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Abstract. Inversion in Galois Fields is a famous primitive permutation
for designing cryptographic algorithms e.g. for Rijndael because it has
suitable differential and linear properties. Inputs and outputs are usually
transformed by addition (e.g. XOR) to key bits. We call this construc-
tion the APA (Add-Permute-Add) scheme. In this paper we study its
pseudorandomness in terms of k-wise independence.
We show that the pairwise independence of the APA construction is
related to the impossible differentials properties. We notice that inver-
sion has many impossible differentials, so x �→ 1

x+a
+ b is not pairwise

independent.
In 1998, Vaudenay proposed the random harmonic permutation h : x �→

a
x−b

+ c. Although it is not perfectly 3-wise independent (despite what
was originally claimed), we demonstrate in this paper that it is almost
3-wise independent. In particular we show that any distinguisher limited
to three queries between this permutation and a perfect one has an ad-
vantage limited to 3

q
where q is the field order. This holds even if the

distinguisher has access to h−1.
Finally, we investigate 4-wise independence and we suggest the cross-
ratio as a new tool for cryptanalysis of designs involving inversion.

Inversion in Galois fields is quite a popular primitive permutation for making
block ciphers. This comes from nice properties with respect to differential and
linear cryptanalysis (see Nyberg [10]). It has been used e.g. in Rijndael [5]. In-
version is also known to have bad algebraic properties which can lead to interpo-
lation attacks (see Jakobsen-Knudsen [7]) or quadratic equations (see Murphy-
Robshaw [9] and Courtois-Pieprzyk [4]). In this paper we study randomness in
terms of k-wise independence of constructions with inversion.

Since Carter and Wegman introduced the notion of universal hash function,
a wide spectrum of extensions, including ε-almost k-wise independent functions,
and constructions have been proposed. In cryptography, pairwise independent
hash functions (k = 2) can be used in order to construct secure message authen-
tication codes. (See Wegman-Carter [19].)
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The k-wise independent permutations are also well suited properties of en-
cryption functions. The perfect k = 1 case corresponds to the perfect secrecy in
a Shannon sense [14]. This is however limited to one-time usage. More generally,
perfect k-wise independence is linked to randomness when limited to k-time us-
age. The result is even quantitative in non perfect cases: for an ε-almost k-wise
independent permutation, the best distinguisher between the permutation and
an ideal one which is limited to k oracle calls has an advantage of ε

2 . (When
adopting an appropriate metrics, see Vaudenay [17, 18].) Furthermore, almost
pairwise independence (k = 2) has application to block ciphers since there is
an upper bound of the best differential and linear characteristics in terms of
pairwise independence. (See Vaudenay [16, 18].) The 3-wise independent per-
mutations recently found an application for strengthening short encryption keys
(See Russel-Wang [13].)

Constructing k-wise independent functions over any finite field K is quite
easy. Actually, a random polynomial of degree at most k − 1 is perfectly k-wise
independent. However constructing k-wise independent permutations is not so
easy but for the k = 1 and k = 2 cases. For k = 1, one notices that h(x) = x+ a
with a ∈U K is perfectly 1-wise independent. For k = 2, the h(x) = ax+ b func-
tion with (a, b) ∈U K∗ × K is perfectly 2-wise independent. In Rees [11] a nice
perfect 3-wise independent permutation construction was proposed in P2(K) us-
ing PGL2(K). This means that we can define the permutation family for a pro-
jective plane over K which is a set of cardinality #K + 1. This can never be
equal to 24n since 15 = 24 − 1 divides 24n − 1 and is not a prime power. So this
cannot help us in order to construct a 3-wise independent permutation over, for
instance, a set of byte strings. In this paper we study the following construction
over any finite field K.

h(x) = a.inv(x − b) + c

for (a, b, c) ∈U K∗ × K × K where inv(t) is defined as being 1/t if t �= 0 and 0
otherwise. We call it the random harmonic permutation construction. This con-
struction was suggested in [16]. This paper claimed perfect 3-wise independence
without proof. We show that this is not the case, but we still have almost in-
dependence. This provides a simple construction for almost 3-wise independent
permutation over any finite field K.

We also outline that the cross-ratio

R(t, u, v, w) =
(

t − u

t − w

)
/

(
v − u

v − w

)

(for pairwise different t, u, v, w) is quite interesting from a cryptanalytic view-
point since it is invariant under translation, multiplication, and inversion. We
can distinguish the random harmonic permutation from an ideal one with only
four queries t, u, v, w, so it is not 4-wise independent. We discuss about potential
applications related to Rijndael.

We also study the pairwise independence of h(x) = inv(x − a) + b which is
a kind of Even-Mansour [6] extension of the inversion. We show that for any
permutation S, the pairwise independence of h(x) = S(x + a) + b is related to
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impossible differentials for S. More precisely, we define a new measurement IDP
(as for Impossible Differential Probability) by

IDPS = max
δ �=0

1
q
#{∆; DPS(δ, ∆) = 0}

where q is the output range size and DP is the regular differential probability,
i.e.

DPS(δ, ∆) =
1
q
#{x; S(x + δ) = S(x) + ∆}.

We demonstrate that the best advantage for distinguishing h from a random
permutation with two queries is close to IDPS . We also show that this quantity
is quite bad for the inversion since we have IDP ≈ 1

2 in this case. This is however
not a specific weakness of the inversion in characteristic 2: it is indeed linked to
the choice of the XOR as the addition.

1 Previous Work and Definitions

There is a wide menagerie of universal functions. We recall here a few definitions.
First of all, here are definitions related to perfect functions.

Definition 1 (Carter-Wegman [3], Wegman-Carter [19]). Let A and B
be two finite sets. Let F(A, B) denote the set of all functions from A to B. Let H
be a subset of F(A, B).

1. H is universal2 if

∀x, y ∈ A (x �= y) Pr
h∈U H

[h(x) = h(y)] ≤ 1
#B

.

2. H is strongly universalk, or (perfect) k-wise independent function, if

∀x1, . . . , xk ∈ A, ∀y1, . . . , yk ∈ B, (xi �= xj for i �= j),

Pr
h∈UH

[h(x1) = y1, . . . , h(xk) = yk] =
1

#Bk
.

3. for A = B when all functions of H are permutations, we say that H is
a (perfect) k-wise independent permutation if

∀x1, . . . , xk ∈ A, ∀y1, . . . , yk ∈ B, (xi �= xj , yi �= yj for i �= j),

Pr
h∈UH

[h(x1) = y1, . . . , h(xk) = yk] =
k−1∏
i=0

1
#B − i

.

Here are definitions related to imperfect functions.

Definition 2 (Stinson [15]). Let A and B be two finite sets. Let F(A, B)
denote the set of all functions from A to B. Let H be a subset of F(A, B).
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1. H is ε-almost universal2 if

∀x, y ∈ A (x �= y) Pr
h∈U H

[h(x) = h(y)] ≤ ε.

2. H is ε-almost strongly universal2 if

∀x1 ∈ A, ∀y1 ∈ B, Pr
h∈U H

[h(x1) = y1] =
1

#B

∀x1, x2 ∈ A, ∀y1, y2 ∈ B, (x1 �= x2),
Pr

h∈UH
[h(x1) = y1, h(x2) = y2] ≤ ε

#B
.

Almost k-wise independence is well known to be harder to define since it depends
on the metric choice.

In order to measure k-wise independence for cryptography, we take the fol-
lowing general definition.

Definition 3 (Vaudenay [16, 18]). Let A and B be two finite sets. Let
F(A, B) denote the set of all functions from A to B. Let S(A) denote the set of
all permutations over A. Let H be a subset of F(A, B). Let Mk(A, B) be the set
of all functions from Ak ×Bk to the field R of real numbers. Let d be a distance
over Mk(A, B). Let k > 0 be an integer. We define [H ]k ∈ Mk(A, B) by

[H ]k(x1, . . . , xk, y1, . . . , yk) = Pr
h∈UH

[h(x1) = y1, . . . , h(xk) = yk].

1. We say that H is an ε-d-almost k-wise independent function if
d([H ]k, [H∗]k) ≤ ε where H∗ = F(A, B).

2. For A = B and when H is a subset of S(A), we say that H is an ε-d-almost k-
wise independent permutation if d([H ]k, [H∗]k) ≤ ε where H∗ = S(A).

Several distances are quite significant in cryptography, including metrics in-
duced by the |||.|||∞, ||.||a and ||.||s norms as defined in [16, 17, 18]:

|||f |||∞ = max
(x1,...,xk)∈Ak

∑
(y1,...,yk)∈Bk

|f(x1, . . . , xk, y1, . . . , yk)|

||f ||a = max
x1∈A

∑
y1∈B

. . . max
xk∈A

∑
yk∈B

|f(x1, . . . , xk, y1, . . . , yk)|

for f ∈ Mk(A, B). Obviously, |||f |||∞ ≤ ||f ||a. The ||.||s norm is defined by

||f ||s = max
b1∈{0,1}

max
z0
1∈A

∑
z1
1∈A

. . . max
bk∈{0,1}

max
z0

k
∈A

∑
z1

k
∈A

|f(zb1
1 , . . . , zbk

k , z1−b1
1 , . . . , z1−bk

k )|

for f ∈ Mk(A, A). Obviously, |||f |||∞ ≤ ||f ||a ≤ ||f ||s. Here are some important
properties which motivate these choices for cryptography.

Theorem 1 (Vaudenay [16, 17, 18]). Let A and B be two finite sets. Let
F(A, B) denote the set of all functions from A to B. Let S(A) denote the set of
all permutations over A. Let H and H ′ be subsets of F(A, B).
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1. The best distinguisher between H and H ′ limited to k queries has an advan-
tage of 1

2 ||[H ]k − [H ′]k||a. It is 1
2 |||[H ]k − [H ′]k|||∞ when we restrict to non

adaptive attacks.
2. For A = B and H and H ′ subsets of S(A), the best distinguisher between

h ∈U H and h ∈U H ′ limited to k queries with access to both h and h−1 has
an advantage of 1

2 ||[H ]k − [H ′]k||s.
3. When A = B = {0, 1}n and H is an ε-|||.|||∞-almost pairwise independent

permutation, differential and linear probabilities are bounded as follows.

∀b ∀a �= 0 E
h∈UH

(DPh(a, b)) ≤ 1
2n − 1

+ ε

∀a ∀b �= 0 E
h∈U H

(LPh(a, b)) ≤ 1
2n − 1

+ 4ε

where

DPh(a, b) = Pr
X∈U A

[h(X ⊕ a) = h(X) ⊕ b]

LPh(a, b) =
(

2 Pr
X∈UA

[a · X = b · h(X)] − 1
)2

.

Therefore k-wise independence has nice interpretations in terms of randomness
when limited to k uses. k-wise independence for k ≥ 2 leads to upper bounds
for the best differential and linear probabilities.

Given a finite field K = GF(q), we let inv be the permutation defined by
inv(x) = 1

x for x �= 0 and inv(0) = 0. Note that inv(x) = xq−2 for all x ∈ K
when q > 2. This permutation is widely used in cryptography, e.g. in the design
of the substitution boxes of Rijndael [1, 5]. It is known to have nice differential
properties. In particular Nyberg [10] proved that

DPinv(a, b) ≤ 4
q for all a �= 0 and all b

LPinv(a, b) ≤ 4
q for all b �= 0 and all a.

2 The Random Harmonic Permutation Construction

2.1 Our Result

Theorem 2. Let K be a finite field of cardinality q. For any a, b, c ∈ K such
that a �= 0 we define ha,b,c(x) = a.inv(x − b) + c. Let H be the set of all ha,b,c.

1. H is a perfect 2-wise independent permutation.
2. H is not a perfect 3-wise independent permutation for q > 3.
3. H is a 6

q -||.||s-almost 3-wise independent permutation.
4. H is not a (2− 13

q )-|||.|||∞-almost 4-wise independent permutation for q > 4.
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The proof is achieved over the following subsections.
As a corollary H is also a 6

q -||.||a-almost 3-wise independent permutation and
a 6

q -|||.|||∞-almost 3-wise independent permutation as well.
This result means that any distinguisher limited to two queries has no chance

at all for distinguishing H from a random permutation. Its advantage is limited
to 3

q when limited to three queries (even adaptive, even with access to the inverse
of H). Its advantage can be pretty close to 1 when four queries are allowed.

2.2 On the Perfect 3-wise Independence

One can wonder whether H is perfect 3-wise independent.
The q = 2 and q = 3 cases are particular. For q = 2 or q = 3 we have

inv(x) = x for all x ∈ K. Hence

a.inv(x − b) + c = a.(x − b) + c = ax + (−ab + c).

Therefore H has the same distribution as H ′ = {ha,b; (a, b) ∈ K∗ × K} defined
by ha,b(x) = ax+ b. We further notice that all permutations are indeed affine in
these fields. Therefore H is perfectly 3-wise independent for q = 2 or q = 3.

Next, we check that H is never perfectly 3-wise independent for q > 3.
Actually if we take any x1, x2, x3 pairwise different elements of K we can consider
(h(x1), h(x2), h(x3)) for h ∈ H . This triplet must take values among all q(q −
1)(q − 2) triplets with pairwise different coordinates in a uniform way. But we
have q2(q − 1) elements h in H . Therefore this cannot be uniformly distributed
unless q − 2 divides q which leads to q = 3 or q = 4. The q = 4 is also special
since inv(x) = x2 which is GF(2)-linear for all x ∈ K. Hence

a.inv(x − b) + c = a.(x − b)2 + c = ax2 + (ab2 + c).

We thus notice that H defines the same distribution than the set of all ha,b

defined by ha,b(x) = ax2 + b for (a, b) ∈ K∗×K. This cannot be perfectly 3-wise
independent since two (xi, yi) points offer no freedom for any third one. This
proves Theorem 2 item 2.

We can manually compute ε = |||[H ]3 − [H∗]3|||∞ for small q. We found

q 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27 29 31 32
ε 0 0 1 4

15
26
35

1
2

10
21

14
33

62
143

5
14

26
85

98
323

38
161

134
575

46
225

50
261

170
899

7
40

We can notice that these numbers get closer to 6
q which seems to mean that our

bound is tight.

2.3 Pairwise Independence

We notice that for any permutation S the set of all a.S(x)+c for (a, c) ∈ K∗×K
is perfectly pairwise independent. Hence H is a disjoint union of perfectly pair-
wise independent permutations. Therefore H is a perfect pairwise independent
permutation. This proves Theorem 2 item 1.
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2.4 Four-wise Independence

We construct a distinguisher which uses four input-output pairs (xi, yi) for i =
1, 2, 3, 4 by using the cross-ratio: let

R(t, u, v, w) =
t−u
t−w
v−u
v−w

when t, u, v, w are pairwise different. We notice that R is invariant under trans-
lation, scalar multiplication, and inversion:

1. R(t + α, u + α, v + α, w + α) = R(t, u, v, w) for any α,
2. R(t.β, u.β, v.β, w.β) = R(t, u, v, w) for any β �= 0,
3. R(inv(t), inv(u), inv(v), inv(w)) = R(t, u, v, w) when t, u, v, w are nonzero.

Hence R is almost invariant under any h in H . The distinguisher works as follows:
if R(x1, x2, x3, x4) = R(y1, y2, y3, y4), yield 1, otherwise yield 0. The probability
that the distinguisher yields 1 for h ∈ H is at least than 1− 4

q since none of the
inv input is zero with this probability. When y1 takes all values but y2, y3, y4,
then R(y1, y2, y3, y4) takes all but three values. So the probability that the dis-
tinguisher yields 1 for a random permutation is at most 1

q−3 . The advantage of
the distinguisher is thus greater than 1− 4

q − 1
q−3 . This is greater than 1− 13

2q for
q ≥ 5. The best non-adaptive distinguisher has thus an advantage greater than
1 − 13

2q . For the |||.|||∞-almost 4-wise independence we just need to multiply by
2 due to Theorem 1 item 1. This proves Theorem 2 item 4.

For q = 4 we notice that 4-wise independence is just like 3-wise independence
for permutations: once three different input-output pairs are known, the fourth
one is known as well. Thus H is 1-almost 4-wise independent for q = 4. For q < 4
the notion of 4-wise independence does not make sense.

Note that we can see Rijndael [1, 5] as parallel applications and mixtures
of ha,b,c functions as was shown by Murphy and Robshaw [9].1 The distinguisher
above shows that if we reduce this scheme to a single branch then it is totally
insecure when having only four known plaintexts.

2.5 Three-wise Independence

Let us now prove Theorem 2 item 3. Let x = (x1, x2, x3), y = (y1, y2, y3). Let
p(x, y) be as follows.

p(x, y) = Pr
(a,b,c)∈UK∗×K×K

[ha,b,c(x1) = y1, ha,b,c(x2) = y2, ha,b,c(x3) = y3]

Similarly we let p∗(x, y) be as follows.

p∗(x, y) = Pr
h∈US(K)

[h(x1) = y1, h(x2) = y2, h(x3) = y3]

1 This is also equivalent to the simple SHARK [12] that was studied by using inter-
polation attacks by Jakobsen and Knudsen [7].
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We define d(x, y) = p(x, y) − p∗(x, y). We want to compute

D3
|||.|||∞ = max

x

∑
y

|d(x, y)|

D3
||.||a = max

x1

∑
y1

max
x2

∑
y2

max
x3

∑
y3

|d(x, y)|

D3
||.||s = max

b1,z0
1

∑
z1
1

max
b2,z0

2

∑
z1
2

max
b3,z0

3

∑
z1
3

|d(x, y)|

with xi = zbi

i and yi = z1−bi

i . According to the definition of 3-wise independent
permutation (see Def. 3), we should prove that D3

. ≤ 6
q for the three norms.

First, we notice that both p(x, y) and p∗(x, y) are zero when xi = xj is not
equivalent to yi = yj since ha,b,c and h are permutations. Therefore the sums
can be restricted to all y for which the equivalence holds. Second, we notice
that terms in D3

. for which xi = xj for some i < j are already in the maximum
defined for the pairwise independence. Since H is a perfect pairwise independent
permutation these terms are all zero. We can thus focus on x terms for which
we have x1 �= x2, x2 �= x3, x3 �= x1. This means that we have

D3
|||.|||∞ = max

x
x1 �=x2,x2 �=x3,x3 �=x1

∑
y

y1 �=y2,y2 �=y3,y3 �=y1

|d(x, y)|

D3
||.||a = max

x1

∑
y1

max
x2

x2 �=x1

∑
y2

y2 �=y1

max
x3

x3 �=x1,x3 �=x2

∑
y3

y3 �=y1,y3 �=y2

|d(x, y)|.

We also consider

D = q(q − 1) max
x1,x2,x3,y1,y2

x1 �=x2,x2 �=x3,x3 �=x1,y2 �=y1

∑
y3

y3 �=y1,y3 �=y2

|d(x, y)|.

Obviously we have D3
|||.|||∞ ≤ D3

||.||a ≤ D so it is sufficient to prove that D ≤ 6
q .

For the ||.||s norm we also have D3
||.||s ≤ max(D, D′) with D′ defined by

D′ = q(q − 1) max
x1,x2,y1,y2,y3

y1 �=y2,y2 �=y3,y3 �=y1,x2 �=x1

∑
x3

x3 �=x1,x3 �=x2

|d(x, y)|.

So it is sufficient to prove that D ≤ 6
q and D′ ≤ 6

q . Since the treatment for D′

is similar to that for D, we focus on the D ≤ 6
q inequality.

By the definition of p(x, y), we are interested in the number of solutions
(a, b, c) ∈ K∗ × K× K of

⎧⎨
⎩

a.inv(x1 − b) + c = y1

a.inv(x2 − b) + c = y2

a.inv(x3 − b) + c = y3

(1)
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By linear combination of those equations, we obtain.

inv(x1 − b)(y3 − y2) + inv(x2 − b)(y1 − y3) + inv(x3 − b)(y2 − y1) = 0 (2)

as a necessary condition. Then we realize that once a fixed b satisfies this equa-
tion, then, thanks to the hypothesis on x that x1 �= x2, x2 �= x3, x3 �= x1, at
least two out of the three equations of (1) are independent linear equations in a
and c which leads to a unique solution (a, b, c). Therefore (1) and Eq. (2) have the
same number of solutions. It is thus sufficient to count the number of solutions
of Eq. (2).

Let x = (x1, x2, x3) be fixed and such that x1 �= x2, x2 �= x3, x3 �= x1.
Let y1, y2 be fixed and such that y1 �= y2. We let ni(x, y1, y2) be the number
of y3 such that y2 �= y3, y3 �= y1 and such that the number of solutions b for (2)
is exactly i. We also define

di =
i

q2(q − 1)
− 1

q(q − 1)(q − 2)
.

We notice that for q > 3 then d0 and d1 are the only negative terms. We have

D = q(q − 1) max
x,y1,y2

q∑
i=0

ni(x, y1, y2)|di|.

Obviously, for any x1, x2, x3, y1, y2 with x1, x2, x3 pairwise different and y1 �= y2,
we have ∑

y3
y3 �=y1,y3 �=y2

p(x, y) = Pr
(a,b,c)∈UK∗×K×K

[ha,b,c(x1) = y1, ha,b,c(x2) = y2]

and ∑
y3

y3 �=y1,y3 �=y2

p∗(x, y) = Pr
h∈US(K)

[h(x1) = y1, h(x2) = y2]

and both are equal since H is perfectly pairwise independent. Hence the sum
for D without absolute values is zero thus

n0(x, y1, y2)|d0| + n1(x, y1, y2)|d1| =
q∑

i=2

ni(x, y1, y2)|di|

thus
D = 2q(q − 1) max

x,y1,y2
(n0(x, y1, y2)|d0| + n1(x, y1, y2)|d1|).

Let n≤1 be n0 + n1. We now have

D = 2q(q − 1) max
x,y1,y2

(n0(x, y1, y2)(|d0| − |d1|) + n≤1(x, y1, y2)|d1|)

which expands into

D = 2 max
x,y1,y2

(
n0(x, y1, y2)

q
+

2n≤1(x, y1, y2)
q(q − 2)

)
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Since we have n≤1(x, y1, y2) ≤ q − 2, we have

D ≤ 4
q

+
2
q

max
x1,x2,x3,y1,y2

x1 �=x2,x2 �=x3,x3 �=x1,y2 �=y1

n0(x, y1, y2).

Therefore we only have to show that we have no more than one y3 for which we
have no solution for b in Eq. (2).

Under the assumption that b �∈ {x1, x2, x3} Eq. (2) is equivalent to

0 = b (y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1))
− ((x3 − x2)x1y1 + (x1 − x3)x2y2 + (x2 − x1)x3y3)

When we have no solution at all we must have

y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1) = 0. (3)

For any choice of x, y1, y2 (with x1 �= x2) there is at most one y3 which verifies
this condition. Similarly for any choice of x1, x2, y (with y1 �= y2) there is at
most one x3 which verifies this condition. This concludes the proof. �	

3 The APA Construction

In this section we investigate ha,b(x) = inv(x + a) + b. This kind of primitive
is used in several block ciphers, e.g. Rijndael since inv is one substitution-box
application and a and b are key additions. Interestingly, we can also consider ha,b

as the Even-Mansour [6] extension of inv, like for DESX [8]. We first study the
problem with fixed permutations in a more general context that we call the
Add-Permute-Add (APA) construction.

Note that one may also like to investigate x 
→ a.inv(x)+c or x 
→ a.inv(x+b).
We notice that the latter family is the inverse of the former one. We also notice
that the former family is equivalent to y 
→ a.y + c which is a perfect pairwise
independent permutation.

3.1 Pairwise Independence of the APA Construction

The following lemma provides an interesting link between pairwise independence
and the number of impossible differentials.

Lemma 1. Let G be a finite group of order q ≥ 2. Let S be a (fixed) permutation
over G. For (a, b) ∈ G×G, we consider the permutation ha,b defined by ha,b(x) =
a + S(x + b). We let H denote the set of all ha,b.

Given a nonzero input difference δ in G, we let IDPS(δ) be the fraction of
the number of nonzero ∆ values in G such that the S(x+δ) = S(x)+∆ equation
has no solution, i.e.

IDPS(δ) =
#{∆ ∈ G; DPS(δ, ∆) = 0}

#G
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We further let IDPS be the maximum of IDPS(δ) for all nonzero δ.
The best advantage Adv of a non-adaptive distinguisher between H and a

random permutation limited to two queries is such that

q − 2
2q(q − 1)

≤ Adv − IDPS ≤ 1
q
.

Note that IDPS(δ) denotes the number of impossible differentials (δ, ∆) in the
sense of Biham et al. [2] with a fixed δ. Hence we have a nice link between
pairwise independence and impossible differentials.

Due to the link between differential probabilities and pairwise independence
(see Theorem 1), we notice the consequence that we have

max
a�=0,b

E
h∈U H

(DPh(a, b)) ≤ 1
q − 1

+
2
q

+ 2.IDPS

where Eh∈U H(DPh(a, b)) denotes the expected value of DPh(a, b) for a random h
uniformly distributed in H . Therefore we also have a nice link between differen-
tial probabilities and impossible differentials for the APA construction.

Proof. As in previous sections, and with similar notations, we observe that

D2
|||.|||∞ = max

x1,x2
x1 �=x2

∑
y1,y2
y1 �=y2

|d(x, y)|.

We let
di =

i

q2
− 1

q(q − 1)

and ni(x) be the number of y for which d(x, y) = di. We have

D2
|||.|||∞ = max

x1,x2
x1 �=x2

q(q−1)∑
i=0

ni(x)|di|.

The sum without absolute values is zero and d0 and d1 are the only negative
terms we obtain

D2
|||.|||∞ = 2 max

x1,x2
x1 �=x2

(n0(x)(|d0| − |d1|) + n≤1(x)|d1|)

where n≤1(x) = n0(x)+n1(x). Since
∑

i≥2 ni(x) = q(q−1)−n≤1(x) and di ≥ d2

for i ≥ 2, we have

(q(q − 1) − n≤1(x))d2 ≤
q(q−1)∑

i=2

ni(x)di = n0(x)|d0| + n1(x)|d1| ≤ n≤1(x)|d0|

thus

n≤1(x) ≥ q(q − 1)
d2/|d0|

1 + d2/|d0| =
1
2
q(q − 2).
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Furthermore n≤1 ≤ q(q − 1), thus we obtain

q − 2
q(q − 1)

≤ D2
|||.|||∞ − 2

q2
max
x1,x2
x1 �=x2

n0(x) ≤ 2
q
.

Now we notice that n0(x) counts the number of unreached (y1, y2) pairs
by ha,b. Since a perfectly randomizes the outputs (ha,b(x1), ha,b(x2)) up to a fixed
difference, n0(x) is equal to q times the number of unreached differences. Since b
perfectly randomizes the inputs (x1 + b, x2 + b) of S, n0(x) is simply equal
to q2.IDPS(x2 − x1). Hence we obtain the claimed inequalities. �	

The lemma bounds the best advantage of a distinguisher (regardless of the
complexity). We describe here a distinguisher whose advantage is very close to
the best one.

1. Pick a random x1, x2 (x1 �= x2) such that IDPS(x2 − x1) is maximal.
2. Send x1, x2 to the oracle, get y1, y2 respectively.
3. If y2 − y1 is in the set of all S(x + x2)− S(x + x1) when x ∈ G, then output

1, otherwise, output 0.

Obviously the advantage is IDPS .

3.2 Application to inv

With notations of the previous lemma, we notice that IDPinv is pretty bad.
Actually, inv(x + δ) = inv(x) + ∆ has no solution if, and only if the following
conditions are satisfied

1. ∆ �= inv(δ).
2. The x2 + δx + δ

∆ polynomial has no root.

These conditions hold for half of all possible ∆s hence IDPinv = 1
2 for q even

and IDPinv = 1
2 (1 − q−1) for q odd. This suggests that ha,b has a pretty bad

pairwise independence. With two samples x1 
→ y1 and x2 
→ y2, we can actually
distinguish ha,b from a random permutation with high advantage by checking
whether the above conditions hold for δ = x1 − x2 and ∆ = y1 − y2. (This is the
distinguisher of the previous section.) Since IDPinv is close to 1

2 , the advantage
is close to 1

2 .

3.3 On the Choice of XOR as a Group Operation

The bad performance if inv in the previous construction is actually not excep-
tional when the group operation is equivalent to the XOR. Indeed, given a fixed
δ �= 0 we know that DPS(δ, ∆) is always an even multiple of q−1 (since x is
a solution of S(x + δ) = S(x) + ∆ implies that x + δ is also a solution). It sums
to 1 over all of the q choices of ∆, so at least half of them are zero. This means
that IDPS ≥ 1

2 for all S. So inv does not perform so bad in the characteristic
2 case: it is just the maximum we can get from the the APA construction with
the XOR addition and a fixed permutation.
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4 Conclusion

We investigated properties of the random harmonic permutation construction.
We demonstrated that it is perfect pairwise independent, and almost 3-wise
independent. It implies that any distinguisher between those permutations and
perfect ones which is limited to three queries has an advantage bounded by 3

q
where q is the field order.

We also have shown that it is not 4-wise independent and can actually be
easily distinguished from random permutations by using the cross-ratio. This
suggests the cross-ratio as a new tool for cryptanalysis.

We investigated the pairwise independence of the APA construction. We have
shown it relates to the impossible differentials. In particular, this construction
used together with the inversion is not a good one since we can easily distinguish
it with two oracle accesses, despite the good properties of inversion with respect
to differential and linear cryptanalysis.

References

[1] Advanced Encryption Standard (AES). Federal Information Processing Standards
Publication #197. U. S. Department of Commerce, National Institute of Standards
and Technology, 2001. 238, 240

[2] E. Biham, A. Biryukov, A. Shamir. Cryptanalysis of Skipjack Reduced to
31 Rounds using Impossible Differentials. In Advances in Cryptology EURO-
CRYPT’99, Prague, Czech Republic, Lectures Notes in Computer Science 1592,
pp. 12–23, Springer-Verlag, 1999. 244

[3] J. L. Carter, M.N. Wegman. Universal Classes of Hash Functions. Journal of
Computer and System Sciences, vol. 18, pp. 143–154, 1979. 236

[4] N.T. Courtois, J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. 234

[5] J. Daemen, V. Rijmen. The Design of Rijndael, Information Security and Cryp-
tography, Springer-Verlag, 2002. 234, 238, 240

[6] S. Even, Y. Mansour. A Construction of a Cipher from a Single Pseudorandom
Permutation. In Advances in Cryptology ASIACRYPT’91, Fujiyoshida, Japan,
Lectures Notes in Computer Science 739, pp. 210–224, Springer-Verlag, 1993.
Also in Journal of Cryptology, vol. 10, pp. 151–161, 1997. 235, 243

[7] T. Jakobsen, L.R. Knudsen. The Interpolation Attack on Block Ciphers. In Fast
Software Encryption’97, Haifa, Israel, Lectures Notes in Computer Science 1267,
pp. 28–40, Springer-Verlag, 1997. 234, 240

[8] J. Kilian, P. Rogaway. How to Protect DES Against Exhaustive Key Search.
Journal of Cryptology, vol. 14, pp. 17–35, 2001. 243

[9] S. Murphy, M. J. B. Robshaw. Essential Algebraic Structure within the AES. In
Advances in Cryptology CRYPTO’02, Santa Barbara, California, U.S.A., Lectures
Notes in Computer Science 2442, pp. 1–16, Springer-Verlag, 2002. 234, 240

[10] K. Nyberg. Differentially Uniform Mappings for Cryptography. In Advances in
Cryptology EUROCRYPT’93, Lofthus, Norway, Lectures Notes in Computer Sci-
ence 765, pp. 55–64, Springer-Verlag, 1994. 234, 238

[11] E.G. Rees. Notes on Geometry, Springer-Verlag, 1983. 235



On the Use of GF-Inversion as a Cryptographic Primitive 247

[12] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, E. De Win. The Cipher SHARK.
In Fast Software Encryption’96, Cambridge, United Kingdom, Lectures Notes in
Computer Science 1039, pp. 99–112, Springer-Verlag, 1996. 240

[13] A. Russel, H. Wang. How to Fool an Unbounded Adversary with a Short Key.
In Advances in Cryptology EUROCRYPT’02, Amsterdam, Netherland, Lectures
Notes in Computer Science 2332, pp. 133–148, Springer-Verlag, 2002. 235

[14] C. E. Shannon. Communication Theory of Secrecy Systems. Bell system technical
journal, vol. 28, pp. 656–715, 1949. 235

[15] D.R. Stinson. Universal Hashing and Authentication Codes. In Advances in
Cryptology CRYPTO’91, Santa Barbara, California, U.S.A., Lectures Notes in
Computer Science 576, pp. 74–85, Springer-Verlag, 1992. 236

[16] S. Vaudenay. Provable Security for Block Ciphers by Decorrelation. In STACS 98,
Paris, France, Lectures Notes in Computer Science 1373, pp. 249–275, Springer-
Verlag, 1998. 235, 237

[17] S. Vaudenay. Adaptive-Attack Norm for Decorrelation and Super-
Pseudorandomness. In Selected Areas in Cryptography’99, Kingston, Ontario,
Canada, Lectures Notes in Computer Science 1758, pp. 49–61, Springer-Verlag,
2000. 235, 237

[18] S. Vaudenay. Decorrelation: a Theory for Block Cipher Security. To appear in the
Journal of Cryptology. 235, 237

[19] M.N. Wegman, J. L. Carter. New Hash Functions and their Use in Authentication
and Set Equality. Journal of Computer and System Sciences, vol. 22, pp. 265–279,
1981. 234, 236


	On the Use of GF-Inversion as a Cryptographic Primitive
	Previous Work and Definitions
	The Random Harmonic Permutation Construction
	Our Result
	On the Perfect 3-wise Independence
	Pairwise Independence
	Four-wise Independence
	Three-wise Independence

	The APA Construction
	Pairwise Independence of the APA Construction
	Application to inv
	On the Choice of XOR as a Group Operation

	Conclusion




