
Low Cost Security: Explicit Formulae

for Genus-4 Hyperelliptic Curves

Jan Pelzl, Thomas Wollinger, and Christof Paar

Department of Electrical Engineering and Information Sciences
Communication Security Group (COSY)

Ruhr-Universität Bochum, Germany
{pelzl,wollinger,cpaar}@crypto.rub.de

Abstract. It is widely believed that genus four hyperelliptic curve cryp-
tosystems (HECC) are not attractive for practical applications because
of their complexity compared to systems based on lower genera, espe-
cially elliptic curves. Our contribution shows that for low cost security
applications genus-4 hyperelliptic curves (HEC) can outperform genus-2
HEC and that we can achieve a performance similar to genus-3 HEC.
Furthermore our implementation results show that a genus-4 HECC is
an alternative cryptosystem to systems based on elliptic curves.
In the work at hand we present for the first time explicit formulae for
genus-4 HEC, resulting in a 60% speed-up compared to the best pub-
lished results. In addition we implemented genus-4 HECC on a Pentium4
and an ARM microprocessor. Our implementations on the ARM show
that for genus four HECC are only a factor of 1.66 slower than genus-2
curves considering group order ≈ 2190. For the same group order ECC
and genus-3 HECC are about a factor of 2 faster than genus-4 curves
on the ARM. The two most surprising results are: 1) for low cost secu-
rity application, namely considering an underlying group of order 2128,
HECC with genus 4 outperform genus-2 curves by a factor of 1.46 and
has similar performance to genus-3 curves on the ARM and 2) when
compared to genus-2 and genus-3, genus-4 HECC are better suited to
embedded microprocessors than to general purpose processors.

Keywords: Hyperelliptic curves, genus four, explicit formulae, efficient
implementation, low cost security, embedded application, comparison
HECC vs. ECC

1 Introduction

It is widely recognized that data security will play a central role in the design
of future IT systems. One of the major tools to provide information security is
public-key cryptography. Additionally, one notices that more and more IT ap-
plications are realized as embedded systems. In fact, 98% of all microprocessors
sold today are embedded in household appliances, vehicles, and machines on fac-
tory floors [9, 3], whereas only 2% are used in PCs and workstations. Embedded
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processors have a 100 – 1000 times lower computational power than conven-
tional PCs. In addition to many other challenges, the integration of security and
privacy in the existing and new embedded applications will be a major one.

Since the invention of public-key (PK) cryptography in 1976, three dif-
ferent variants of PK cryptosystems of practical relevance have been intro-
duced, namely cryptosystems based on the difficulty of integer factorization
(e.g. RSA [36]), solving the discrete logarithm problem in finite fields (e.g. Diffie-
Hellman [6]), and the discrete logarithm problem (DLP) in the group of points
of an elliptic curve (EC) over a finite field [29, 17]. Hyperelliptic curve cryptosys-
tems (HECC) are a generalization of elliptic curve cryptosystems (ECC) that
were suggested in 1988 for cryptographic applications [18].

Considering the implementation aspects of the three public-key variants, one
notices that a major difference is the bit-length of the operands. It is widely
accepted that for commercial applications one needs 1024-bit operands for RSA
or Diffie-Hellman. In the case of ECC or HECC applications, a group order of
size ≈ 2160 is believed to be sufficient for moderate long-term security. In this
contribution we consider genus-4 HECC over Fq and therefore we will need at
least 4 · log2 q ≈ 2160. In particular, for these curves, we will need a field Fq with
|Fq| ≈ 240, i.e., 40-bit long operands. However, in many low cost and embedded
applications lower security margins are adequate. In practice, if a group order
of 2128 is sufficient, the operations can be performed with an operand length of
32-bit. Thus, the underlying field operations can be implemented very efficiently
if working with 32-bit microprocessors (e.g. ARM). It is important to point out
that the small field sizes and the resulting short operand size of HECC compared
to other cryptosystems makes HECC specially promising for the use in embedded
environments. We discuss the security of such curves in Section 4.2.

Our Contributions

The work at hand presents for the first time explicit formulae for genus-4 curves.
Genus-4 HECC did not draw a lot of attention in the past because they seem
to be far less efficient than genus-2 HECC, genus-3 HECC, and ECC. Our con-
tribution is a major step in accelerating this kind of cryptosystem and contrary
to common belief we were able to develop explicit formulae that perform the
scalar multiplication 72% and 60% faster than previous work by Cantor [5] and
Nagao [32], respectively.

Genus-4 HECC are well suited for the implementation of public-key cryp-
tosystems in constrained environments because the underlying arithmetic is per-
formed with relatively small operand bit-lengths. In this contribution, we present
our implementation of this cryptosystem on an ARM and a Pentium micropro-
cessor. We were able to perform a 160bit scalar multiplication in 172 msec on
the ARM@80MHz and in 6.9 msec on the Pentium4@1.8GHz. In addition, our
implementations show, that genus-4 HECC are only a factor of 1.66 and 2.08
slower than genus-2 and genus-3 curves considering group order of ≈ 2190, re-
spectively. Compared to ECC, the genus-4 HECC are a factor of 2 slower for the
same group order .
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Genus-4 HEC are well suited, especially for cryptographic applications with
short term security. Performing arithmetic with 32-bit operands only, genus-
4 HECC allow for a security comparable to of 128-bit ECC. We implemented
genus-4 HECC with underlying field arithmetic for 32-bit. In this case one is
able to perform arithmetic with only one word. Contrary to the general case,
the implementation of genus-4 curves in groups of order ≈ 2128 outperform
genus-2 curves by a factor of about 1.5. Furthermore, our implementation shows
that, HECC with genus three and four have similar performance considering the
group order ≈ 2128.

The remainder of the paper is organized as follows. Section 2 summarizes
contributions dealing with previous implementations and efficient formulae of
genus-4 HECC. Section 3 gives a brief overview of the mathematical back-
ground related to HECC and Section 4 considers the security of the implemented
HECCs. Sections 5 and 6 present our new explicit formulae for genus-4 curves
and methodology used for our implementation. Finally, we end this contribution
with a discussion of our results and some conclusions.

2 Previous Work

We will first summarize previous improvements on genus-4 HEC group opera-
tions and second introduce implementations published in earlier contributions.

Improvements to HECC Group Operations of Genus-4 HECC Can-
tor [5] presented algorithms to perform the group operations on HEC in 1987.
In recent years, there has been extensive research being performed to speed up
the group operations on genus two HECC [32, 16, 27, 30] [43, 23, 24, 25] and
genus three [32, 22, 34].
Only Nagao [32] tried to improve Cantor’s algorithm for higher genera.

Nagao evaluated the computational cost of the group operations by applying
the stated improvements for genus 2 ≤ g ≤ 10. The most efficient group addition
for genus-4 curves needs 2I + 289M/S or 3I + 286M/S (depending on the cost of
the field inversion compared to multiplications, one or the other is more efficient).
I refers to field inversion, M to field multiplication, S to field squaring, and M/S
to field multiplications or squarings, since squarings are assumed to be of the
same complexity as multiplications in these publications. For the computation
of a group doubling in genus-4 curves one has to perform 2I + 268M/S or 3I +
260M/S. Notice that the ideas proposed by [32] are used to improve polynomial
arithmetic.

Genus-4 HECC Implementations Since HECC were proposed, there have
been several software implementations on general purpose machines [21, 38] [42,
39, 27, 30, 22, 23] and publications dealing with hardware implementations of
HECC [46, 4]. Only very recently work dealing with the implementation of HECC
on embedded systems was published in [33, 34].
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Table 1. Execution times of recent HEC implementations in software

reference processor genus field tscalarmult. in ms

[21] Pentium@100MHz 4 F231 1100

[38] Alpha@467MHz 4 F241 96.6
Pentium-II@300MHz 4 F241 10900

[39] Alpha21164A@600MHz 4 F241 43

The results of previous genus-4 HECC software implementations are summa-
rized in Table 1. All implementations use Cantor’s algorithm with polynomial
arithmetic. We remark that the contribution at hand is the first genus-4 HECC
implementation based on explicit formulae.

3 Mathematical Background

The mathematical background described in this section is limited to the material
that is required in our contribution. The interested reader is referred to [19, 28,
20] for more details.

3.1 HECC and the Jacobian

Let F be a finite field, and let F be the algebraic closure of F. A hyperelliptic
curve C of genus g ≥ 1 over F is the set of solutions (u, v) ∈ F×F to the equation

C : v2 + h(u)v = f(u)

The polynomial h(u) ∈ F[u] is of degree at most g and f(u) ∈ F[u] is a monic
polynomial of degree 2g +1. For odd characteristic it suffices to let h(u) = 0 and
to have f(u) square free.

A divisor D =
∑

miPi, mi ∈ Z, is a finite formal sum of F-points. The set
of divisors of degree zero will be denoted by D0. Every rational function on the
curve gives rise to a divisor of degree zero and is called principal. The the set of
all principal divisors is denoted by P. We can define the Jacobian of C over F,
denoted by JC(F) as the quotient group D0/P.

In [5] it is shown that the divisors of the Jacobian can be represented as
a pair of polynomials a(u) and b(u) with deg b(u) < deg a(u) ≤ g, with a(u)
dividing b(u)2 + h(u)b(u)− f(u) and where the coefficients of a(u) and b(u) are
elements of F [31]. In the remainder of this paper, a divisor D represented by
polynomials will be denoted by div(a, b).

3.2 Group Operations in the Jacobian

This section gives a brief description of the algorithms used for adding and dou-
bling divisors on JC(F). Algorithm 1 describes the group addition. Doubling
a divisor is easier than general addition and therefore, Steps 1,2, and 3 of Algo-
rithm 1 can be simplified as follows:
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Algorithm 1 Group addition

Require: D1 = div(a1, b1), D2 = div(a2, b2)
Ensure: D = div(a3, b3) = D1 + D2

1: d = gcd(a1, a2, b1 + b2 + h) = s1a1 + s2a2 + s3(b1 + b2 + h)
2: a′

0 = a1a2/d2

3: b′0 = [s1a1b2 + s2a2b1 + s3(b1b2 + f)]d−1(moda′
0)

4: k = 0
5: while deg a′

k > g do
6: k = k + 1

7: a′
k =

f−b′k−1h−(b′k−1)2

a′
k−1

8: b′k = (−h − b′k−1) mod a′
k

9: end while
10: Output (a3 = a′

k, b3 = b′k)

1: d = gcd(a, 2b + h) = s1a + s3(2b + h)
2: a′

0 = a2/d2

3: b′0 = [s1ab + s3(b2 + f)]d−1(moda′
0)

3.3 Harley’s Algorithm

The algorithms given in the previous section for the group operations in the
Jacobian of HEC require the use of polynomial arithmetic for polynomials with
coefficients in the definition field. An alternative approach for genus-2 curves
was proposed by Harley in [15]. Harley computes the necessary coefficients from
the steps of Cantor’s algorithm directly in the definition field without the use of
polynomial arithmetic, resulting in a faster execution time.

In [15], the authors found out that it is essential to know the weight of the
input divisor to determine explicit formulae. For each case, implementations of
different explicit formulae are required. However, for practical purposes it is
sufficient to only consider the most frequent cases1 which occur with probability
of 1−O(1/q), where q is the group order. General formulae for the most frequent
case for genus-2 curves and arbitrary characteristic were presented in [23].

Algorithm 2 and 3 describe the most frequent case of group addition and
doubling for genus-4 curves, respectively.

In Section 5 we develop for the first time explicit formulae of Cantor’s Algo-
rithm for genus-4 curves.

4 Security of the Implemented HECC

4.1 Security of HECC with High Genera

The DLP on J(F) can be stated as follows: given two divisors D1, D2 ∈ J(F),
determine the smallest integer m such that D2 = mD1, if such an m exists.
1 For addition the inputs are two co-prime polynomials and for doubling the input is

a square free polynomial.
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Algorithm 2 Most Frequent Case for Group Addition (g=4)

Require: D1 = div(a1, b1), D2 = div(a2, b2)
Ensure: D3 = div(a3, b3) = D1 + D2

1: k =
f−b1h−b21

a1
(exact division)

2: s ≡ b2−b1
a1

mod a2

3: z = sa1

4: a = k−s(z+h+2b1)
a2

(exact division)

5: a′ = a made monic
6: b′ ≡ −(h + z + b1) mod a′

7: a3 = f−b′h−(b′)2
a′ (exact division)

8: b3 ≡ −(b′ + h) mod a3

Algorithm 3 Most Frequent Case for Group Doubling (g=4)

Require: D1 = div(a1, b1)
Ensure: D2 = div(a2, b2) = 2D1

1: k = b2−bh−f
a

(exact division)
2: s ≡ k

h+2b
mod a

3: a′ = s2 + k−s(h+2b)
a

(exact division)
4: a′′ = a′ made monic
5: b′′ ≡ −(h + sa + b) mod a′

6: a2 = f−b′′h−(b′′)2
a′′ (exact division)

7: b2 ≡ −(b′′ + h) mod a2

The Pollard rho method and its variants [35, 45, 13] solve the DLP with
complexity O(

√
n) in generic groups of order n. In [11, 37] attacks against spe-

cial cases of HECC were discovered with complexity smaller than O(
√

n). An
algorithm to compute the DL in subexponential time for sufficiently large
genera and its variants were published in [1, 10, 7, 14, 8]. The complexity
of this algorithm is only better than the Pollard’s rho method for g ≥ 3. In [14]
it is shown that index-calculus algorithms in the Jacobian of HEC have a higher
complexity than the Pollard rho method for curves of genus greater than 4. Re-
cent results by Thériault [44] show progress in attacks against HEC of genus 4.
An asymptotic running time of O(n14/9) compared to O(n2) for Pollard’s rho
can be achieved. However, an actual attack on curves of group order of ≈ 2128

is currently infeasible due to high storage usage. Furthermore, the values given
in [44] are asymptotical, thus, large constant factors might influence the running
times for small group orders.

4.2 Security of 128-bit HECC

In [26], Lenstra and Verheul argue, that for commercial security in the year
2003, 136-bit ECC should be considered. Furthermore, the authors state that
ECC using 136-bit keys are as secure as 1068-bit keys for RSA or DSS. This
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notion of commercial security is based on the hypothesis that a 56-bit block
cipher offered adequate security in 1982.

It is also worth to point out that the factorization of the 512-bit RSA chal-
lenge took only about 2% of the time required to break the ECC2K-108 challenge
(or to break DES). This implies that ECC or HECC in groups of order 2128 offer
far more security than a 512-bit RSA system. Nevertheless, RSA with a 512-bit
key is still in use, for example in fielded smart card applications.

5 First Explicit Formulae for Genus-4 HECC

For the derivation of the explicit formulae, all polynomial calculations have to
be mapped onto field operations.

The work at hand is the first approach using explicit formulae to optimize
the group operations for genus-4 HEC. Table 7 presents the explicit formulae for
a group addition and Table 8 those for a group doubling. The complexity of the
formulae shown in the tables is based on the assumption that the coefficients hi

of h(x) = h4x
4 + h3x

3 + h2x
2 + h1x + h0 are from {0, 1}. In addition, we can

set f8 to zero by substituting x′ = x + f8
9 . Thus, all multiplications with the

coefficients hi for i ∈ {0, 1, 2, 3, 4} and f8 are neglected in the total operation
count. A comparison of the computational complexity of our approach with the
results of previously done work on genus-4 curves is illustrated in Table 2.

An extensive description on the methodology to reduce the complexity of the
group operation can be found in [22, 23, 33].

A detailed analysis of the explicit formulae give rise to certain types of curves
with good properties, i.e. optimum performance regarding the number of re-
quired field operations for the execution of the group operations. As a result of
this analysis, curves of the form y2 + y = f(x) over extension fields of character-
istic two turn out to be ideal. Unfortunately this kind of curve is supersingular
and therefore not suited for use in cryptography [14, 12, 40]. Thus, we pro-
pose to use HEC of the form y2 + xy = f(x) over F2n , which seem to be the
best choice without any security limitations. With these curves, we can save 12
multiplications in the case of the group addition and 118 multiplications the for
group doubling.

The following comparison is based on the assumption that a scalar multipli-
cation with an n-bit scalar is realized by the sliding window method. Hence, the
approximated cost of the scalar multiplication is n ·doublings +0.2 ·n ·additions
for a 4-bit window size [2]. For arbitrary curves over fields of general character-
istic, we achieve a 24% improvement2 compared to the results presented in [32].
In the case of HEC over F2n with h(x) = x, we can reach an improvement up
to 60% compared2 to the best known formulae for genus-4 curves. When com-
paring our result to the original formulae presented by Cantor, the speed up is
72% and 47% for curves with h(x) = x and general curves2, respectively.
2 We assumed, that the computation time for one inversion is approximately the same

as for 8 multiplications. This value is fortified by several implementations targeting
HECC on 32-bit processors, see Appendix A.
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Table 2. Complexity comparison of the group operations on HEC of genus four

field curve cost
characteristic properties addition doubling

Cantor [32] general 6I + 386M/S 6I + 359M/S
Nagao [32] odd h(x) = 0, fi ∈ F2 2I + 289M/S 2I + 268M/S
This work (Tables 7, 8) general hi ∈ F2, f8 = 0 2I + 160M + 4S 2I + 193M + 16S

two h(x) = x, f8 = 0 2I + 148M + 6S 2I + 75M + 14S

6 HECC Implementation

We implemented the derived explicit formulae for genus-4 HECC from Section 5
on a Pentium4 and on an ARM microprocessor. This contribution is the first to
implement explicit formulae for genus-4 HECC and is also the first to run this
cryptosystem on an embedded processor as the ARM7TDMI.

6.1 Methodology

This subsection provides a short overview of the tools and the methodology used
which finally lead to a successful implementation of the group operations.
The methodology is as follows:

1. Test the explicit formulae: NTL-based [41] implementation of Cantor’s algo-
rithm and of the new explicit formulae.

2. Speeding up the implementation: We developed our own library for the re-
quired field and group operations.

3. Testing the code on the Pentium.
4. Portation to the ARM: The code was loaded into the ARM7TDMI@80MHz

(ARMulator).
5. Running and testing genus-4 HECC on the ARM7TDMI (ARMulator).
6. Detailed timing analysis for different field sizes and curves.

6.2 The ARM Processor

As primary target platform, we choose the popular embedded 32-bit ARM mi-
croprocessor which can be found in mobile communication devices and consumer
electronics. ARM stands for Advanced RISC Machine and shows a typical RISC
architecture with additional features like flag-depending instruction execution.
ARM 7 is based on a von Neuman architecture. It is well suited for small hand
held devices such as PDAs. As a reference and for testing we implemented all
cryptosystems as well on a Pentium4.

7 Results

In this section we present our implementation results for the ARM and the
Pentium. In the first part we discuss our results for standard commercial secu-
rity application, whereas the second part concentrates on low cost security with
genus-4 curves.
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7.1 Pentium and ARM Timings

Tables 3 and 4, present the execution times for genus-4 HECC operations on
the ARM processor and the Pentium, respectively. We provide timings for the
group addition, group doubling and the scalar multiplication for different group
orders. In addition we present the timings for genus-3 HECC, genus-2 HECC,
and ECC using the same underlying library running on the same processor for
comparison [34]. The formulae used for HECC implementation of genera two [23]
and three [34] are to our knowledge the most efficient. In the case of ECC
projective coordinates were used.

Contrary to common believe, the results show that genus-4 curves are worth
to implement on 32-bit processors, though their performance for group orders
larger than 2160 is slightly worse than that of HECC with genus g ≤ 3. Consider-
ing a group order of approximately 2190, genus-2 and genus-3 curves are a factor
of 1.66 and a factor of 2.08, respectively, better than the introduced formulae for
genus-4 HECC on the ARM7TDMI. Similarly, we obtain speed-ups of a factor
of 1.72 and factor of 2.77 when using genus-2 and genus-3, respectively, com-

Table 3. Timings of group operations with ARMulator ARM7TDMI@80MHz (explicit
formulae)

Genus Field Group order Group addition Group doubling Scalar. mult.
in µs in µs in ms

F240 2160 1315 740 172.43
F241 2164 1304 734 174.80

4 F244 2176 1319 747 190.07
F246 2184 1323 752 199.49
F247 2188 1310 745 201.89
F263 2252 1372 797 286.51

3 F263 2189 615 219 72.09

2 F295 2190 511 504 121.49

1 F2191 2191 598 358 100

Table 4. Timings of group operations on the Pentium4@1.8GHz (explicit formulae)

Genus Field Group order Group addition Group doubling Scalar. mult.
in µs in µs in ms

F240 2160 51.0 29.3 6.88
F241 2164 49.7 27.6 6.96

4 F244 2176 49.9 27.9 7.50
F246 2184 50.1 28.2 7.92
F247 2188 50.3 29.3 8.05
F263 2252 51.6 29.8 8.43

3 F263 2189 23.4 8.6 2.91

2 F295 2190 19.1 18.8 4.68

1 F2191 2191 15.4 8.7 2.78
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pared to genus-4 curves on the Pentium4 for the same group order. Compared
to ECC, genus-4 HECC performs a factor of 2.90 and a factor of 2.02 worse on
the Pentium and ARM7TDMI, respectively.

Notice that the relative performance of genus-4 HECC is always better on
the ARM microprocessor compared to the Pentium. Hence, we conclude that
genus-4 HECC are well suited for the encryption in constraint environments
and we encourage the research community to put more effort into the further
development of this system.

7.2 Low Cost Security

In contrast to the facts mentioned in Section 7.1, there is a clear benefit of using
genus-4 HECC over a 32-bit finite field. For hyperelliptic curve cryptosystems
with a group order of ≈ 2128, genus-4 group operations only require 32-bit field
arithmetic. Thus, the processor word is optimal utilized and the cryptosystem
does not need additional multi-precision arithmetic.

Analyzing the results for a group order of around 2128 as presented in Table 5,
a major advantage of genus-4 HEC is noticeable. The comparison of the timings
yield to following facts (numbers in parenthesis are for the Pentium timings):

– Genus-4 HECC outperforms genus-2 HECC by a factor of 1.46 (1.24)
– HECC of genus 3 are slightly faster by a factor of 1.04 (1.08) than genus-4

HECC

As a result of this comparison, we suggest the use of genus-4 HECC for short
term security applications. Despite the high number of required field operations
compared to HEC with genus g ≤ 3, group operations on genus-4 HEC are easier
to implement. This fact relies on the relatively simple field arithmetic based on
operands of length no longer than 32 bits.

Table 5. Timings on the ARM7TDMI@80MHz and Pentium4@1.8GHz for group
order ≈ 2128 (explicit formulae)

ARMulator ARM7TDMI@80MHz
Genus Field Group order Group addition Group doubling Scalar. mult.

in µs in µs in ms

4 F232 2128 441 260 49.07

3 F243 2129 603 199 47.13

2 F263 2126 450 443 71.54

Pentium4@1,8GHz
4 F232 2128 17.3 11.6 2.14

3 F243 2129 23.6 8.2 1.98

2 F263 2126 16.8 15.9 2.66
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8 Conclusions

The work at hand presents major improvements to hyperelliptic curve cryp-
tosystems of genus 4. We were able to reduce the average complexity of a scalar
multiplication by up to 60% compared to the currently best known formulae.
The steps of the explicit formulae used to compute the group operations are
presented for the first time for the case of genus-4 curves.

Additionally, we showed with the first implementation of genus-4 HECC on
an embedded microprocessor that this cryptosystem is better suited for the use
in embedded environments, than to general purpose processors. Contrary to
common believe, our timing results show the practical relevance of this system.

Especially for applications based on asymmetric algorithms with group or-
ders around 2128, genus-4 HECC can be consider a viable choice. Not only the
underlying field operations consist of simple 32-bit operations, but also we get
better performance than genus-2 curves and similar speed than genus-3 curves.
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A Timings for Field Operation

In this section we present the timings for field operations for selected field orders.

Table 6. Timings field operations for genus-4 HECC

ARMulator ARM7TDMI@80MHz
Field Group order Field inversion Field multiplication inversion /

in µs in µs multiplication

F232 2128 26.8 2.6 10.16

F240 2160 49.2 7.3 6.73

F247 2188 77.5 7.3 10.5

Pentium4@1.8GHz
Field Group order Field inversion Field multiplication inversion /

in ns in ns multiplication

F232 2128 1650 168 9.82

F240 2160 2519 413 6.04

F247 2188 3752 402 9.33
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B Explicit Formulae Genus-4 HECC

Table 7. Explicit formulae for adding on a HEC of genus four

Input Weight four reduced divisors D1 = (a1, b1) and D2 = (a2, b2)

where: a1 = x4 + ax3 + bx2 + cx + d;

b1 = ix3 + jx2 + kx + l

a2 = x4 + ex3 + fx2 + gx + h;

b2 = mx3 + nx2 + ox + p

h = h4x4 + h3x3 + h2x2 + h1x + h0, where hi ∈ {0, 1};

f = x9 + f7x7 + f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0
Output A weight four reduced divisor D3 = (a3, b3) = D1 + D2

where: a3 = x4 + ãx3 + b̃x2 + c̃x + d̃;

b3 = ĩx3 + j̃x2 + k̃x + l̃

Step Procedure (For simplicity, only the implemented case is given.) Cost
1 Almost inverse inv = r/a1 mod a2 = inv3x3 + inv2x2 + inv1x + inv0:

r23 = e + a; r22 = f + b; r21 = g + c; r20 = h + d; t20 = 1;
r33 = r23 · a + r22; r32 = r23 · b + r21; r31 = r23 · c + r20; r30 = r23 · d;
t31 = 1; t30 = r23; r42 = r33 ·r22 +r23 ·r32; r41 = r33 ·r21 +r23 · r31;

r40 = r33 · r20 + r23 · r30; t41 = r23; t40 = r33 + r2
23;

r52 = r42 · r32 + r33 · r41; r51 = r42 · r31 + r33 · r40;
r50 = r42 · r30; t52 = r33 · t41; t51 = r42 + r33 · t40; t50 = r42 · r23;
r61 = r52 · r41 + r42 · r51; r60 = r52 · r40 + r42 · r50; t62 = r42 · t52;

t61 = r52·t41+r42·t51; t60 = r52·t40+r42·t50; r71 = r61·r51+r52·r60;

r70 = r61 · r50; t73 = r52 · t62; t72 = r61 · t52 + r52 · t61;

t71 = r61 · t51 + r52 · t60; t70 = r61 · t50; r80 = r71 · r60 + r61 · r70;
inv3 = r61 · t73; inv2 = r71 · t62 + r61 · t72;

inv1 = r71 · t61 + r61 · t71; inv0 = r71 · t60 + r61 · t70;

45M + 1S 46M

2 s′ = rs ≡ (b2 − b1)inv mod a2 = s′3x3 + s′2x2 + s′1x + s′0 (Karatsuba):

ta = m+i; tb = n+j; tc = o+k; td = p+l; te = inv3; tf = inv2; tg =
inv1; th = inv0; t0 = tc · tg ; t1 = tb · tf ; t2 = ta · te; t3 = tb · tg;

t4 = tc · tf ; t10 = td · th; t11 = (tc + td) · (tg + th) + t0 + t10;

t12 = (tb + t − d) · (tf + th) + t10 + t1 + t0;

t13 = (ta + td) · (te + th) + t10 + t2 + t3 + t4;

t14 = (ta + tc) · (te + tg) + t2 + t0 + t1;

t15 = (ta + tb) · (te + tf ) + t2 + t1; t16 = t2; t17 = t15 + e · t16;

t18 = e · t17 + t16 · f + t14; s′3 = e · t18 + f · t17 + g · t16 + t13; s′2 =
f · t18 + g · t17 + h · t16 + t12;

s′1 = g · t18 + h · t17 + t11; s′0 = h · t18 + t10;

23M 23M

3 s = x3 + s2x2 + x1x + s0 = s′ made monic:

t1 = r80 · s′3; w6 = t
−1
1 ; w7 = r80 · w6; w4 = r80 · w7; w3 = s′3

2 · w6;

w5 = w2
4; s0 = s′0 · w7; s1 = s′1 · w7; s2 = s′2 · w7;

I + 7M + 2S I + 7M + 2S

4 z = sa1 = x7 + z6x6 + z5x5 + z4x4 + z3x3 + z2x2 + z1x + z0 (Karats.):
t0 = c · s1; t1 = b · s2; z0 = s0 · d; z1 = (c + d) · (s1 + s0) + t0 + z0;
z2 = (b+d)·(s2+s0)+z0+t1+t0; z3 = (a+d)·(1+s0)+z0+a+b·s1+c·s2;
z4 = (a+c)·(1+s1)+a+t0+t1+s0; z5 = (a+b)·(1+s2)+a+t1+s1; z6 =
a + s2; z7 = 1;

10M 10M

5 a′ = [s(z + w4(h + 2b1)) − w5((f − b1h − b21)/a1)]/a2

= x6 + u′
5x5 + u′

4x4 + u′
3x3 + u′

2x2 + u1x + u0:

t1 = s2 · w4; t2 = s1 · w4; diff4 = s2 · z6 + z5 + s1 + f;

diff3 = g + z4 + s0 + s2 · z5 + s1 · z6;
diff2 = h + z3 + s2 · z4 + s1 · z5 + s0 · z6;
diff1 = s2 · z3 + s1 · z4 + s0 · z5 + z2 + w5;

diff0 = w4 +s2 ·z2 +s1 · z3 +s0 ·z4 +w5 ·a+z1; u′
5 = z6 +s2 +e; u′

4 =

diff4 + e · u′
5;

u′
3 = diff3 + e · u′

4 + f · u′
5; u′

2 = diff2 + e · u′
3 + f · u′

4 + g · u′
5;

u′
1 = diff1 + e · u′

2 + f · u′
3 + g · u′

4 + h · u′
5;

u′
0 = diff0 + e · u′

1 + f · u′
2 + g · u′

3 + h · u′
4;

29M 34M

6 b′ = −(w3z + h + b1) mod a′ = v′
5x5 + v′

4x4 + v′
3x3 + v′

2x2 + v′
1x + v′

0:

t1 = u′
5 +z6; v′

5 = w3 · (+u′
5 ·t1 +u′

4 +z5); v′
4 = w3 · (+u′

4 ·t1 +u′
3 +z4);

v′
3 = w3 · (+u′

3 · t1 + u′
2 + z3) + i; v′

2 = w3 · (+u′
2 · t1 + u′

1 + z2) + j;

v′
1 = w3 · (+u′

1 · t1 + u′
0 + z1) + 1 + k; v′

0 = w3 · (+u′
0 · t1 + z0) + l;

12M 12M

7 a′
3 = (f − b′h − b′2)/a′ = u34x4 + u33x3 + u32x2 + u31x + u30:

diff3 = 1; diff2 = v′
4
2
; diff1 = f7; diff0 = f6 + v′

5 + v′
3
2
; u34 = v′

5
2
;

u33 = diff3 + u34 · u′
5; u32 = diff2 + u34 · u′

4 + u33 · u′
5;

u31 = diff1 + u34 · u′
3 + u33 · u′

4 + u32 · u′
5;

u30 = diff0 + u34 · u′
2 + u33 · u′

3 + u32 · u′
4 + u31 · u′

5;

10M + 3S 16M + 2S

8 a3 = x4 + ãx3 + b̃x2 + c̃x + d̃ = a′
3 made monic:

t0 = u
−1
34 ; ã = u33 · t0; b̃ = u32 · t0; c̃ = u31 · t0; d̃ = u30 · t0;

I + 4M I + 4M

9 b3 = −(b′ + h) mod a3 = ĩx3 + j̃x2 + k̃x + l̃:

t0 = v′
4 + v′

5 · a3; ĩ = ã · t0 + b̃ · v′
5 + v′

3; j̃ = b̃ · t0 + c̃ · v′
5 + v′

2;

k̃ = c̃ · t0 + d̃ · v′
5 + v′

1 + 1; l̃ = d̃ · t0 + v′
0;

8M 8M

Total in fields of arbitrary characteristic 2I+160M+4S
in fields of characteristic 2 and h(x) = x 2I+148M+6S
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Table 8. Explicit formulae for doubling on HEC of genus four

Input A weight four reduced divisor D1 = (a1, b1)

where: a1 = x4 + ax3 + bx2 + cx + d;

b1 = ix3 + jx2 + kx + l

h = h4x4 + h3x3 + h2x2 + h1x + h0, where hi ∈ {0, 1};

f = x9 + f7x7 + f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0;
Output A weight four reduced divisor D2 = (a2, b2) = [2]D1

where: a2 = x4 + ãx3 + b̃x2 + c̃x + d̃;

b2 = ĩx3 + j̃x2 + k̃x + l̃

Step Procedure (For simplicity, only the implemented case is given.) Cost
1 Almost inverse inv = r/(h + 2b1) mod a1

= inv3x3 + inv2x2 + inv1x + inv0:
inv3 = 1; inv2 = a; inv1 = b; inv0 = c;

− 45M

2 z = ((f − hb1 − b21)/a1) mod a1 = x4 + z3x3 + z2x2 + z1x + z0:

diff2 = i2 + c; diff0 = j2 + i; z′
4 = a; z′

3 = b + a2 + f7;

z′
2 = diff2 + a · (z′

3 + b) + f6; z′
1 = d + a · (z′

2 + c) + b · z′
3 + f5;

z′
0 = diff0 + a · (z′

1 + d) + b · z′
2 + c · z′

3 + f4;

z3 = b + z′
3; z2 = c + z′

2; z1 = d + z′
1; z0 = z′

0;

6M + 3S 16M + 2S

3 s′ = zinv mod a1 = s′3x3 + s′2x2 + s′1x + s′0 (Karatsuba):

t1 = z1 · inv1; t2 = z2 · inv2; t10 = z0 · inv0; t16 = z3 · inv3;

t15 = (z3 + z2) · (inv3 + inv2) + t16 + t2;

t14 = (z3 + z1) · (inv3 + inv1) + t16 + t1 + t2;

t13 = (z3 + z0) · (inv3 + inv0) + t10 + t16 + z2 · inv1 + z1 · inv2;

t12 = (z2 + z0) · (inv2 + inv0) + t10 + t2 + t1;

t11 = (z1 + z0) · (inv1 + inv0) + t1 + t10;

t3 = t15 + a · t16; t4 = a · t3 + b · t16 + t14; s′0 = d · t4 + t10;

s′1 = c · t4 + d · t3 + t11; s′2 = b · t4 + c · t3 + d · t16 + t12;

s′3 = a · t4 + b · t3 + c · t16 + t13;

23M 23M

4 s = x3 + s2x2 + x1x + s0 = s′ made monic:

t1 = d · s′3; w6 = t
−1
1 ; w7 = d · w6; w4 = d · w7; w3 = s′3

2 · w6;

w5 = w2
4; s0 = s′0 · w7; s1 = s′1 · w7; s2 = s′2 · w7;

I + 7M + 2S I + 7M + 2S

5 G = sa1 = x7 + g6x6 + g5x5 + g4x4 + g3x3 + g2x2 + g1x + g0 (Karat.):
t0 = c · s1; t1 = b · s2; g0 = s0 · d; g1 = (c + d) · (s1 + s0) + t0 + g0;
g2 = (b+d)·(s2+s0)+g0+t1+t0; g3 = (a+d)·(1+s0)+g0+a+b·s1+c·s2;
g4 = (a+c)·(1+s1)+a+t0+t1+s0; g5 = (a+b)·(1+s2)+a+t1+s1; g6 =
a + s2;

10M 10M

6 a′ = a
−2
1 [(G + w4b1)2 + w4hG + w5(hb1 − f)]

= x6 + u′
5x5 + u′

4x4 + u′
3x3 + u′

2x2 + u1x + u0:

t0 = a2; t1 = b2; t2 = c2; t3 = g2
6; t4 = g2

5; u′
5 = 0;

u′
4 = t3 + t0; u′

3 = 0; u′
2 = t4 + t1 + t0 · (t3 + t0); u′

1 = w5;

u′
0 = g2

4 + w4 + t2 + t0 · u′
2 + t1 · (t0 + t3);

3M + 6S 52M + 10S

7 b′ = −(w3z + h + b1) mod a′ = v′
5x5 + v′

4x4 + v′
3x3 + v′

2x2 + v′
1x + v′

0:

v′
5 = w3 · (u′

4 + g5); v′
4 = w3 · (u′

4 · g6 + g4); v′
3 = w3 · (u′

2 + g3) + i;

v′
2 = w3 · (u′

2 · g6 + u′
1 + g2) + j; v′

1 = w3 · (u′
1 · g6 + u′

0 + g1) + 1 + k;

v′
0 = w3 · (u′

0 · g6 + g0) + l;

10M 12M

8 a′
2 = (f − b′h − b′2)/a′ = u24x4 + u23x3 + u22x2 + u21x + u20:

diff3 = 1; diff2 = v′
4
2; diff1 = f7; diff0 = f6 + v′

5 + v′
3
2; u24 = v′

5
2;

u23 = diff3; u22 = diff2 + u24 · u′
4; u21 = diff1 + u23 · u′

4;

u20 = diff0 + u24 · u′
2 + u22 · u′

4;

4M + 3SQ 16M + 2SQ

9 a2 = x4 + ãx3 + b̃x2 + c̃x + d̃ = a′
2 made monic:

t0 = u
−1
24 ; ã = u23 · t0; b̃ = u22 · t0; c̃ = u21 · t0; d̃ = u20 · t0;

I + 4M I + 4M

10 b2 = −(b′ + h) mod a2 = ĩx3 + j̃x2 + k̃x + l̃:

t0 = v′
4 + v′

5 · a2; ĩ = ã · t0 + b̃ · v′
5 + v′

3; j̃ = b̃ · t0 + c̃ · v′
5 + v′

2;

k̃ = c̃ · t0 + d̃ · v′
5 + v′

1 + 1; l̃ = d̃ · t0 + v′
0;

8M 8M

Total in fields of arbitrary characteristic 2I+193M+16S
in fields of characteristic 2 with h(x) = x 2I+75M+14S
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