A Chosen IV Attack Against Turing

Antoine Joux and Frédéric Muller

DCSSI Crypto Lab, 18 rue du Docteur Zamenhof
F-92131 Issy-les-Moulineaux Cedex, France
{Antoine.Joux,Frederic.Muller}@m4x.org

Abstract. In this paper, we show that the key scheduling algorithm
of the recently proposed stream cipher Turing suffers from important
flaws. These weaknesses allow an attacker that chooses the initialization
vector (IV) to recover some partial information about the secret key. In
particular, when using Turing with a 256-bit secret key and a 128-bit IV,
we present an attack that requires the ability to choose 2°7 IV and then
recovers the key with complexity 272, requiring 2°° bytes of memory.

1 Introduction

A stream cipher is a secret key cryptosystem that takes a short random string
and transforms it into a long pseudo-random sequence. Usually this sequence
is XORed bitwise with the plaintext in order to produce the ciphertext. This
purpose can also be reached by iterating a block cipher, however it is widely
believed that a dedicated design may offer a better encryption speed. In general,
a stream cipher produces a pseudo random sequence PRNG(K,IV) from a se-
cret key K and an initialization vector I'V. Then, the ciphertext C' is computed
from the plaintext P by:

C = PRNG(K,IV) & P

The main idea behind the use of initialization vectors is to generate different
pseudo-random sequences without necessarily changing the secret key, since it
is totally insecure to use twice the same sequence. Similar problems may arise
when using block ciphers, since they are purely deterministic objects. This is
the reason why several modes of operations like CBC or OFB require an ini-
tialization vector. Actually, block ciphers are not well suited for that purpose
and a more suitable primitive called “Tweakable Block Cipher” was recently
proposed [12]. It includes an additional input called the “tweak” which basically
plays a role similar to an initialization vector. In both situations, it is extremely
difficult to control the mechanism producing the randomization source, since it
will usually be provided by a non-cryptographic layer. For instance, it may be
implemented using counters or using an unspecified random source. Given this
lack of knowledge, any cipher should generally resist attacks where an attacker
is able to choose the initialization vector.

Recent developments in the cryptanalysis of stream ciphers have shown the
importance of these considerations. In particular, it appears the key scheduling

M. Matsui and R. Zuccherato (Eds.): SAC 2003, LNCS 3006, pp. 194207, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Chosen IV Attack Against Turing 195

algorithm should be analyzed carefully in order to secure real-life systems. The
chosen IV attack against RC4 proposed in [7] is a good illustration of this point.
Although RCA4 still appears as a robust cipher, the key scheduling algorithm leaks
partial information concerning the secret key, when observing the first bytes
of keystream. Besides, initialization vectors were implemented in the Wireless
Equivalent Privacy (WEP) - a standard for wireless network encryption - in
a way that allows key reconstruction from chosen IV’s. Further analysis has
shown that this chosen IV attack was practical (see [18]) and that known IV’s
were in fact enough to recover the secret key of most wireless LAN’s given
a reasonable amount of network traffic.

In the context of stream ciphers, most applications require frequent changes
of initialization vector. The first reason is that long sequences of keystream imply
permanent synchronization, which can become painful especially with high speed
connections (for instance, mobile phone communications). The second reason
is to handle multiple simultaneous sessions encrypted with the same secret key
(for instance with wireless LAN’s: WEP or Bluetooth). These practical problems
are usually solved by encrypting only short sequences (2745 bits in the case of
Bluetooth) and changing the IV value between each sequence. As a consequence,
attacks based on known or chosen IV’s are made more realistic, while classical
attacks are still possible over multiple sequences (see the recent attacks against
Bluetooth [3]).

All these elements motivate an analysis of the key scheduling algorithm of new
stream ciphers. Here, we focus on Turing, a stream cipher recently proposed by
Rose and Hawkes [16]. According to them, Turing is designed in order to achieve
a good efficiency in software applications and they claim performances 5 times
faster than AES on optimized versions. The keystream generation is based on
classical components:

— A large Linear Feedback Shift Register (LFSR) with elements in GF(232).
Such registers offer good statistical properties and a large period, while mak-
ing correlation and fast-correlation attacks difficult. Good examples of sim-
ilar designs are SNOW [4], S32 [14] and SOBER~t32 [10].

— A Nonlinear Filter that takes 5 words in the LFSR and transforms them in
a key-dependent, highly non-linear manner. The resulting keystream is 160
bits long and is masked using 5 words of the LFSR. This technique is usually
called “Linear Masking” and has been extensively studied in [3].

— A Key Scheduling Algorithm using a key of length up to 256 bits and an
initialization vector of varying length. This routine fills out a keyed S-box
used in the Nonlinear Filter and also sets up the initial LFSR state.

In Section 2 we will briefly describe Turing. One should refer to [16] to obtain
a more precise description. In Section 3 we show some weaknesses in the key
scheduling algorithm of Turing, using chosen initialization vectors. Furthermore,
we show how these weaknesses allow a key recovery attack. In Section 4, we show
some extensions of our observations to other kind of attacks.

196 Antoine Joux and Frédéric Muller

— Key

Linear
Masking

Keystream

Fig. 1. General Structure of Turing

2 Description of Turing

The Turing keystream generation function is based on a classical structure :
a linear feedback register R combined with a nonlinear filter NL . The particu-
larity of this cipher lies in the key dependence of N L and on the linear masking.
An overview of this structure is given in Figure 1.

Turing combines additions in GF(23%) with additions modulo 232. To avoid
any confusion, @ will denote additions in GF(23?), i.e. bitwise XOR, while +
will denote addition modulo 232.

Our description of the cipher mostly focuses on particular points that are
relevant to our attacks. We dedicate a substantial space to describe several as-
pects of Turing that are only briefly described in the initial paper. They can be
found by directly looking at the reference implementation code [2].

2.1 The LFSR

Turing uses a Linear Feedback Shift Register R operating on elements in GF(23?).
This choice allows good software performances on 32 bits processors. R has 17
cells, so the total number of internal state bits is 544. A register offering the same
security with elements in GF(2) would require a very dense feedback polynomial,
which would increase the cost of each advance. In the case of Turing, the following
feedback polynomial was chosen :

.7317@5815@1‘4@0[

where « is a fixed element in GF(232). Thus, denoting by R; the content of cell
number 7, the update function can be expressed as

z2=Ri5 B Ry ® aRy

A Chosen IV Attack Against Turing 197

This new value z is introduced at position 16 and all cells are shifted by one
position (Ry is discarded).

Such registers are expected to offer good resistance against a wide class of
attacks against stream ciphers based on LFSR, the correlation attacks [17] and
fast correlation attacks [13]. The importance of choosing adequate feedback poly-
nomials in this type of registers was recently shown by the new attacks against
SNOW (see [3], [5] and [11]). However, the designers of Turing have apparently
been very careful in the choice of polynomial to prevent similar attacks. Besides,
the Nonlinear Filter being key-dependent, it seems very unlikely that a bias
could be found independently of the secret key.

2.2 The Nonlinear Filter

The Nonlinear Filter (N L) of Turing is very similar to the construction of a block
cipher round function. It combines two applications of a linear transformation
on GF(23?) and a layer of key-dependent 32-to-32 S-box applied to each word
in-between the two linear layers. The input of NL consists in 5 cells of the
LFSR : f%()7 Rl, Rﬁ, ng and Rlﬁ.

The linear operation is the so-called Pseudo-Hadamard transform (PHT)
(see [16] for more details). The keyed S-box is described more precisely in Sec-
tion 2.4. Besides, a circular rotation is also applied to 3 of the 5 words before
computing S in order to differentiate the trails followed by each input of N L.

2.3 Linear Masking

Linear Masking consists in adding to each output word of the Nonlinear Filter
some word of the LFSR to hide any kind of undesirable statistical properties.
Variants of this idea of a masking scheme have been used in SNOW [5] and
SCREAM [9].

Here the linear masking is very simple. For each application of the Nonlinear
filter, the LFSR is clocked twice :

— After the first clocking, the content of cells number 0, 1, 6, 13 and 16 is used
as input of NL.

— After the second clocking, the same cells are used to mask the outputs of
NL using a simple addition over GF(232).

This requires the LFSR to be clocked twice in order to produce 5 x 32 = 160
bits of keystream.

2.4 The Key Scheduling Algorithm

The Key Scheduling Algorithm of Turing receives a secret key K and an initial-
ization vector I'V. The number of words of K and I'V are respectively denoted
by nx and nj. Both should be multiples of 32 bits. Besides, nx should not
exceed 8 and ny + nx should not exceed 12. Words of K are denoted by {Kj,

198 Antoine Joux and Frédéric Muller

i =0,...,ng — 1}. Each word K is further divided into four bytes which we
denote by {K; ;, j =0,...,3}. Similar notations are used for I'V.

This initialization vector is only used to build the initial state of the LFSR
while the secret key is used both in the keyed S-box S and to build the initial
state of the LFSR. The Key Scheduling Algorithm of Turing basically consists
in three steps.

The Key Transform To prevent related key attacks, the actual secret key K is
turned into a secret value of the same length using a reversible transformation G
applied to each word of K. The result is used to initialize the LFSR and to build
the keyed S-box S. So the knowledge of this result is actually equivalent to the
knowledge of K. That is why in the following sections, notation K will be used
to represent this resulting value instead of the true secret key.

The Keyed S-box The keyed S-box S - also used in the nonlinear filter - is used
to compute the initial state of the LFSR. It operates on a word w represented
as four bytes w = (wo, wy, w2, ws).

For each byte w;, a 32-bit value s;(w;) is computed using a 8-to-32 function
depending on byte number i of each word K, denoted as K ;, for 0 < j < ngk.
For instance, so(wp) is computed using only the least significant byte of w and
the least significant byte of each word of K. The four values so(wp), ..., s3(ws)
are finally added bitwise :

S(w) = so(wo) ® s1(w1) © s2(w2) © s3(w3)

Each s; uses a chained construction similar to the CBC mode of operation
on block ciphers and a 32 bits long accumulator. The general structure of s; is
summarized in Fig. 2 where key bytes are represented by kO, ..., k7. Two fixed
S-boxes, Sb and Qb, are used during this computation. More details on these
constants are given in [16] and [2]. Depending on which s; is considered, the
output byte of the CBC chain is appended at different positions in the final
word and different key bytes are used.

The Initial State of the LFSR The LFSR is initially filled out as follows :

— The words of I'V are processed using the transformation G previously applied
to the key words and then copied at positions 0 to n; — 1 in the LFSR. The
transformation is fixed, so the value of these cells in the LFSR is initially
known.

— The words of K are appended at positions ny to ny + nx — 1.

— The binary value 0x010203nxn; is appended at position ny + ng.

The remaining cells R; for ny + nx < i < 17 are computed by the formula

Ri=S(Ri—1+ Ri—ny—n,-1)
Finally, a 17-word Pseudo-Hadamard transform is applied :
T=Y""1°Ri Ri:=T R;:=R;+T

for ¢ < 16. Once this is done, keystream generation starts.

A Chosen IV Attack Against Turing 199

kO k1 k6 k7

o [[[
E R == R
0 32 3

Fig. 2. Structure of s;

3 A Chosen IV Attack

We observed that the influence of the initialization vector on the internal LFSR
state is very limited. In spite of the Pseudo-Hadamard transform, it is possible
that different IV’s yield very similar initial states. In this case, the first words of
keystream generated may even be equal.

To illustrate this, we will focus on the case where the secret key is 256 bits long
(that is ng = 8) and the initialization vector is 128 bits long (that is ny = 4). The
initial content of the LFSR - before the application of the PHT - is represented
in Table 1.

In the following sections, we will fix the value of the secret key, I'V; and
IV5. Then, we will study what is the influence on the initial state of successively
randomizing I'V3 and I'Vj.

Table 1. Initial State of the LFSR

Ry = G(IV()) .
Ro=GUv) T
B=G(IV) o R
23 - G([?/:*) Ri2 = 0x01020384
R4 _ KO Riz = S(Ri2 + Ro)
RET ; Kl Riy = S(Ri3 + R1)
Rb B K? Ri5s = S(Rus + Ro)
T 3 Rig = S(R15 + R3)

200 Antoine Joux and Frédéric Muller

3.1 Randomizing I'V3

In the previous table, one sees that only Rs and R actually depend on V3.
Furthermore when the secret key and the first three words of the IV are fixed,
it may happen for two distinct values of I'V3, say = and z’, to observe the same
value of Ry + R3, before the PHT. Thus :

S(Ri5 + G(z)) + G(z) = S(Ri5 + G(2')) + G(2") (1)

This is a birthday paradox situation. Thus, such an event should happen if
about 216 different values of IV5 are tested.

In fact, this can be immediately detected. As a matter of fact, if (1) holds,
the value of T" computed by the PHT will be equal in both cases, and thus, only
cell number 3 of the LFSR will differ after the PHT. Then, the first 5 words of
keystream are computed as

(Ch,...,C5) = NL(X1, X9, X7, X14, X17) @ (X2, X3, X5, X15, X13)

where C; denotes the i-th keystream word and X; the cell number i of the LFSR,
after the PHT. There are only 17 cells in the LFSR, however we denote by Xj7
and X;g the following terms in the LFSR sequence :

X7 = X115 ® X4 @ aXg
Xig = X156 ® X5 @ aX;

Since no input of NL depends on IV3, the value of C1,C5,C3 and C5 will
be equal with both IV’s. It is very unlikely that such keystream collisions on
128 bits will occur if (1) is not verified. Therefore, relation (1) can be efficiently
detected by looking at the first words of keystream.

3.2 Randomizing IV,

The keyed S-box S is not a permutation because of its particular structure based
on 4 smaller functions. In fact, it should rather be seen as a pseudo-random
function when the key is unknown. Therefore, we can expect to find collisions
after 2'6 queries to this S-box for an unknown secret key. Some experiments
made on randomly chosen secret keys have confirmed this property.

It follows that different values - say y; and ys - for IV may exist such that

S(G(y1) + 0x01020384) = S(G(y2) + 0x01020384) (2)

The essential property is that values of I'Vj verifying (2) will induce the same
value of Rys. Thus, they will verify (1) with the same I'V3’s. The influence of
these IV words on the first keystream words can be summarized by :

Indeed, the difference in the initial state brought by I'Vjy vanishes when com-
puting Ry3 because of (2). Then, when applying the PHT, the same value of T
is computed for both I'Vp’s, since 1 and «} verify (1). Therefore, collisions on S
can be detected by looking at the keystream produced with different chosen
initialization vectors.

A Chosen IV Attack Against Turing 201

IVy IV3 First Keystream Words
1 z1 C1 Co Cs Cy Cs
Y1 a?ll Ci Co A C3 Cy Cs
y2 z1 Cf Cy C3 Cp Cf
y2 xy C1 Co A" Cy C) Cs

3.3 Efficient Detection of Collisions

In this section, we assume the attacker has access to the key schedule routine
with a fixed unknown secret key and can choose the initialization vector. We also
assume the attacker can observe the first words of keystream produced after this
key schedule. We will show how such an attacker can efficiently recover collisions
on S with chosen input values.

— Fix the secret key K
— Fix IV; and IV,
— While (no relation (2) found)
e Choose a value of IV}
e While (no relation (1) found)
* Pick a random value of I'V3
* Do a key scheduling with current value of IV words
* Look for collisions on the first words of keystream
e Store IV with its two corresponding IV3’s
e Do a key scheduling with current IV and all previously stored pairs of
IV
e Look for collisions on the first words of keystream
— Output the two corresponding I'Vy’s (they verify (2))

Collisions described in the previous sections are observed after about 26
queries. Thus, the total number of key scheduling necessary to observe once
relation (2) is roughly

i=2"'¢
> (23— 1) +2'0) ~ 2%
i=1

We have implemented this basic technique with several different secret keys
and managed to detect collisions on S quite efficiently.

An improved technique consists in fixing several values (say 2'6) of IV3 be-
fore any key scheduling request. Then test, say M, different values of IV, with
all these fixed IV3’s. Then, it is possible to detect which pairs of IV among
the M values considered yield collisions with the same pairs of IV3’s. These
pairs verify relation (2). This technique allows to recover M? 2732 S-box colli-
sions after M 2'6 key scheduling requests although the chances of false alarm
slightly increase. This technique is less expensive when more than one collision
is needed.

202 Antoine Joux and Frédéric Muller

3.4 A Key Recovery Attack

It turns out that these collisions on the keyed S-box reveal direct information
about the secret key. More precisely, remember that collisions on S are obtained
with chosen inputs. Moreover, outputs of S depend only on part of the key bits,
when the corresponding inputs agree on a certain number of bytes. Accordingly,
let us consider only collisions where inputs disagree on 3 bytes at most (for
instance input values having the same most significant byte). This means only 224
of all possible I'V’s may be tested. By choosing appropriate values for I'V;, the
collisions will yield relations of the form :

where

S(w) = so(wo) & s1(w1) & s2(w2) & s3(ws)

S(w') = so(wp) ® s1(w}) S s2(ws) S s3(wh)
and, since wy = wy,
s1(w1) @ sp(w2) @ s3(w3) = s1(wh) S s2(wh) & s3(wh) (3)

Thus, we get a relation involving only three of the four 8-t0-32 key-dependent
functions that constitute S. This brings some significant information about the
64 key bytes used in each of these functions. A straightforward approach would
be to use relation (3) to decrease the complexity of an exhaustive search on the
256 bits of secret key. The number of triplets of outputs of s, s and s3 is :

(28)3 — 224
Therefore the expected value for the number of existing relations is about
924 o 924 9—32 _ 916

Hence, many relations similar to (3) should exist. They involve only 192 key
bits, so a small number of them is sufficient to reduce the cost of key exhaustive
search to 2!92. Furthermore, it may happen that collisions involving only 2 bytes
exist. In that case, the cost of a brute-force attack may even be reduced to 2'2%.
However, this event occurs with small probability, so keys yielding these collisions
may be considered as weak keys.

3.5 Solving the Underlying Linear System

However, we believe relations similar to (3) may be used in a more efficient
manner to recover the secret key. Let us call X; = s1(4), Y; = s2(¢) and Z; = s3(7)
for 0 <4 < 255. (3) is a linear relation between 6 of these 3 x 256 = 768 unknown
values in GF(2%?), of the form :

Xio X[0Y;0Y, 02, © 2, =0 (4)

A Chosen IV Attack Against Turing 203

for some 4,1, j, ', k, k' between 0 and 255.

More generally, when many similar relations are available - at least 768 hope-
fully independent relations - one can expect to solve the underlying linear system.
Unfortunately, it turns out it never has full rank. Indeed, all coefficients in rela-
tion (4) are either 0 or 1. Therefore this system can also be viewed as a linear
system in GF(2) and, from each solution in GF(232), it is possible to build 32
solutions in GF(2). This implies a decrepancy of at least 32 in the rank of the
system since at least one solution exists in GF(23?), corresponding to the real
outputs of the keyed S-box.

Furthermore, since all X;’s appear twice in each relation, adding a fixed
word C' to these 256 unknowns provides an extra non trivial solution. Similar
considerations also hold for Y; and Z;, which implies an additional discrepancy
of 3. So the kernel of the system has dimension at least 32 + 3 = 35. An open
question is to know whether this dimension is actually always 35. Using different
secret keys, we built the corresponding system by observing all collisions on S.
Then, we computed its rank using the software MAGMA [1]. We always obtained
a rank equal to 733, which corresponds to the expected value

768 —3 —32 =768 —35="733

Besides, it appears from our experiments that, using about 1000 ~ 210 relations
is enough to always obtain a system of maximal rank 733. In particular, test-
ing 22! values for IV, should be sufficient to obtain enough collision and thus a
system of maximal rank :

221 X 221 X 2—32 — 210

Thus 22! x 2!6 = 237 chosen initialization vectors are needed.

Building a basis of the kernel of the underlying linear application can be done
very quickly. We used the software MAGMA and, given the size of the system,
it takes only a few seconds to complete this task. However, since the system has
not full rank, linear algebra does not provide immediately a unique solution, but
we can easily obtain a basis of the kernel and span its 23° elements.

Using additional constraints resulting from the structure of the underlying
keyed S-box, an efficient key recovery attack directly follows. Assume these 23°
solutions are sorted and stored in a table. An exhaustive search on the 64 key
bits involved in s3 will provide a candidate for (Z, ..., Zas5). Wrong guesses can
be filtered out using the table, since the vector of least significant bits of all Z;’s
must appear somewhere in this table, as part of a GF(2) solution. A similar
technique can be used to find key bytes involved in s; and so and the final 64
key bits can be guessed separately.

Therefore we obtain the 256 secret key bits, using a table containing
words of 768 bits, with 237 chosen IV’s and 256 x 264 = 272 steps of computation.
A basic improvement is not to consider all solutions of the previous system in
GF(2). Indeed, the output byte corresponding to the CBC chain (see Figure 2) in
any function s; is a permutation of the inputs (since this operation is reversible).
Therefore, instead of verifying the least significant bit, we can use an other bit

235

204 Antoine Joux and Frédéric Muller

position corresponding to the output of this permutation and store only balanced
vectors of 256 bits. Thus the size of the table required is reduced to the number
of solutions balanced on these 256 bits, that is about 23!, since

256 2256 L 935 . 031
(128) X 2 X 277 ~ 2

Each entry of the table is a 256 bits vector. Thus, this attack requires 236 bytes
of memory.

4 Extensions of this Attack

The attack we have proposed is a little restrictive since it works only with 256
bits long secret key and 128 bits long I'V’s. In this section, we demonstrate that
although this attack does not work in every case, some residual weaknesses of
the key scheduling algorithm cannot be prevented.

4.1 Other Key and IV Lengths

The attack proposed in the previous section relies on the lack of diffusion brought
by the PHT. This weakness exist for any key and IV length. However, the possi-
bility to observe collisions on the first keystream words vary greatly depending on
the choice of these parameters. We have demonstrated our attack when nxg = 8
and ny = 4. When key length is less than 8 words but key and IV still sum up to
12 words, the attack proposed in Section 3 still works by keeping the additional
IV words constant. The resulting attack has time complexity

2% x 287

Memory complexity is still about 23! and the number of chosen IV’s needed is
still about 237.

To demonstrate residual weaknesses for other key lengths, we briefly give a
sketch of a possible attack using 128 bits long secret key and IV in Appendix A.
It seems very likely that similar residual weaknesses hold for most key length
and IV length, although they seem to be more efficient when large keys and IV’s
are used. For shorter lengths (less than 64 bits), they might become even more
difficult to exploit, however the security of the system does not reach the initial
security goal.

4.2 Distinguishing Attacks

It is also worth noticing that collisions in the PHT can also be used to distinguish
Turing from a truly Random Generator with a much smaller complexity than
the key recovery attack. For instance, when considering the case of 256 bits long
secret key and 128 bits long IV’s, randomizing only IV3 will yield keystream
collisions very quickly - after about 2'6 queries.

A Chosen IV Attack Against Turing 205

If, in practice, the IV’s where implemented using a counter, it seems likely
that only I'V3 would differ between two consecutive sessions. In that case, one
could distinguish Turing from random by detecting these collisions. Moreover,
a condition on S is obtained this way (literally, relation (1) with an unknown
value of Rj5). This relation does not appear to be very useful, however it may
allow to reduce the complexity of brute-force attacks by a small constant.

Recently, Rose and Hawkes [15] proposed a distinction between “weak” and
“powerful” distinguishing attacks, by arguing that many proposed distinguishers
against stream ciphers (see [6] and [15]) were not related to the practical security
of the cipher. We believe however that in this particular case, early distinguishers
against Turing (with less than 2'6 chosen IV’s) already leak partial information
about the secret key and should not be tolerated. Therefore, although one can
argue that the key recovery attack we propose is not practical, since the use of 237
different IV’s with the same secret key can be avoided, we think the weaknesses
of the key scheduling algorithm we identified should still be fixed somehow.

5 Conclusion

In this paper, we identified several weaknesses in the key scheduling algorithm of
the new stream cipher Turing. We believe these attacks will significantly lower
the security of this cryptosystem when the same secret key can be used with
many different initialization vectors. Our best attack works on 256 bits long
secret key and 128 bits long IV’s. In this case, it recovers the key using 237
chosen IV, 272 of computation time and 236 bytes of memory.

Altough our attacks concern only the key scheduling, we think Turing should
be modified to remove this vulnerability resulting from chosen IV attacks. The
classical and probably simplest way to achieve that is to clock the LFSR several
times before starting the keystream generation (16 clocking should be sufficient
to remove undesirable properties on the LFSR initial state resulting from the
IV). This might slightly decrease the speed of the cipher when IV needs to be
frequently changed but it appears like a sound countermeasure.

An open problem would be, given the particular structure of Turing S-boxes,
to improve the resolution of the linear system of equations we obtain in Sec-
tion 3.5.

References

[1] The Magma Home Page. http://www.maths.usyd.edu.au:8000/u/magma/. 203

[2] Turing reference source code. Available at
http://people.qualcomm.com/ggr/QC/turing.tqz. 196, 198

[3] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of Stream Ciphers with
Linear Masking. In M. Yung, editor, Advances in Cryptology — Crypto’02, volume
2442 of Lectures Notes in Computer Science, pages 515—-532. Springer, 2002. 195,
197

206

[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

A

Antoine Joux and Frédéric Muller

P. Ekdahl and T. Johansson. SNOW - a New Stream Cipher. In First Open
NESSIE Workshop, KU-Leuven, 2000. Submission to NESSIE. Available at
http://www.it.lth.se/cryptology/snow/. 195

P. Ekdahl and T. Johansson. A New Version of the Stream Cipher SNOW.
In Selected Areas in Cryptography — 2002, Lectures Notes in Computer Science.
Springer, 2002. 197

P. Ekdahl and T. Johansson. Distinguishing Attacks on SOBER-t16 and t32. In
J. Daemen and V. Rijmen, editors, Fast Software Encryption — 2002, volume 2365
of Lectures Notes in Computer Science, pages 210-224. Springer, 2002. 205

S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Al-
gorithm of RC4. In S. Vaudenay and A.M. Youssef, editors, Selected Areas in
Cryptography — 2001, volume 2259 of Lectures Notes in Computer Science, pages
1-24. Springer, 2001. 195

J.Dj. Golic, V. Bagini, and G. Morgari. Linear Cryptanalysis of Bluetooth Stream
Cipher. In L. Knudsen, editor, Fast Software Encryption — 2002, volume 2332 of
Lectures Notes in Computer Science, pages 238-255. Springer, 2002. 195

S. Halevi, D. Coppersmith, and C. Jutla. Scream : a Software-efficient Stream
Cipher. In L. Knudsen, editor, Fast Software Encryption — 2002, volume 2332 of
Lectures Notes in Computer Science, pages 195-209. Springer, 2002. 197

P. Hawkes and G. Rose. Primitive Specification and Supporting Documentation
for SOBER-t32. In First Open NESSIE Workshop, 2000. Submission to NESSIE.
195

P. Hawkes and G. Rose. Guess-and-Determine Attacks on SNOW. In Selected
Areas in Cryptography — 2002, Lectures Notes in Computer Science. Springer,
2002. 197

M. Liskov, R. Rivest, and D. Wagner. Tweakable Block Ciphers. In M. Yung,
editor, Advances in Cryptology — Crypto’02, volume 2442 of Lectures Notes in
Computer Science, pages 31-46. Springer, 2002. 194

W. Meier and O. Stafflebach. Fast Correlations Attacks on Certain Stream Ci-
phers. In Journal of Cryptology, pages 159-176. Springer-Verlag, 1989. 197

G. Rose. S32: A Fast Stream Cipher based on Linear Feedback over GF(2%%).
Unpublished report, QUALCOMNM, Australia, Available at
http://people.qualcomm.com/ggr/QC/. 195

G. Rose and P. Hawkes. On the Applicability of Distinguishing Attacks Against
Stream Ciphers, 2002. Available at http://eprint.iacr.org/2002/142.pdf. 205
G. Rose and P. Hawkes. Turing : a Fast Stream Cipher. In T. Johansson, editor,
Fast Software Encryption — 2003, Lectures Notes in Computer Science. Springer,
2003. To appear. 195, 197, 198

T. Siegenthaler. Correlation-immunity of Nonlinear Combining Functions for
Cryptographic Applications. In IEEE Transactions on Information Theory, vol-
ume 30, pages 776-780, 1984. 197

A. Stubblefield, J. Ioannidis, and A.D. Rubin. Using the Fluhrer, Mantin and
Shamir Attack to Break WEP, 2001. 195

Possible Attacks on 128 bits Long Secret Key

We now briefly describe what happens during the key scheduling when consider-
ing 128 bits long key and IV’s. In this case, using previous notations, the initial
LFSR state - before the PHT - is given by :

A Chosen IV Attack Against Turing 207

go - gg“ﬁog Ro = S(Rs + Ro)
Rl _ G(IVl) Rio = S(Ry + R1)
R2 _ G(IV?) Ri1 = S(Rio + R2)
R3 K 3 Ri2 = S(R11 + R3)
R4 _ Ko Riz = S(Ri2 + Ra)
R5 ; Kl Ris = S(Ri3 + Rs)
R6 B K2 Ri5 = S(R1a + Re)

g Y Rig¢ = S(Ri5 + Rr)

Rg = 0x01020344

The influence of the initialization vector on the initial state is more complex
than previously and the first application of NL seems to resist any collision.
However, when looking at the second application of N L, we have

(C1,y...,C5) = NL(X3, X4, X9, X16, X19) © (Xa, X5, X10, X17, X20)
using the same notations as in Section 3. More precisely,

Xi7 = X158 X4 & aXop
X9 = X150 X ® X4 ® a(Xod X2)

Assume we use two IV’s that differ on I'Vy and I'Vy, verify IV, = IV}, and
have the same value of I'Vz. If simultaneously, collisions on Ry, Rj5 and the
word 1" computed by the PHT occur, then inputs of the second application of
NL will be equal. It is a birthday paradox situation and should be observed
after (216)% = 248 experiences. Only two masking words are guaranteed to be
equal in that case, which is not enough to detect efficiently this event. However,
false alarms can be discarded by repeating the same experience with an other
value of IV3. Furthermore, collisions on the keyed S-box are again detected, so
an attack similar to the one of Section 3 will work.

To summarize, a key recovery attack can also be mounted in this case, al-
though the data complexity will be higher than in the previous case. In practice,
the number of chosen IV’s needed will be more than 248,

	A Chosen IV Attack Against Turing
	Introduction
	Description of Turing
	The LFSR
	The Nonlinear Filter
	Linear Masking
	The Key Scheduling Algorithm

	A Chosen IV Attack
	Randomizing IV_3
	Randomizing IV_0
	Efficient Detection of Collisions
	A Key Recovery Attack
	Solving the Underlying Linear System

	Extensions of this Attack
	Other Key and IV Lengths
	Distinguishing Attacks

	Conclusion
	A Possible Attacks on 128 bits Long Secret Key

