number of gaps to each
sequence.

SAGA differs from all other MSA algorithms regarding the utilization of the
operators. It uses an operator scheduling (OS) strategy originally described by
Davis in 1989 [11] to select which operators to use. The OS strategy works as fol-
lows: Each operator is assigned a probability for its application. Initially, these
probabilities are all equal, but during the course of the run they are adapted
based on the recent performance of the operator. Operators are rewarded when
they create an individual with a fitness greater than any of the current individ-
uals in the population. Furthermore, operators responsible for the individuals’
parents and more distant ancestors are rewarded with some percentage of the
original reward. This is motivated by the fact that a series of suboptimal solutions
is often necessary in order to reach a new optimal solution and corresponding
operators therefore should be rewarded. With certain intervals, a new proba-
bility setting is computed as a weighted sum of the previous setting and the
distribution of rewards among the operators.

The motivation for using OS in SAGA is that it is difficult to determine in
advance which of the 25 operators to apply. The problem gets more complicated
since the utilization of each operator might depend on the actual alignment
problem being solved and optimal usage of operators might change during the
course of the optimization run. The idea is that by measuring the performance
of operators during the run, operators can be continuously scheduled so that the
best operators are used at all times.

SAGA provides three different ways of scoring alignments, (i) sum-of-pairs
without weights (SOP), (ii) sum-of pairs using weights (WSOP), and (iii) Con-
sistency based Objective Function For alignmEnt Evaluation (COFFEE) [12].
The three scoring functions are briefly described below (see [6] and [12] for more
details).

The SOP and WSOP scoring functions are almost identical except for the
additional sequence weights used in WSOP. Equation 1 shows how the total



score of an alignment is calculated. N specifies the number of sequences in the
alignment, Si and Sj are two aligned sequences from the given alignment, and
Wij is the corresponding weight (a detailed description of the weighting scheme
used is provided in [12]). When no weights are provided, i.e., using SOP, all
weights are set to 100 (default setting in SAGA). The COST function calculates
the substitution scores for each pair of residues in sequence Si and Sj using e.g,
BLOSUM or PAM matrices. Furthermore, the COST function includes affine
gap penalties, e.g., penalties for gap opening and extension (GOP and GEP,
respectively). Terminal gaps are only penalized for extension, not for opening.
Moreover, SAGA transforms the (W)SOP scoring functions into minimization
problems by scaling the entries of the substitution matrix.

(W )SOP =
N∑

i=2

i−1∑

j=1

Wij × COST (Si, Sj) . (1)

The COFFEE score is defined as a maximization problem where the task is
to maximize the consistency between the residue pairs in the alignment and the
residue pairs observed in a library generated by pairwise alignments between all
the sequences. Equation 2 shows how the score is calculated.

COFFEE =
N−1∑

i=1

N∑

j=i+1

Wij × SCORE(Aij) . (2)

SCORE(Aij) is the number of aligned pairs of residues that are shared between
Aij and the generated library, where Aij is the pairwise projection of sequence
Si and Sj obtained from the evaluated candidate alignment.

For the experiments described in this study we used SAGA V0.95, which
is publically available from http://igs-server.cnrs-mrs.fr/~cnotred/. The
original termination criteria (terminate after 100 consecutive generations with-
out performance improvements) was modified so that SAGA terminates when a
certain number of fitness evaluations has occurred. This change was necessary
in order to make a general comparison between different settings possible.

3 Experiments

3.1 BAliBASE Benchmarks

The BAliBASE database [10] contains 142 multiple sequence alignments, which
are manually refined from the known 3D structures of proteins. This makes it
possible to evaluate the quality of MSA algorithms regarding their ability to
derive true (biological plausible) alignments. Table 1 shows the protein sequence
data sets used in our experiments. All seven data sets were randomly selected
from the first reference set of the BAliBASE database (version 2, http://bess.
u-strasbg.fr/BioInfo/BAliBASE2/).



Table 1. BAliBASE data sets used in the experiments. NSEQ = number of sequences,
LSEQ = length of sequences, SEQID = percent residue identity

Data set NSEQ LSEQ (min,max,avg) SEQID

1idy 5 (49,58,53.6) <25%
1aboA 5 (49,80,63.6) <25%
kinase 5 (263,276,270.2) <25%
1hfh 5 (116,132,121.2) 20-40%
1pfc 5 (108,117,112) 20-40%
1pii 4 (247,259,251.5) 20-40%
451c 5 (70,87,80) 20-40%

3.2 Evaluation Measures

The results from the SAGA runs were evaluated according to each of the scoring
functions described in Section 2. Furthermore, the quality of the overall best
found alignments were compared with the BAliBASE reference alignments using
the BAliBASE evaluation measures described below.

The BAliBASE sum-of-pairs score (SPS) was calculated as follows: Given
a candidate alignment (individual) of N sequences containing M columns, the
i′th column in the alignment is designated by Ai1, Ai2, . . ., AiN . For each pair
of residues Aij and Aik we defined pijk such that pijk = 1 if residues Aij and
Aik from the candidate alignment were aligned with each other in the reference
alignment. Otherwise, pijk = 0. The score for the i′th column is thus:

Si =
N∑

j=1,j 6=k

N∑

k=1

pijk . (3)

The overall SPS for the candidate alignment is:

SPS =
M∑

i=1

Si∑Mr

i=1 Sri

, (4)

where Mr is the number of columns in the reference alignment and Sri is the
score Si for the i′th column in the reference alignment.

The BAliBASE column score (CS) was calculated as follows: Given an align-
ment as described above, the score Ci for the i’th column is equal to 1 if all the
residues in the column are aligned in the reference alignment. Otherwise, Ci is
set to 0. The overall CS for the candidate alignment is:

CS =
M∑

i=1

Ci

M
. (5)

The ranges of SPS and CS are 0.0-1.0, where higher values indicate closer resem-
blance with the BAliBASE reference alignment. When calculating both scores we



used the annotation files provided with BAliBASE to identify core blocks in the
reference alignment, i.e., only the regions that were marked as being important
were used in the calculation.

3.3 Experimental Setup and Data Sampling

In this study we used the default parameter settings provided with SAGA. The
population size was set to 100 and the total number of fitness evaluations allowed
was set to 200000 (max number of evaluations in the termination criterion). The
SOP and WSOP scoring functions used the BLOSUM-45 substitution matrix and
gap penalties were set to GOP = 8 and GEP = 12 (SAGA default settings).

Different configurations of SAGA were investigated regarding the seven align-
ment problems shown in Table 1 (see section 4 for more details). Each experiment
was repeated 30 times with different random seeds, and the average of the 30
best alignment scores was recorded.

4 Results

The performance of SAGA was evaluated regarding the seven alignment bench-
marks described in section 3.1. The experiments were designed to provide an-
swers to the following three main questions: (i) does operator scheduling (OS)
outperform simple uniform choice of operators?, (ii) what is the effect of using
seeding compared to random initialization only?, and (iii) does crossover improve
performance compared to using mutation only?

Table 2 summarizes the results from all the experiments. The Configuration
column shows the choice of configuration for each particular experiment (see
caption for Table 2 for information on the abbreviations used). The remaining
columns show the BAliBASE CS and SPS measures (mean of 30 runs) for each
of the tested alignments. The significance of the results was validated using the
Wilcoxon Signed Rank Test (statistical p-values are provided in supplementary
material).

Overall, the results from table 2 show that OS is not an advantage compared
to a uniform choice of operator (the differences are not statistically significant
(p > 0.0625)). Moreover, seeding improves the performance of SAGA in four
of the seven test cases (the results are statistically significant with p < 0.05
for 1aboA, kinase, 1hfh, and 1pii). For the remaining test cases, the differences
observed are not significant. The use of crossover operators improves the perfor-
mance for kinase and 1hfh, while being a disadvantage for the 1aboA problem
(the results are statistically significant with p < 0.05). For the four other test
cases, using crossover does not make any performance difference.

In conclusion, SAGA using seeding, crossover, OS, and the SOP or WSOP
scoring function (S,C,O, SOP/WSOP) or the same settings except OS (S,C,NO,
SOP/WSOP) generally performed better than all other configurations. The small
differences between these settings were not statistically significant according to
the Wilcoxon Signed Rank Test.



T
a
b
le

2
.

B
A

li
B

A
S
E

ev
a
lu

a
ti

o
n

m
ea

su
re

s
o
n

te
st

ed
b
en

ch
m

a
rk

s
u
si

n
g

d
iff

er
en

t
S
A

G
A

co
n
fi
g
u
ra

ti
o
n
s.

R
(r

a
n
d
o
m

in
it

ia
li
za

ti
o
n
),

S
(C

lu
st

a
lW

-s
ee

d
),

C
/
N

C
(c

ro
ss

ov
er

/
n
o
-c

ro
ss

ov
er

),
O

/
N

O
(o

p
er

a
to

r-
sc

h
ed

u
li
n
g
/
u
n
if
o
rm

-c
h
o
ic

e)
,

S
O

P
/
W

S
O

P
/
C

O
F
F
E
E

(s
co

ri
n
g

fu
n
c-

ti
o
n
s)

D
a
ta

se
t

1
id

y
1
a
b
o
A

k
in

a
se

1
h
fh

1
p
fc

1
p
ii

4
5
1
c

C
o
n
fi
g
u
ra

ti
o
n

C
S
/
S
P

S
C

S
/
S
P

S
C

S
/
S
P

S
C

S
/
S
P

S
C

S
/
S
P

S
C

S
/
S
P

S
C

S
/
S
P

S

R
,
C

,
O

,
S
O

P
0
.3

8
0
/
0
.5

6
5

0
.4

8
4
/
0
.7

2
1

0
.3

5
3
/
0
.6

0
6

0
.8

7
8
/
0
.9

4
4

0
.9

9
1
/
0
.9

9
7

0
.8

0
5
/
0
.8

9
5

0
.6

2
2
/
0
.7

4
6

R
,
C

,
O

,
W

S
O

P
0
.3

8
0
/
0
.5

5
0

0
.5

1
8
/
0
.7

3
0

0
.3

0
4
/
0
.5

5
8

0
.8

8
9
/
0
.9

5
0

0
.9

4
0
/
0
.9

7
9

0
.8

0
5
/
0
.8

9
1

0
.6

3
8
/
0
.7

4
4

R
,
C

,
O

,
C

O
F
F
E

E
0
.1

6
7
/
0
.5

1
0

0
.5

7
0
/
0
.7

7
5

0
.5

4
1
/
0
.7

3
4

0
.8

4
7
/
0
.9

3
6

0
.8

9
3
/
0
.9

5
9

0
.8

0
0
/
0
.8

8
2

0
.6

1
1
/
0
.7

8
7

R
,
N

C
,
O

,
S
O

P
0
.3

8
0
/
0
.5

4
0

0
.5

6
6
/
0
.7

6
9

0
.2

7
2
/
0
.5

6
5

0
.8

5
3
/
0
.9

3
1

0
.9

9
0
/
0
.9

9
7

0
.7

7
5
/
0
.8

7
7

0
.6

2
0
/
0
.7

1
7

R
,
N

C
,
O

,
W

S
O

P
0
.3

8
0
/
0
.5

5
0

0
.5

6
2
/
0
.7

6
5

0
.2

7
2
/
0
.5

5
8

0
.8

5
7
/
0
.9

3
6

0
.9

4
0
/
0
.9

7
9

0
.7

6
8
/
0
.8

7
3

0
.6

6
6
/
0
.7

3
2

R
,
N

C
,
O

,
C

O
F
F
E

E
0
.2

0
7
/
0
.5

2
0

0
.5

7
0
/
0
.7

7
4

0
.4

6
8
/
0
.7

0
5

0
.8

5
3
/
0
.9

3
7

0
.8

9
0
/
0
.9

5
8

0
.8

0
1
/
0
.8

8
3

0
.6

3
5
/
0
.7

9
4

R
,
C

,
N

O
,
S
O

P
0
.3

8
0
/
0
.5

5
0

0
.5

0
8
/
0
.7

3
2

0
.3

6
2
/
0
.6

1
7

0
.8

9
4
/
0
.9

5
1

0
.9

8
9
/
0
.9

9
6

0
.8

0
5
/
0
.8

9
6

0
.6

2
0
/
0
.7

4
4

R
,
C

,
N

O
,
W

S
O

P
0
.3

8
0
/
0
.5

5
0

0
.4

9
6
/
0
.7

2
5

0
.2

9
8
/
0
.5

6
9

0
.8

9
7
/
0
.9

5
5

0
.9

4
0
/
0
.9

7
9

0
.8

0
9
/
0
.8

9
3

0
.6

4
1
/
0
.7

6
5

R
,
C

,
N

O
,
C

O
F
F
E

E
0
.1

5
1
/
0
.5

0
7

0
.5

7
0
/
0
.7

7
4

0
.5

3
1
/
0
.7

3
2

0
.8

5
1
/
0
.9

3
6

0
.8

9
1
/
0
.9

5
8

0
.8

0
1
/
0
.8

8
3

0
.6

0
6
/
0
.7

8
4

R
,
N

C
,
N

O
,
S
O

P
0
.3

8
0
/
0
.5

4
8

0
.5

5
5
/
0
.7

6
4

0
.3

0
5
/
0
.5

8
3

0
.8

6
3
/
0
.9

3
5

0
.9

9
2
/
0
.9

9
7

0
.7

9
9
/
0
.8

9
0

0
.6

0
0
/
0
.7

1
8

R
,
N

C
,
N

O
,
W

S
O

P
0
.3

8
0
/
0
.5

5
0

0
.5

4
4
/
0
.7

5
8

0
.2

7
8
/
0
.5

6
6

0
.8

5
9
/
0
.9

3
5

0
.9

4
0
/
0
.9

7
9

0
.8

0
4
/
0
.8

9
0

0
.6

2
7
/
0
.7

3
9

R
,
N

C
,
N

O
,
C

O
F
F
E

E
0
.2

0
3
/
0
.5

3
3

0
.5

6
9
/
0
.7

7
5

0
.4

5
0
/
0
.6

9
2

0
.8

2
2
/
0
.9

2
4

0
.8

9
0
/
0
.9

5
8

0
.8

0
2
/
0
.8

8
4

0
.6

3
9
/
0
.7

9
6

S
,
C

,
O

,
S
O

P
0
.3

8
0
/
0
.5

9
5

0
.5

6
6
/
0
.7

6
8

0
.6

2
1
/
0
.7

9
2

0
.8

9
6
/
0
.9

5
3

0
.9

8
5
/
0
.9

9
5

0
.8

1
0
/
0
.8

9
9

0
.5

8
9
/
0
.6

9
8

S
,
C

,
O

,
W

S
O

P
0
.3

8
0
/
0
.5

4
3

0
.5

6
6
/
0
.7

6
6

0
.6

2
7
/
0
.7

9
5

0
.8

8
9
/
0
.9

5
0

0
.9

4
0
/
0
.9

7
9

0
.8

1
0
/
0
.8

9
3

0
.6

1
8
/
0
.7

0
9

S
,
C

,
O

,
C

O
F
F
E

E
0
.1

8
6
/
0
.5

4
2

0
.5

7
0
/
0
.7

7
6

0
.5

5
4
/
0
.7

3
7

0
.8

4
5
/
0
.9

3
4

0
.8

9
0
/
0
.9

5
8

0
.8

0
0
/
0
.8

8
2

0
.6

3
0
/
0
.7

9
4

S
,
N

C
,
O

,
S
O

P
0
.3

8
0
/
0
.5

9
6

0
.5

6
7
/
0
.7

6
7

0
.5

3
1
/
0
.7

5
5

0
.8

8
3
/
0
.9

4
7

0
.9

8
8
/
0
.9

9
6

0
.8

1
0
/
0
.8

9
7

0
.6

2
0
/
0
.7

1
1

S
,
N

C
,
O

,
W

S
O

P
0
.3

8
0
/
0
.5

4
1

0
.5

6
8
/
0
.7

6
9

0
.5

2
9
/
0
.7

5
2

0
.8

9
4
/
0
.9

5
3

0
.9

4
0
/
0
.9

7
9

0
.8

1
0
/
0
.8

9
2

0
.6

3
0
/
0
.7

1
5

S
,
N

C
,
O

,
C

O
F
F
E

E
0
.2

0
7
/
0
.5

2
8

0
.5

7
0
/
0
.7

7
6

0
.5

2
7
/
0
.7

2
9

0
.8

5
9
/
0
.9

3
9

0
.8

9
2
/
0
.9

5
9

0
.8

0
0
/
0
.8

8
2

0
.6

3
1
/
0
.7

9
4

S
,
C

,
N

O
,
S
O

P
0
.3

8
0
/
0
.5

9
4

0
.5

6
7
/
0
.7

6
7

0
.6

0
8
/
0
.7

8
7

0
.9

0
9
/
0
.9

5
9

0
.9

8
5
/
0
.9

9
5

0
.8

1
0
/
0
.8

9
9

0
.5

8
5
/
0
.6

9
6

S
,
C

,
N

O
,
W

S
O

P
0
.3

8
0
/
0
.5

4
8

0
.5

6
7
/
0
.7

6
8

0
.6

1
6
/
0
.8

0
0

0
.9

0
3
/
0
.9

5
7

0
.9

4
0
/
0
.9

7
9

0
.8

1
0
/
0
.8

9
2

0
.6

1
5
/
0
.7

0
7

S
,
C

,
N

O
,
C

O
F
F
E

E
0
.1

8
3
/
0
.5

2
5

0
.5

7
0
/
0
.7

7
6

0
.5

5
9
/
0
.7

3
6

0
.8

3
4
/
0
.9

2
9

0
.8

9
2
/
0
.9

5
9

0
.8

0
0
/
0
.8

8
2

0
.6

2
9
/
0
.7

9
6

S
,
N

C
,
N

O
,
S
O

P
0
.3

8
0
/
0
.5

9
4

0
.5

6
8
/
0
.7

6
6

0
.5

4
7
/
0
.7

6
3

0
.8

9
0
/
0
.9

5
0

0
.9

8
8
/
0
.9

9
6

0
.8

1
0
/
0
.8

9
8

0
.6

0
5
/
0
.7

0
5

S
,
N

C
,
N

O
,
W

S
O

P
0
.3

8
0
/
0
.5

5
0

0
.5

6
8
/
0
.7

6
7

0
.5

8
1
/
0
.7

8
2

0
.8

7
8
/
0
.9

4
5

0
.9

4
0
/
0
.9

7
9

0
.8

1
0
/
0
.8

9
2

0
.6

2
4
/
0
.7

1
2

S
,
N

C
,
N

O
,
C

O
F
F
E

E
0
.2

1
8
/
0
.5

5
2

0
.5

7
0
/
0
.7

7
6

0
.5

1
8
/
0
.7

2
6

0
.8

1
6
/
0
.9

2
1

0
.8

9
3
/
0
.9

5
9

0
.8

0
0
/
0
.8

8
2

0
.6

3
3
/
0
.7

9
5



Finally, the best configuration found in the previous experiments was com-
pared to the alignments obtained from SAGA using default parameter settings
(R,C,O,SOP), ClustalW and T-Coffee [13]. Table 3 shows the CS and SPS values
for each of the seven testcases using one of the tested alignment programs. In five
out of seven cases, SAGA with the best-found configuration outperformed the
other alignment programs wrt. the BAliBASE evaluation measures (three times
using CS and five times using SPS). For the remaining two cases, SAGA using
random initialization obtained slightly higher scores than using the ClustalW
seed for 1pfc. However, the differences are not statistically significant. SAGA
was not able to improve the 451c problem. In fact, the resulting alignment had
a worse score compared to the ClustalW seed. This case shows that an improve-
ment of the SOP score does not always correlate with an improvement of the
alignment quality, i.e., a better CS or SPS value. In conclusion, using SAGA with
the new parameter settings outperformed SAGA using default values for five of
the seven tested problems, indicating the importance of population seeding when
the number of evaluations are fixed at 200000.

Table 3. BAliBASE evaluation measures on tested benchmarks using different MSA
programs. SAGA(seeding) is SAGA with the best-found settings and ClustalW seeding
(see previous table) and SAGA(random) is SAGA using default parameter settings and
random initialization. All SAGA results represent mean values obtained from 30 runs

MSA program
SAGA (seeding) SAGA (random) ClustalW T-Coffee

Data set CS/SPS CS/SPS CS/SPS CS/SPS

1idy 0.380/0.595 0.380/0.565 0.380/0.588 0.000/0.150
1aboA 0.566/0.768 0.484/0.721 0.540/0.755 0.150/0.570
kinase 0.621/0.792 0.353/0.606 0.630/0.788 0.600/0.769
1hfh 0.896/0.953 0.878/0.944 0.770/0.900 0.870/0.938
1pfc 0.985/0.995 0.991/0.997 0.750/0.903 0.940/0.979
1pii 0.810/0.899 0.805/0.895 0.740/0.855 0.820/0.899
451c 0.589/0.698 0.622/0.746 0.700/0.755 0.640/0.786

5 Discussion

In this paper, we investigated different aspects of SAGA, such as (i) scheduling
operators to obtain optimal usage compared to uniform selection of all available
operators, (ii) seeding the initial population with a ClustalW derived alignment
compared to random initialization only, and finally (iii) using crossover operators
compared to using mutation-based operators only.

Overall, the experimental results showed that operator scheduling (OS) did
not perform any better than simply choosing the operators uniformly (see table
2). This observation differs from the intuitive notion that OS is useful when
solving optimization problems with many variation operators. Preliminary ex-
periments trying out other OS strategies confirmed the reported results. In all



cases uniform selection of operators was as good or better than the tested meth-
ods. A possible explanation of why OS does not increase the performance is that
repeated usage of an operator that is believed to be good does not necessarily
result in a stepwise improvement of alignment quality. The main reason seems
to be the stochastic nature of the variation operators which usually randomly
select the sequences and/or gap-regions to be modified. However, more in-depth
investigations on the search-spaces induced by the MSA scoring schemes are
needed to fully understand why OS does not work very well on this particular
problem.

Moreover, our study showed that in most cases the seeding approach was
able to obtain similar or better scores than the random initialization approach
(using the same parameter settings and number of evaluations). Again, this
observation is in contrast to the original study by Notredame and Higgins [6]
where seeding has been avoided because it was believed to bias the search to
local optima. Furthermore, using random initialization without seeding typically
required twice as many fitness evaluations as the seeding approach to obtain
similar fitness and CS/SPS values (see supplementary material for more details).

Generally, the use of crossover did not improve the performance of SAGA on
the tested data sets. On the kinase and 1hfh test cases using crossover operators
resulted in slightly better CS/SPS scores whereas omitting crossover improved
the results on the 1aboA test case. Whether to use crossover or not seems to
depend on the actual data set in question. More experiments on other BAl-
iBASE data sets might give some guidelines on when to apply or omit crossover
operators.

Finally, the comparison to other MSA programs showed that SAGA is able
to improve the initial alignment provided by ClustalW in five out of 7 cases (see
table 3). Typically, the runtime needed by SAGA was between 40-240 seconds on
a 1.8GHz Pentium-IV PC making it a valuable tool as an alignment improver.
Furthermore, SAGA using the seeding approach is able to obtain the overall best
scores in five out of seven cases compared to ClustalW, T-Coffee, and SAGA
using default random initialization.

In conclusion, seeding SAGA with ClustalW solutions improved the conver-
gence properties of SAGA (see convergence graphs in the supplementary ma-
terial) thus lowering the total number of fitness evaluations needed to obtain
alignments of good quality (wrt. CS and SPS measures). The results also indi-
cate that the benefits of using OS and crossover operators are questionable, thus
suggesting that simpler algorithms without these features may be sufficient to
solve the MSA problem. Repeating the investigations described in this study on
all the BAliBASE data sets will provide us with a better indication on whether
the use of OS and crossover operators are needed in general.

6 Supplementary Material

Additional experimental results (fitness tables, convergence graphs, etc.) are
publically available from http://www.daimi.au.dk/~thomsen/evobio2004/.



Acknowledgments

The authors would like to thank the Danish Research Council for financial sup-
port. The authors also thank Jakob Vesterstrøm for valuable comments on draft
versions of the manuscript.

References

1. Gupta, S., J.D. Kececioglu, J., Schaffer, A.: Improving the practical space and
time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence
alignment. Journal of Computational Biology 2 (1995) 459–472

2. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal
of Computational Biology 1 (1994) 337–348

3. Thompson, J., Higgins, D., Gibson, T.: Clustal W: Improving the sensitivity of
progressive multiple sequence alignment through sequence weighting. Nucleic Acids
Research 22 (1994) 4673–4680

4. Feng, D., Doolittle, R.: Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. Journal of Molecular Evolution 25 (1987) 351–360

5. Kim, J., Pramanik, S., Chung, M.: Multiple sequence alignment using simulated
annealing. Computer Applications in the Biosciences (CABIOS) 10 (1994) 419–426

6. Notredame, C., Higgins, D.: SAGA: Sequence alignment by genetic algorithm.
Nucleic Acids Research 24 (1996) 1515–1524

7. Chellapilla, K., Fogel, G.B.: Multiple sequence alignment using evolutionary pro-
gramming. In: Proceedings of the First Congress of Evolutionary Computation
(CEC-1999). (1999) 445–452

8. Thomsen, R., Fogel, G., Krink, T.: A Clustal alignment improver using evolution-
ary algorithms. In: Proceedings of the Fourth Congress on Evolutionary Compu-
tation (CEC-2002). Vol. 1. (2002) 121–126

9. Thomsen, R., Fogel, G., Krink, T.: Improvement of Clustal-derived sequence align-
ments with evolutionary algorithms. In: Proceedings of the Fifth Congress on
Evolutionary Computation (CEC-2003). (2003)

10. Thompson, J., Plewniak, F., Poch, O.: BAliBASE: A benchmark alignment
database for the evaluation of multiple alignment programs. Bioinformatics 15
(1999) 87–88

11. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings
of the Third International Conference on Genetic Algorithms (ICGA III). (1989)
61–69

12. Notredame, C., Holm, L., Higgins, D.: COFFEE: An objective function for multiple
sequence alignments. Bioinformatics 14 (1998) 407–422

13. Notredame, C., Higgins, D., Heringa, J.: T-Coffee: A novel method for fast and
accurate multiple sequence alignment. Journal of Molecular Biology 302 (2000)
205–217


