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Abstract. An evolutionary approach to design communication protocols from 
scenario-based specifications is presented. It enables to automatically generate 
finite-state models of protocol entities from Message Sequence Charts. By 
converting the Message Sequence Charts into input/output sequences, the 
problem reduces to evolving finite-state machines with the specified 
input/output behaviors. The proposed approach does not overgeneralize the 
entity behavior producing, by construction, minimal, deterministic and 
completely specified finite-state machines. 

1   Introduction and Related Works 

Distributed systems play a significant role in the implementation of computer-based 
applications. The masking of the data/process location for the user, through reliable 
communication protocols, is the main concept behind these systems. Nevertheless, 
their modeling and implementation remain, today, a complex task. During the last two 
decades, several methods to formally describe telecommunication systems and 
services have been proposed with limited dissemination in industry. As an alternative, 
much attention has been given to the more intuitive semi-formal approaches, such as 
interaction scenarios. Scenario-based modeling is particularly well suited for 
operational descriptions, which are critical in reactive systems, and can be introduced 
in iterative and incremental design processes [1]. 

State-oriented specifications and interaction-oriented descriptions techniques 
provide orthogonal views of systems. Automata represent projections of the complete 
system behavior onto individual components, while Message Sequence Charts 
(MSCs) represent projections of the complete system behavior onto particular 
services. Because automata usually reveal, to a certain degree, how a particular 
behavior is achieved, their typical position in the system development process is 
closer to design and implementation than to requirements capture [2]. 

Clearly, the application of system scenarios, typically used in reverse engineering, 
within a forward engineering approach calls for precise conversion between models. 



So, a number of strategies for translating scenarios to automata have been proposed in 
the recent literature [2, 3]. The SCED algorithm [3] employs the domain-specific 
assumption that the capability of outputting a specific message uniquely identifies the 
state of a component. SCED may produce automata with more general behavior than 
the scenarios themselves as a consequence of the merging of scenarios into state-
transition paths. While examples in a typically inductive system can be either positive 
or negative, scenarios consistently represent positive data and, thus, do not give 
sufficient information about the target system for inference [4]. Krüger [2] derived an 
automaton from a given MSC specification by successively applying four 
transformation steps: 1. Projection of MSCs onto the component, 2. Normalization to 
determine the transition-path segments defined by the projected MSCs, 3. 
Transformation into an automaton by turning every message into a transition and by 
adding intermediate states, and 4. Optimization of the resulting automaton. In contrast 
to SCED the automaton produced by Krüger’s approach is neither deterministic nor 
minimal by construction requiring a distinct optimization step. 

On the other hand, Evolutionary Algorithms (EAs) and variations have been used 
in the synthesis of sequential machines enabling to efficiently explore the solutions 
space of this category of design problems. Early attempts [5] used some of the EAs 
concepts to evolve an automaton that predicts outputs based on known input 
sequences. Lacking the crossover genetic operator [10] the approach has shown, 
however, poor performances. Recent works have been successful in synthesizing 
sequential systems with the aid of Genetic Algorithms (GAs) [6, 7, 8]. An approach 
to synthesize synchronous sequential logic circuits from partial input/output (I/O) 
sequences is presented in [6]. By using a technology-based representation, essentially 
a netlist of gates and flip-flops, the method was able to synthesize a variety of small 
FSMs, such as serial adders and 4-bit sequence detectors. Others methods [7, 8] used 
a technology-independent state-based representation in which the next-state and the 
output corresponding to each current-state/input pair of the state-transition table are 
coded in a binary string defined as the chromosome. 

In this work an approach based on evolutionary techniques for the construction of 
protocol specification models from scenarios is proposed. The method is efficient in 
generating minimum automata by construction and differently from other approaches 
[3] does not overgeneralize the entity behavior. 

2   Definitions 

2.1   MSC and FSM 

Message Sequence Charts (MSCs) are scenario notations widely used for 
requirements capture in the telecommunications domain [1]. A MSC is a graphical 
scenario consisting of vertical axes and arrows. The vertical axes represent the 
system reactive instances, or communicating entities, and the arrows, directed from a 
sending to a receiving instance, denote a communication event. 



Since MSCs usually describe a partial behavior of the system, a question arises 
about how complete the information contained in the MSCs is and how to transit 
between possible and mandatory behaviors. It is convenient by this time to correctly 
understand the interpretations of the MSCs with respect to the system under 
development. Krüger [2] defines four such interpretations: 1. Existential: the behavior 
can, but does not need to occur during the system execution, 2. Universal: the 
behavior must occur in all executions, 3. Exact: explicitly prohibits other behaviors 
than the ones specified through the MSCs and 4. Negation: used to describe forbidden 
or undesirable protocol behaviors. The exact interpretation not only requires what can 
or must happen (the behavior explicitly represented by the MSCs); it also makes 
precise what must not happen (everything else). 

Finite-state machines (FSMs) are commonly used for specifying communication 
protocols [9]. At the same time, the FSM is the mostly used target model in 
construction schemes starting from scenarios [1]. The Mealy FSM model M is 
formally defined as a 7-tuple {Q,V,t,q0,V’,o,D} where Q ≠ Ø is a finite set of states of 
M, V is a finite input alphabet, t is the state transition function, q0 ∈ Q is the initial 
state, V’ is a finite output alphabet, o is the output function and D is the specification 
domain, which is a subset of Q × V. t and o together characterize the behavior of the 
FSM, i.e., t(q,v): Q × V → Q and o(q,v): Q × V → V’. If D = Q × V, then t and o are 
defined for all possible state/input combinations and therefore the FSM is said to be 
completely specified. 

2.2   Evolutionary Computation 

Evolutionary Computation (EC) consists of the design and analysis of probabilistic 
algorithms inspired by the principles of Darwinian natural selection. The parallel 
search performed by EC differs from conventional problem solving techniques in that 
it does not depend on decomposition. Therefore, EC solutions are best applied to 
highly non-linear problems for which deterministic solutions are not available. 

Genetic Algorithm (GA) and Genetic Programming (GP) are among the most 
widely used instances of EC. The chromosome is the basic component of the GA. It 
represents a point of the search space of the problem. The fitness value measures how 
close the individual is to the solution. By iteratively applying the genetic operators 
(fitness evaluation, fitness-based selection, reproduction, crossover and mutation) to a 
randomly started population of individuals, it gradually evolves in order to breed at 
least one offspring with the desired behavior. GA, which usually works with strings 
(chromosomes) of fixed length, is widely used in optimization problems. GP [10] is a 
branch of GA, the main difference being the solution representation. Unlike GA, GP 
can easily code chromosomes of variable length, which increases the capacity in 
structure creation. 

Programs, or structures, may be produced by combining context-free grammar 
(CFG) with GP, known as G3P (Grammar-Guided GP). GP Kernel (GPK) [11] is a 
complex G3P system and was used in this work to evolve trees, each encoding an 
automaton, from a Backus-Naur form (BNF) provided as input. 



3   Methodology 

The proposed methodology searches a deterministic FSM, possibly minimal with 
respect to the number of states, consistent with a given sample of I/O behaviors 
extracted from MSCs. The I/O behaviors, in the following called training sequences 
(TSs), are derived from the projection of the MSC specification onto the entity to be 
modeled. The execution flow of the methodology is drawn in Fig. 1a: the GP box 
outputs a population of FSMs for fitness evaluation based on TSs; if at least one 
individual reproduces the I/O behavior given by the TSs, the algorithm stops. The 
resulting FSM describes the protocol entity. 

The model adopted for fitness evaluation (shaded box of Fig. 1a) uses the black-
box approach (Fig. 1b), in which the entity to be evolved interacts with the 
cooperating entities through an event-driven interface. It is assumed, as in most 
protocol synthesis approaches [12], that the communication system has reliable FIFO 
channels. In each generation the system probes a population of FSMs with input 
sequences and records the corresponding output sequences. These output sequences 
are compared with the correct output sequences, i.e., the outputs of the TSs, and a 
fitness value is assigned to each candidate solution. 
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Fig. 1. a) Execution flow of the methodology; b) Model for fitness evaluation 

3.1. Derivation of Training Sequences from MSCs 

A trace or training sequence (TS) is defined as a finite sequence of correct I/O pairs < 
v1/v1’, v2/v2’… vL/vL’ >, where v ∈ V, v’ ∈ V’ and L is the length of the sequence. The 
derivation method is based on the exact interpretation of the MSC specification. The 
derivation of TSs from a set of MSCs is a two-step procedure: 

Step 1. Generation of TSs with positive mandatory information by projecting all 
the MSCs onto the object for which the state machine will be synthesized. A 
projection is carried out by traversing the vertical line of that object, from top to 
bottom; sequential ordered incoming and outgoing events are grouped into TS I/O 
pairs. Sequential composition of traces from two MSCs containing the object of 



interest is achieved by means of condition symbols; the random combination of 
traces in such a way allows the generation of diverse, lengthy TSs. 

Fig. 2 depicts the MSC specification of a refined connection-oriented protocol. 
These MSCs have two condition symbols, ACTIVE and IDLE, used to link the MSCs. 
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Fig. 2. Connection-oriented protocol MSC specification 

The following TSs were generated from the procedures described in the first step, 
by selecting the sender entity as the target object: 

 
ST1:   <C_Req/cr, cc/C_Conf, D_Req/dr>  (MSC1 and MSC5); 
ST2:   <C_Req/cr, cc/C_Conf, R_Req/rr, rc/R_Conf>  (MSC1 and MSC3); 
ST3:   <C_Req/cr, dr/D_Ind, C_Req/cr, cc/C_Conf, dr/D_Ind>  (MSC1, MSC2 and MSC5). 
 

The TSs produced in step 1 does not cover unspecified (non-expected) input 
events, resulting in incomplete information for state-machine inference. The concept 
of completeness is essential to achieve equivalence between the synthesized FSM and 
the unknown one from which the sample traces are taken. Completeness implies that 
there exists a transition for every input event in every state; this assumption assures 
that the traces will eventually give sufficient information about the state machine for 
inference [13]. Moving from partial machines to completely specified ones is 
accomplished in basically two ways: requiring that the state machine remains in the 
present state without producing any output (i.e., reacting with the null output) for any 
unspecified input or forcing a transition to an added “error state”. The implementation 
of the former on traces is straightforward, as seen in the next step. 

Step 2. Insertion of negative information into the TSs, obtained in the first step, by 
randomly adding unspecified input events between I/O pairs of such TSs; in this 
case, the pair is completed with the null output forcing the automaton to perform a 
self-loop. The unspecified input event set (VU) is inferred from the “exact” MSCs, 
as follows: VU = V – VE, where VE is the expected input event set obtained from the 
MSC specification. It is assumed that unspecified input events occur with uniform 
distribution, i.e., P(Ei) = 1/N, for Ei ∈ VU, i = 1,…,N. 

This step ensures that each state of the entity is able to respond to every input of its 
input alphabet, i.e., the construction process yields a completely specified FSM. The 
following TSs were obtained at the end of the second step: 



 
ST1:  <C_Req/cr, rc/Null, cc/C_Conf, cc/Null, rc/Null, D_Req/dr>; 
ST2:  <C_Req/cr, C_Req/Null, cc/C_Conf, cc/Null, R_Req/rr, D_Req/Null, rc/R_Conf>; 
ST3:  <R_Req/Null, C_Req/cr, rc/Null, R_Req/Null, dr/D_Ind, rc/Null, cc/Null, C_Req/cr, 

R_Req/Null, cc/C_Conf, cc/Null, dr/D_Ind>. 

3.2. Length of the Training Sequences (TSs) 

The TSs must be long enough to exercise all paths of the FSM that describes the 
protocol entity. Ref. [6] gives an approximation formula to estimate the length of the 
TSs that yields a correct FSM, based on the waiting times in sampling problem 
solution. This formula defines the length of the input sequence as L = E(S) × E(I), 
where E(S) and E(I) are the expected value of the number of state transitions and the 
expected value of the number of inputs, respectively. The expected value of the 
number of state transitions to traverse all states of a given FSM can be computed 
using E(S) = S (S+ S/2 + … + 1/S). Likewise, the expected value of the number of 
inputs to traverse all paths from a given state is evaluated by E(I) = I (1+ 1/2 + … + 
1/I). However, since the number of states S required to describe the protocol entity is 
unknown, it must be overestimated a priori. 

3.3. Chromosome Coding and BNF Definition 

The chromosome, which encodes a FSM, uses state-based representation (SBR). The 
resulting string (chromosome) with S states and I inputs is shown in Fig. 3. 
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Fig. 3. Chromosome coding using SBR 

Unlike other approaches [7, 8], in the present one the length of the chromosome is 
allowed to vary. GP algorithm was used, since this is the most efficient way to 
implement an evolutionary process with variable length chromosomes known to date. 
The BNF that allows the variable length chromosome coding is defined as: 

 
S          :=  <expr>; 
<expr>     :=  <state>|<expr> <state>; 
<state>    :=  <next_st><out> <next_st><out> <next_st><out> 

  <next_st><out> <next_st><out> <next_st><out>; 
<next_st>  :=  "0"|"1"|"2"|"3"|"4"|"5"; 
<out>      :=  "0"|"1"|"2"|"3"|"4"|"5"|"6"; 



 
where <expr> allows the chromosome to vary in length, while <state> fixes the 

number of input events (six, in the above BNF definition, each yielding a next-
state/output pair, i.e., <next_st> <out>). 

3.4. Fitness Evaluation 

The number of states used to implement the FSM weights the fitness value assigned 
to a given FSM behavior. The fitness function F has the form: 
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where N is the number of fitness cases (TSs), wi is a weighting factor for fitness 
case i (TSi), Hi is the number of output hits due to the fitness case i, K(S) is a 
weighting factor that considers the effect of the number of states S used to implement 
the FSM and GR is the gradient of the overall output hits of the best individual. Hi is 
computed as follows. Initially, the FSM must be in the reset state. In the sequence, for 
each input of the TSi, its output is compared with the correct output and an output hit 
is signed in case of a match. K(S)*GR raises F for FSM implementations with lower 
number of states. However, as the fitness value tends to get trapped into local optima 
for an inadequate FSM, GR goes to zero allowing fair competition among FSMs 
regardless of their sizes. 

4. EXPERIMENTAL RESULTS 

As an example, the synthesis of a protocol entity specification for the sender side, 
PSS, of the connection-oriented protocol from given interaction scenarios, is dis-
cussed. The training sequences, TS, were produced from the MSC specification of 
Fig. 2 using the derivation method presented in Subsection 3.1. The TS length was 
evaluated using six inputs (I) and an estimated value of five for the parameter S, as 
described in Subsection 3.2, leading to a 168-input/output TS. In fact, eighteen (N = 
18) 32 bits-TSs (wi = 1) were used corresponding to more than three 168-length TSs. 

The problem consists in finding a minimum-state deterministic FSM consistent 
with the derived TSs. The population size, M, and the maximum number of 
generations, GMAX, were chosen as 500 and 3,000, respectively. The two-point 
crossover and mutation probabilities were set to pc = 0.65 and pm = 0.05, respectively. 
Linear rank selection was used considering the elitist strategy. The population of 
FSMs was created using the BNF described in Subsection 3.3 allowing FSM 
implementations with up to six states. The factor K(S) was defined by the set of 
values K(S) = {0.01, 0.008, 0.006, 0.004, 0.002, 0.000} for S = {1, 2, 3, 4, 5, 6} 
respectively. GR was continuously evaluated over 50 generations, except for the first 
50 generations and at the end of the evolution where it was set to 1; in this last case 



because GR tends naturally to zero. To improve the population diversity the mutation 
probability, pm, was increased to 0.15 whenever GR = 0. 

Fig. 4 depicts the fitness curve of the best FSM, its number of states and GR for a 
typical run. In this figure, it can be observed that at the first 50 generations the num-
ber of states of the best FSM fluctuate significantly due to the high population diver-
sity. The same behavior is observed between generations 153 and 205, this time as 
GR is set to zero. Finally it can be observed that, in general, each increase in the fit-
ness value of the best FSM is correlated with an increase followed by a decrease in 
the number of its states. This is particularly perceptible at the first 50 generations and 
between generations 260 and 350. The state-transition graph (STG) of the 4-state 
resulting FSM, which successfully describes the PSS after 576 output hits at genera-
tion 435, is given in Fig. 5. 
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Fig. 4. Fitness curve of the best individual 

 
It should be mentioned that the proposed system does not generate the minimal 

FSM in all successful runs, i.e., runs that achieve all output hits within the specified 
GMAX. In some trials the fitness value of the best individual got stuck into local optima 
for a great number of generations. In these cases the system provokes the premature 
selection of FSMs with the highest possible number of states yielding to non-optimal 
solutions. To minimize the early selection of large FSMs, a “selection restriction” 
procedure was implemented. According with this procedure, individuals with two or 
more extra states by report to a previous best-fitted individual were disqualified to the 
selection step. 



    INPUT           OUTPUT

   C_Req - 0       C_Conf - 0
   D_Req - 1       D_Ind - 1
   cr - 2    cc - 2
   dr - 3    dr - 3
   R_Req - 4    R_Conf - 4
   rr - 5    ra - 5

   Null - 6

Coding Table

Chromosome: 320106060606 160316012516  260310012614  360310013636
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Fig. 5. PSS, using STG, of the fittest FSM 

 
Table 1 compares the results of 50 independent runs performed with three different 

setups. In Setup 1 the fitness function does not take into account the number of states. 
In Setup 2 the fitness function is weighed by the number of states, according to eq. 1, 
but does not include the selection restriction procedure. In Setup 3 both a weighed 
fitness function and the selection restriction procedure are applied. From Table 1 it 
can be conclude: (a) Without an explicit control in the number of states the system 
tends to breed a solution using all available states, (b) The control of the number of 
states coupled with the selection restriction procedure implemented in Setup 3 allow 
to converge to the minimum FSM in 59% of all successful runs. This represents an 
improvement of, approximately, 400% by report to Setup 2. (c) The number of runs 
not yielding to the global optimum in 3,000 generations remained basically the same, 
regardless of controlling or not the number of states of the FSM. 

Table 1. Comparison among three different setups for 50 independent runs 

 

SETUP Runs yielding to global optimum in 
3,000 generations 

 

Runs not yielding to 
global optimum in 
3,000 generations 4 states 5 states 6 states 
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=
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 20 0 3 27 

2. Eq. (1) 18 4 15 13 

3. Eq. (1) with 
selection restriction 

21 17 9 3 



5. CONCLUSION 

An evolutionary approach to the design of communication protocols specified by 
Message Sequence Charts was presented. As in other construction approaches [2, 3] 
the assumption that a set of MSCs specifies the system behavior completely was 
adopted. However, the methodology relaxes the exact MSC interpretation by adding 
behaviors not explicitly specified by the MSCs and, contrary to [3], avoids the over-
generalization of the synthesized automata. 

State-based representation is not efficient for systems with large number of states. 
However, the benefit of using it in the protocol synthesis is that it guarantees the 
completeness of the synthesized specifications. 

The resulting automata are minimal in many cases, deterministic and completely 
specified by construction. The application of an analytic method, such as that used in 
[2], on MSC specification of Fig. 2 yields, in the first steps, a non-deterministic FSM. 
Moreover, contrary to SCED approach, the proposed approach is not sensitive to the 
order of traces in its input. 
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