
A Scenario-Based Approach to Protocol Design Using
Evolutionary Techniques

Sérgio G. Araújo, A. Mesquita, Aloysio C. P. Pedroza

Electrical Engineering Dept.

Federal University of Rio de Janeiro
C.P. 68504 - CEP 21945-970 - Rio de Janeiro - RJ - Brazil

Tel: +55 21 2260-5010 - Fax: +55 21 2290-6626
{granato,aloysio}@gta.ufrj.br mesquita@coe.ufrj.br

Abstract. An evolutionary approach to design communication protocols from
scenario-based specifications is presented. It enables to automatically generate
finite-state models of protocol entities from Message Sequence Charts. By
converting the Message Sequence Charts into input/output sequences, the
problem reduces to evolving finite-state machines with the specified
input/output behaviors. The proposed approach does not overgeneralize the
entity behavior producing, by construction, minimal, deterministic and
completely specified finite-state machines.

1 Introduction and Related Works

Distributed systems play a significant role in the implementation of computer-based
applications. The masking of the data/process location for the user, through reliable
communication protocols, is the main concept behind these systems. Nevertheless,
their modeling and implementation remain, today, a complex task. During the last two
decades, several methods to formally describe telecommunication systems and
services have been proposed with limited dissemination in industry. As an alternative,
much attention has been given to the more intuitive semi-formal approaches, such as
interaction scenarios. Scenario-based modeling is particularly well suited for
operational descriptions, which are critical in reactive systems, and can be introduced
in iterative and incremental design processes [1].

State-oriented specifications and interaction-oriented descriptions techniques
provide orthogonal views of systems. Automata represent projections of the complete
system behavior onto individual components, while Message Sequence Charts
(MSCs) represent projections of the complete system behavior onto particular
services. Because automata usually reveal, to a certain degree, how a particular
behavior is achieved, their typical position in the system development process is
closer to design and implementation than to requirements capture [2].

Clearly, the application of system scenarios, typically used in reverse engineering,
within a forward engineering approach calls for precise conversion between models.

So, a number of strategies for translating scenarios to automata have been proposed in
the recent literature [2, 3]. The SCED algorithm [3] employs the domain-specific
assumption that the capability of outputting a specific message uniquely identifies the
state of a component. SCED may produce automata with more general behavior than
the scenarios themselves as a consequence of the merging of scenarios into state-
transition paths. While examples in a typically inductive system can be either positive
or negative, scenarios consistently represent positive data and, thus, do not give
sufficient information about the target system for inference [4]. Krüger [2] derived an
automaton from a given MSC specification by successively applying four
transformation steps: 1. Projection of MSCs onto the component, 2. Normalization to
determine the transition-path segments defined by the projected MSCs, 3.
Transformation into an automaton by turning every message into a transition and by
adding intermediate states, and 4. Optimization of the resulting automaton. In contrast
to SCED the automaton produced by Krüger’s approach is neither deterministic nor
minimal by construction requiring a distinct optimization step.

On the other hand, Evolutionary Algorithms (EAs) and variations have been used
in the synthesis of sequential machines enabling to efficiently explore the solutions
space of this category of design problems. Early attempts [5] used some of the EAs
concepts to evolve an automaton that predicts outputs based on known input
sequences. Lacking the crossover genetic operator [10] the approach has shown,
however, poor performances. Recent works have been successful in synthesizing
sequential systems with the aid of Genetic Algorithms (GAs) [6, 7, 8]. An approach
to synthesize synchronous sequential logic circuits from partial input/output (I/O)
sequences is presented in [6]. By using a technology-based representation, essentially
a netlist of gates and flip-flops, the method was able to synthesize a variety of small
FSMs, such as serial adders and 4-bit sequence detectors. Others methods [7, 8] used
a technology-independent state-based representation in which the next-state and the
output corresponding to each current-state/input pair of the state-transition table are
coded in a binary string defined as the chromosome.

In this work an approach based on evolutionary techniques for the construction of
protocol specification models from scenarios is proposed. The method is efficient in
generating minimum automata by construction and differently from other approaches
[3] does not overgeneralize the entity behavior.

2 Definitions

2.1 MSC and FSM

Message Sequence Charts (MSCs) are scenario notations widely used for
requirements capture in the telecommunications domain [1]. A MSC is a graphical
scenario consisting of vertical axes and arrows. The vertical axes represent the
system reactive instances, or communicating entities, and the arrows, directed from a
sending to a receiving instance, denote a communication event.

Since MSCs usually describe a partial behavior of the system, a question arises
about how complete the information contained in the MSCs is and how to transit
between possible and mandatory behaviors. It is convenient by this time to correctly
understand the interpretations of the MSCs with respect to the system under
development. Krüger [2] defines four such interpretations: 1. Existential: the behavior
can, but does not need to occur during the system execution, 2. Universal: the
behavior must occur in all executions, 3. Exact: explicitly prohibits other behaviors
than the ones specified through the MSCs and 4. Negation: used to describe forbidden
or undesirable protocol behaviors. The exact interpretation not only requires what can
or must happen (the behavior explicitly represented by the MSCs); it also makes
precise what must not happen (everything else).

Finite-state machines (FSMs) are commonly used for specifying communication
protocols [9]. At the same time, the FSM is the mostly used target model in
construction schemes starting from scenarios [1]. The Mealy FSM model M is
formally defined as a 7-tuple {Q,V,t,q0,V’,o,D} where Q ≠ Ø is a finite set of states of
M, V is a finite input alphabet, t is the state transition function, q0 ∈ Q is the initial
state, V’ is a finite output alphabet, o is the output function and D is the specification
domain, which is a subset of Q × V. t and o together characterize the behavior of the
FSM, i.e., t(q,v): Q × V → Q and o(q,v): Q × V → V’. If D = Q × V, then t and o are
defined for all possible state/input combinations and therefore the FSM is said to be
completely specified.

2.2 Evolutionary Computation

Evolutionary Computation (EC) consists of the design and analysis of probabilistic
algorithms inspired by the principles of Darwinian natural selection. The parallel
search performed by EC differs from conventional problem solving techniques in that
it does not depend on decomposition. Therefore, EC solutions are best applied to
highly non-linear problems for which deterministic solutions are not available.

Genetic Algorithm (GA) and Genetic Programming (GP) are among the most
widely used instances of EC. The chromosome is the basic component of the GA. It
represents a point of the search space of the problem. The fitness value measures how
close the individual is to the solution. By iteratively applying the genetic operators
(fitness evaluation, fitness-based selection, reproduction, crossover and mutation) to a
randomly started population of individuals, it gradually evolves in order to breed at
least one offspring with the desired behavior. GA, which usually works with strings
(chromosomes) of fixed length, is widely used in optimization problems. GP [10] is a
branch of GA, the main difference being the solution representation. Unlike GA, GP
can easily code chromosomes of variable length, which increases the capacity in
structure creation.

Programs, or structures, may be produced by combining context-free grammar
(CFG) with GP, known as G3P (Grammar-Guided GP). GP Kernel (GPK) [11] is a
complex G3P system and was used in this work to evolve trees, each encoding an
automaton, from a Backus-Naur form (BNF) provided as input.

3 Methodology

The proposed methodology searches a deterministic FSM, possibly minimal with
respect to the number of states, consistent with a given sample of I/O behaviors
extracted from MSCs. The I/O behaviors, in the following called training sequences
(TSs), are derived from the projection of the MSC specification onto the entity to be
modeled. The execution flow of the methodology is drawn in Fig. 1a: the GP box
outputs a population of FSMs for fitness evaluation based on TSs; if at least one
individual reproduces the I/O behavior given by the TSs, the algorithm stops. The
resulting FSM describes the protocol entity.

The model adopted for fitness evaluation (shaded box of Fig. 1a) uses the black-
box approach (Fig. 1b), in which the entity to be evolved interacts with the
cooperating entities through an event-driven interface. It is assumed, as in most
protocol synthesis approaches [12], that the communication system has reliable FIFO
channels. In each generation the system probes a population of FSMs with input
sequences and records the corresponding output sequences. These output sequences
are compared with the correct output sequences, i.e., the outputs of the TSs, and a
fitness value is assigned to each candidate solution.

BNF

GP
(generation of

new population)

I/O
Constraints
Satisfied ?No

Yes

FSM

Initial
Population

Fitness
Evaluation

(for each individual)

MSCs
MSCs

Training
Sequences

Training
Sequences

Projection

Entity to be
Evolved

Input Sequences

Output Sequences

Event-
Driven

Interface

a) b)

Fig. 1. a) Execution flow of the methodology; b) Model for fitness evaluation

3.1. Derivation of Training Sequences from MSCs

A trace or training sequence (TS) is defined as a finite sequence of correct I/O pairs <
v1/v1’, v2/v2’… vL/vL’ >, where v ∈ V, v’ ∈ V’ and L is the length of the sequence. The
derivation method is based on the exact interpretation of the MSC specification. The
derivation of TSs from a set of MSCs is a two-step procedure:

Step 1. Generation of TSs with positive mandatory information by projecting all
the MSCs onto the object for which the state machine will be synthesized. A
projection is carried out by traversing the vertical line of that object, from top to
bottom; sequential ordered incoming and outgoing events are grouped into TS I/O
pairs. Sequential composition of traces from two MSCs containing the object of

interest is achieved by means of condition symbols; the random combination of
traces in such a way allows the generation of diverse, lengthy TSs.

Fig. 2 depicts the MSC specification of a refined connection-oriented protocol.
These MSCs have two condition symbols, ACTIVE and IDLE, used to link the MSCs.

C_Req

cc

cr

User Snd Rcv

C_Conf

MSC1

ACTIVE

IDLE

C_Req

dr / D_Req
cr

User Snd Rcv

D_Ind / dr

MSC2

IDLE

IDLE

R_Req

rc

rr

User Snd Rcv

R_Conf

MSC3

ACTIVE

ACTIVE

User Snd Rcv

MSC4

IDLE

ACTIVE

D_Req / dr

dr /
D_Ind

User Snd Rcv

MSC5

IDLE

ACTIVE

R_Req

dr /D_Req
rr

D_Ind /dr

Fig. 2. Connection-oriented protocol MSC specification

The following TSs were generated from the procedures described in the first step,
by selecting the sender entity as the target object:

ST1: <C_Req/cr, cc/C_Conf, D_Req/dr> (MSC1 and MSC5);
ST2: <C_Req/cr, cc/C_Conf, R_Req/rr, rc/R_Conf> (MSC1 and MSC3);
ST3: <C_Req/cr, dr/D_Ind, C_Req/cr, cc/C_Conf, dr/D_Ind> (MSC1, MSC2 and MSC5).

The TSs produced in step 1 does not cover unspecified (non-expected) input
events, resulting in incomplete information for state-machine inference. The concept
of completeness is essential to achieve equivalence between the synthesized FSM and
the unknown one from which the sample traces are taken. Completeness implies that
there exists a transition for every input event in every state; this assumption assures
that the traces will eventually give sufficient information about the state machine for
inference [13]. Moving from partial machines to completely specified ones is
accomplished in basically two ways: requiring that the state machine remains in the
present state without producing any output (i.e., reacting with the null output) for any
unspecified input or forcing a transition to an added “error state”. The implementation
of the former on traces is straightforward, as seen in the next step.

Step 2. Insertion of negative information into the TSs, obtained in the first step, by
randomly adding unspecified input events between I/O pairs of such TSs; in this
case, the pair is completed with the null output forcing the automaton to perform a
self-loop. The unspecified input event set (VU) is inferred from the “exact” MSCs,
as follows: VU = V – VE, where VE is the expected input event set obtained from the
MSC specification. It is assumed that unspecified input events occur with uniform
distribution, i.e., P(Ei) = 1/N, for Ei ∈ VU, i = 1,…,N.

This step ensures that each state of the entity is able to respond to every input of its
input alphabet, i.e., the construction process yields a completely specified FSM. The
following TSs were obtained at the end of the second step:

ST1: <C_Req/cr, rc/Null, cc/C_Conf, cc/Null, rc/Null, D_Req/dr>;
ST2: <C_Req/cr, C_Req/Null, cc/C_Conf, cc/Null, R_Req/rr, D_Req/Null, rc/R_Conf>;
ST3: <R_Req/Null, C_Req/cr, rc/Null, R_Req/Null, dr/D_Ind, rc/Null, cc/Null, C_Req/cr,

R_Req/Null, cc/C_Conf, cc/Null, dr/D_Ind>.

3.2. Length of the Training Sequences (TSs)

The TSs must be long enough to exercise all paths of the FSM that describes the
protocol entity. Ref. [6] gives an approximation formula to estimate the length of the
TSs that yields a correct FSM, based on the waiting times in sampling problem
solution. This formula defines the length of the input sequence as L = E(S) × E(I),
where E(S) and E(I) are the expected value of the number of state transitions and the
expected value of the number of inputs, respectively. The expected value of the
number of state transitions to traverse all states of a given FSM can be computed
using E(S) = S (S+ S/2 + … + 1/S). Likewise, the expected value of the number of
inputs to traverse all paths from a given state is evaluated by E(I) = I (1+ 1/2 + … +
1/I). However, since the number of states S required to describe the protocol entity is
unknown, it must be overestimated a priori.

3.3. Chromosome Coding and BNF Definition

The chromosome, which encodes a FSM, uses state-based representation (SBR). The
resulting string (chromosome) with S states and I inputs is shown in Fig. 3.

Next State Output Next State Output

Input 1 Input 2

State 1

Next State Output

State 2

...

Input I

State S

Next State

Input 1

... Output

Input I
//

//

Fig. 3. Chromosome coding using SBR

Unlike other approaches [7, 8], in the present one the length of the chromosome is
allowed to vary. GP algorithm was used, since this is the most efficient way to
implement an evolutionary process with variable length chromosomes known to date.
The BNF that allows the variable length chromosome coding is defined as:

S := <expr>;
<expr> := <state>|<expr> <state>;
<state> := <next_st><out> <next_st><out> <next_st><out>

 <next_st><out> <next_st><out> <next_st><out>;
<next_st> := "0"|"1"|"2"|"3"|"4"|"5";
<out> := "0"|"1"|"2"|"3"|"4"|"5"|"6";

where <expr> allows the chromosome to vary in length, while <state> fixes the

number of input events (six, in the above BNF definition, each yielding a next-
state/output pair, i.e., <next_st> <out>).

3.4. Fitness Evaluation

The number of states used to implement the FSM weights the fitness value assigned
to a given FSM behavior. The fitness function F has the form:

F = ()GRSKHw
N

i
ii ∗+∗






∑
=

)(1
1

 (1)

where N is the number of fitness cases (TSs), wi is a weighting factor for fitness
case i (TSi), Hi is the number of output hits due to the fitness case i, K(S) is a
weighting factor that considers the effect of the number of states S used to implement
the FSM and GR is the gradient of the overall output hits of the best individual. Hi is
computed as follows. Initially, the FSM must be in the reset state. In the sequence, for
each input of the TSi, its output is compared with the correct output and an output hit
is signed in case of a match. K(S)*GR raises F for FSM implementations with lower
number of states. However, as the fitness value tends to get trapped into local optima
for an inadequate FSM, GR goes to zero allowing fair competition among FSMs
regardless of their sizes.

4. EXPERIMENTAL RESULTS

As an example, the synthesis of a protocol entity specification for the sender side,
PSS, of the connection-oriented protocol from given interaction scenarios, is dis-
cussed. The training sequences, TS, were produced from the MSC specification of
Fig. 2 using the derivation method presented in Subsection 3.1. The TS length was
evaluated using six inputs (I) and an estimated value of five for the parameter S, as
described in Subsection 3.2, leading to a 168-input/output TS. In fact, eighteen (N =
18) 32 bits-TSs (wi = 1) were used corresponding to more than three 168-length TSs.

The problem consists in finding a minimum-state deterministic FSM consistent
with the derived TSs. The population size, M, and the maximum number of
generations, GMAX, were chosen as 500 and 3,000, respectively. The two-point
crossover and mutation probabilities were set to pc = 0.65 and pm = 0.05, respectively.
Linear rank selection was used considering the elitist strategy. The population of
FSMs was created using the BNF described in Subsection 3.3 allowing FSM
implementations with up to six states. The factor K(S) was defined by the set of
values K(S) = {0.01, 0.008, 0.006, 0.004, 0.002, 0.000} for S = {1, 2, 3, 4, 5, 6}
respectively. GR was continuously evaluated over 50 generations, except for the first
50 generations and at the end of the evolution where it was set to 1; in this last case

because GR tends naturally to zero. To improve the population diversity the mutation
probability, pm, was increased to 0.15 whenever GR = 0.

Fig. 4 depicts the fitness curve of the best FSM, its number of states and GR for a
typical run. In this figure, it can be observed that at the first 50 generations the num-
ber of states of the best FSM fluctuate significantly due to the high population diver-
sity. The same behavior is observed between generations 153 and 205, this time as
GR is set to zero. Finally it can be observed that, in general, each increase in the fit-
ness value of the best FSM is correlated with an increase followed by a decrease in
the number of its states. This is particularly perceptible at the first 50 generations and
between generations 260 and 350. The state-transition graph (STG) of the 4-state
resulting FSM, which successfully describes the PSS after 576 output hits at genera-
tion 435, is given in Fig. 5.

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450

generation

fit
ne

ss
 /

st

at
es

 *
10

0
/ G

R
 *

10
0

best individual
of states of the best * 100
gradient of the best * 100

Fig. 4. Fitness curve of the best individual

It should be mentioned that the proposed system does not generate the minimal

FSM in all successful runs, i.e., runs that achieve all output hits within the specified
GMAX. In some trials the fitness value of the best individual got stuck into local optima
for a great number of generations. In these cases the system provokes the premature
selection of FSMs with the highest possible number of states yielding to non-optimal
solutions. To minimize the early selection of large FSMs, a “selection restriction”
procedure was implemented. According with this procedure, individuals with two or
more extra states by report to a previous best-fitted individual were disqualified to the
selection step.

 INPUT OUTPUT

 C_Req - 0 C_Conf - 0
 D_Req - 1 D_Ind - 1
 cr - 2 cc - 2
 dr - 3 dr - 3
 R_Req - 4 R_Conf - 4
 rr - 5 ra - 5

 Null - 6

Coding Table

Chromosome: 320106060606 160316012516 260310012614 360310013636

st3
(Wait_Act)

st1
(Active)

st0
(Idle)

0/2

2/0

2/6

1/3

3/1 1/3

3/1

4/6

1/1

0/6

0/6

st2
(Wait_Reinit)

4/6

5/6

5/4

4/5

3/6

5/6

1/3
3/1

5/6

2/6

4/6

0/6

2/6

Fig. 5. PSS, using STG, of the fittest FSM

Table 1 compares the results of 50 independent runs performed with three different

setups. In Setup 1 the fitness function does not take into account the number of states.
In Setup 2 the fitness function is weighed by the number of states, according to eq. 1,
but does not include the selection restriction procedure. In Setup 3 both a weighed
fitness function and the selection restriction procedure are applied. From Table 1 it
can be conclude: (a) Without an explicit control in the number of states the system
tends to breed a solution using all available states, (b) The control of the number of
states coupled with the selection restriction procedure implemented in Setup 3 allow
to converge to the minimum FSM in 59% of all successful runs. This represents an
improvement of, approximately, 400% by report to Setup 2. (c) The number of runs
not yielding to the global optimum in 3,000 generations remained basically the same,
regardless of controlling or not the number of states of the FSM.

Table 1. Comparison among three different setups for 50 independent runs

SETUP Runs yielding to global optimum in
3,000 generations

Runs not yielding to
global optimum in
3,000 generations 4 states 5 states 6 states

1. F = ∑
=

N

i
ii Hw

1

 20 0 3 27

2. Eq. (1) 18 4 15 13

3. Eq. (1) with
selection restriction

21 17 9 3

5. CONCLUSION

An evolutionary approach to the design of communication protocols specified by
Message Sequence Charts was presented. As in other construction approaches [2, 3]
the assumption that a set of MSCs specifies the system behavior completely was
adopted. However, the methodology relaxes the exact MSC interpretation by adding
behaviors not explicitly specified by the MSCs and, contrary to [3], avoids the over-
generalization of the synthesized automata.

State-based representation is not efficient for systems with large number of states.
However, the benefit of using it in the protocol synthesis is that it guarantees the
completeness of the synthesized specifications.

The resulting automata are minimal in many cases, deterministic and completely
specified by construction. The application of an analytic method, such as that used in
[2], on MSC specification of Fig. 2 yields, in the first steps, a non-deterministic FSM.
Moreover, contrary to SCED approach, the proposed approach is not sensitive to the
order of traces in its input.

REFERENCES

[1] Amyot, D., Eberlein, A.: An Evaluation of Scenario Notations and Construction Ap-
proaches for Telecommunication Systems Development, Telecommunications Systems
Journal, 24:1, 61-94 (2003)

[2] Krüger, I. H.: Distributed System Design with Message Sequence Charts, PhD Thesis,
Technische Universität München (2000)

[3] Koskimies, K., Männistö, T., Systä, T., Toumi, J.: Automated Support for Modeling OO
Software, IEEE Software, 15, 1, pp. 87-94 (1998)

[4] Systä, T.: Static and Dynamic Reverse Engineering Techniques for Java Software Systems,
PhD Thesis, University of Tempere (2000)

[5] Fogel, L.: Autonomous Automata, Industrial Research, 4:14-19 (1962)
[6] Manovit, C., Aporntewan, C., Chongstitvatana, P.: Synthesis of Synchronous Sequential

Logic Circuits from Partial Input/Output Sequences, ICES’98, pp. 98-105 (1998)
[7] Collins, R., Jefferson, D.: Representation for Artificial Organisms, in Proceedings of the 1st

Int. Conf. on Simulation of Adaptive Behavior, MIT Press (1991)
[8] Chongstitvatana, P., Aporntewan, C.: Improving Correctness of Finite-State Machine Syn-

thesis from Multiple Partial Input/Output Sequences, in Proceedings of the 1st NASA/DoD
Workshop on Evolvable Hardware, pp. 262-266 (1999)

[9] Bockmann, G., Petrenko, A.: Protocol Testing: A Review of Methods and Relevance for
Software Testing, ISSTA'94, ACM, Seattle, U.S.A., pp. 109-124 (1994)

[10] Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press (1992)

[11] Hörner, H.: A C++ Class Library for Genetic Programming, Release 1.0 Operating In-
structions, Viena University of Economy (1996)

[12] Probert, R., Saleh, K.: Synthesis of Protocols: Survey and Assessment, IEEE Transactions
on Computers, Vol. 40, No 4, pp. 468-476 (1991)

[13] Koskimies, K., Mäkinen, E.: Automatic Synthesis of State Machines from Trace Dia-
grams, Software Practice and Experience, 24(7), 643-658 (1994)

