
Cryptographic Applications of T-Functions

Alexander Klimov and Adi Shamir

Computer Science department, The Weizmann Institute of Science
Rehovot 76100, Israel

{ask,shamir}@wisdom.weizmann.ac.il

Abstract. A T-function is a mapping in which the i-th bit of the out-
put can depend only on bits 0, 1, . . . , i of the input. All the bitwise ma-
chine operations and most of the numeric machine operations in modern
processors are T-functions, and their compositions are also T-functions.
In this paper we show that T-functions can be used to construct ex-
ceptionally efficient cryptographic building blocks which can be used as
nonlinear maximal length state transition functions in stream ciphers, as
large S-boxes in block ciphers, and as non-algebraic multipermutations
in hash functions.

1 Introduction

A function f(x) from an n-bit input to an n-bit output is called a T-function
(which is short for a triangular function) if it does not propagate information
from left to right, that is, bit number i of the output (denoted by [f(x)]i, where
the LSB is defined as bit number 0 and the MSB is defined as bit number
n − 1) can depend only on bits j = 0, . . . , i of the input. This definition can
be naturally extended to functions that map several n-bit inputs to several n-
bit outputs. The special class of T-functions f(x) for which the i-th bit of the
output can depend only on bits j = 0, . . . , i−1 of the input are called parameters
and denoted by α, β, γ, et cetera. We can thus consider each T-function f as
a parameterized collection of bit slice mappings from [x]i to [f(x)]i, in which the
parameters describe the dependence of the output bit on the previous input bits.
The simplest example of such a representation is the addition of two variables x
and y: The i-th bit of the output is the XOR of [x]i, [y]i, and a parameter which
describes the carry from the addition of all the previous bit slices. Note that the
mappings x → 2x mod 2n and x → x2 mod 2n are T-functions which are also
parameters.1 If f0(x), . . . , fk(x) are parameters then g(x) = Ψ(f0(x), . . . , fk(x))
is also a parameter for an arbitrary T-function Ψ .

Simple examples of T-functions are the following machine operations, which
are available on almost any contemporary microprocessor with n-bit words: ad-
dition (a+ b mod 2n), subtraction (a− b mod 2n), negation (−a mod 2n), multi-
plication (a ·b mod 2n), bit-wise complementation (a), xor (a⊕b), and (a∧b), or
1 It can be shown that a T-function f(x) is a parameter if and only if ∀x : 0 ≤ x <

2n f(x) = f(x + 2n) (mod 2n+1) and it is easy to check that 2x = 2(x + 2n)
(mod 2n+1) and x2 = (x + 2n)2 (mod 2n+1) (except for n = 0).

M. Matsui and R. Zuccherato (Eds.): SAC 2003, LNCS 3006, pp. 248–261, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Cryptographic Applications of T-Functions 249

(a ∨ b). We call these eight machine instructions primitive operations. Any uni-
variate or multivariate composition of primitive operations is a T-function, and
in particular all the polynomials modulo 2n are T-functions. Note that left shift
could be added to the list since it is equivalent to multiplication by two mod-
ulo 2n, but right shift and circular shift cannot be added to the list since they
are not T-functions. The main purpose of this paper is to study the properties
of cryptographic building blocks defined by T-functions, and in particular the
properties of mappings defined as a composition of a small number of primitive
operations which mix boolean and arithmetic operations over 32 or 64 bit words,
and contain nonlinear subexpressions such as squaring. Such mappings have very
efficient software implementations, and they are more likely to resist cryptanaly-
sis, even though each one of them has to be tested carefully over a long period of
time before it can be used as a secure building block in an actual cryptographic
design.

2 Invertible T-Functions

The round function of a block cipher has to be invertible, since we have to undo
its effect in order to decrypt the ciphertext. Even when we do not wish to apply
the inverse operation, it is often desirable to use invertible building blocks (e.g.,
to avoid collisions in hash functions or to increase the expected cycle length in
stream ciphers). In [3] it was shown that it is easy to test the invertibility of
mappings which are based on arbitrary compositions of primitive operations.
For example, the following three T-functions

x→ x+ 2x2

x→ x+ (x2 ∨ 1)
x→ x⊕ (x2 ∨ 1)

require only three primitive operations over n-bit words, and they are invertible
for any n. To prove this result, it is necessary and sufficient to prove that for
all i the bit slice mappings [x]i → [f(x)]i are invertible, where all the bits of x
are fixed except [x]i. This condition can be easily checked by noting that x2 is
a parameter except in its the least significant bit, and the LSB problem can be
fixed by either shifting it or “OR”ing it with 1. A simple generalization of this
technique can show that multivariate mappings such as

x→ x⊕ 2(x ∨ y),
y → (y + 3x3) ⊕ x

are also invertible for any word size n.

3 Invertible T-Functions with a Single Cycle

The problem considered in this section is how to characterize those T-functions
which are permutations with a single cycle of length 2n for any word size n.

250 Alexander Klimov and Adi Shamir

The cycle structure of an invertible T-function is particularly important when
the function is used as a state transition function in a stream cipher, since in
this application we iterate the function a large number of times and do not want
the sequence of generated states to be trapped in a short cycle. The fact that
we can easily test whether a linear feedback shift register (LFSR) has maximal
length is one of the main reasons they are so popular in stream cipher designs, in
spite of the cryptographic weaknesses implied by the linearity of the transition
function. If a similar theory can be developed for compositions of primitive
operations, we can use more complicated (nonlinear, and even non-algebraic)
transition functions which are very efficient in software and which are guaranteed
to have a maximal cycle length.

One added benefit is that in LFSRs, the existence of one fixed point (the
all zero state) is unavoidable, and thus we have to make sure that we do not
accidentally derive such an initial state from the random key (e.g., by forcing
some of the bits to 1). This is cumbersome, and in some well known stream ci-
phers (e.g., A5/2) such a protective mechanism even leads to devastating attacks.
With appropriately chosen T-functions, we can guarantee that all the states are
on a single cycle of length 2n, and thus there are no bad states which should be
avoided during the initialization of the stream cipher.

Not every invertible T-function has a single cycle. Consider, for example, the
RC6 mapping x→ x+ 2x2 (mod 2n). It is easy to show that it has a very bad
cycle structure since any one of the 2n/2 x values whose bottom half is zero is
a fixed point of the mapping. The mapping x → x + (x2 ∨ 1) is better, but it
does not have a single cycle. In [3], we used ad-hoc techniques to show that the
mapping x → x + (x2 ∨ 5) (which also requires only three primitive operations
on n-bit words) has a single cycle which contains all the 2n possible values. In
this section we develop a general technique for proving such results for other
T-functions.

The cycle structure of T-functions was recently studied by Anashin [1], who
used p-adic analysis and infinite power series to prove2 (in theorem 2.7) that a T-
function is invertible if and only if it can be represented in the form c+x+2v(x),
and that an invertible T-function defines a single cycle if and only if it can be
represented in the form 1 + x+ 2(v(x+ 1)− v(x)), where c is some constant and
v(x) is some T-function. The sufficiency can be used to construct new single cycle
permutations by using a v(x) which is defined by a small number of primitive
functions,3 but the necessity is less useful since in many cases (e.g. the mapping
x+(x2∨5)) we know from Anashin’s theorem that v(x) exists but it is not clear
how to define it in order to show by his method that the mapping has a single
cycle.
2 He uses a completely different terminology of compatible, ergodic and measure pre-

serving functions, so we translate his result to our terminology.
3 Note, however, that the construction requires two evaluations of v(x) and five ad-

ditional operations, so even if v(x) = x2, which requires a single operation, the
constructed function requires seven primitive operations which is rather inefficient.

Cryptographic Applications of T-Functions 251

In the univariate case, there are only four possible bit slice mappings from one
bit to one bit: 0, 1, x, x⊕ 1. Since only the last two are invertible and the choice
between them can be a parameter depending on the previous bits, a T-function
f(x) is invertible if and only if it can be represented in the following form:
[f(x)]i = [x]i⊕α, where α is a parameter. It is easy to show that the only possible
lengths of cycles of a T-function are powers of two, so the sequence {xi+1 =
f(xi) mod 2n} has period 2n if and only if xi �= xi+2n−1 (mod 2n). Since for
any T-function xi = xi+2n−1 (mod 2n−1), we can conclude that f(x) defines
a single cycle if and only if [xi]n−1 �= [xi+2n−1]n−1, and thus

⊕2n−1

j=0 α(xi+j) =
1. The function α(x) is a parameter, that is α(x + 2n−1) = α(x) (mod 2n).
Moreover, {xi mod 2n−1} has period 2n−1, so {α(xi+j)}2n−1

j=0 as a set is the same
as {α(j)}2n−1

j=0 . This proves the following simple characterization:

Theorem 1. The T-function f(x) defines a single cycle modulo 2n if and only
if [f(x)]n−1 = [x]n−1 ⊕ α([x]0,...,n−2) and

⊕2n−1−1
x=0 α(x) = 1.

Once again, this theorem completely characterizes those T-functions whose
iteration defines a single cycle, but it is difficult to use it even in the simplest
example of the mapping x→ x+C (mod 2n), which is known to have a single
cycle if and only if C is odd.

Since the general theorem is not very helpful in practice, let us consider an
interesting special case of it. Suppose that r(x) is a parameter, that is r(x) =
r(x+2n−1) (mod 2n). So, r(x) = r(x+2n−1)+2nb(x) (mod 2n+1). Consider

B[r, n] = 2−n
2n−1−1∑

i=0

(r(i + 2n−1) − r(i)) (mod 2) =
2n−1−1⊕

i=0

b(i). (1)

Let us introduce the notion of even and odd parameters according to the 0/1
value of B. Note that in the general case B is a function of n, and thus the
parameter can be neither even nor odd if

∀N ∃no > N,ne > N : B[r, no] = 1, B[r, ne] = 0.

Let us give several examples of even parameters. The simplest is an arbitrary
constant r(x) = C: r(x) = r(x + 2n−1) and so, b = 0 and B = 0. Let r(x) = 2x
then r(x + 2n−1) = r(x) + 2n (mod 2n+1), so b(x) = 1 and B is even as long
as 2n−1 is even, that is n ≥ 2. If r(x) = x2 then r(x+2n−1) = r(x)+2nx+22(n−1),
so b(x) = [x]0 and B is even for n ≥ 3.

The following function is an example of an odd parameter: [r(x)]i = [x]0 ∧
[x]1 ∧ · · · ∧ [x]i−1. Bit number i of r(x) depends only on bits up to i− 1 of x, so
it is a T-function and a parameter. Clearly b(i) �= 0 if and only if i = 1 . . . 1, so
B[r, n] = 1 for n ≥ 1.

Note that if a and b are even parameters then a + b, a − b, a ⊕ b are also
even parameters. Suppose that we know the value of B[r] and let us calculate
B[r∨C], where C is a constant. If [C]i = 0 then [r(x) ∨ C]i = [r(x)]i, so B[r, i] =

252 Alexander Klimov and Adi Shamir

B[r ∨ C, i]. If [C]i = 1 then [r(x) ∨ C]i = 1, so b(x) = 0 and B[r ∨ C, i] = 0.
Combining both cases we could say that if r(x) is an even parameter then r(x)∨C
is also an even parameter for an arbitrary constant C.

Theorem 2. Let N0 be such that x → x + r(x) mod 2N0 defines a single cycle
and for n > N0 the function r(x) is an even parameter. Then the mapping
x→ x+ r(x) mod 2n defines a single cycle for all n.

Proof. Let us prove the theorem by induction. For n ≤ N0 the mapping defines
a single cycle. Suppose that it is true for n (and n− 1). Consider the sequence
{xi}2n+1−1

i=0 , where x0 = 0 and xi = xi−1 + r(xi−1) mod 2n+1. In particular,

x2n = x2n−1 + r(x2n−1) = . . . = x0 +
2n−1∑
i=0

r(xi) =
2n−1∑
i=0

r(xi) (mod 2n+1). (2)

From the inductive hypothesis it follows that all the xi (i = 0, . . . , 2n − 1) are
different modulo 2n, so as a set {xi mod 2n}2n−1

i=0 = {i}2n−1
i=0 . Using also the fact

that r(x) = r(x + 2n) (mod 2n+1), we can rewrite the sum as follows:

2n−1∑
i=0

r(xi) =
2n−1∑
i=0

r(xi mod 2n) =
2n−1∑
i=0

r(i)

=
2n−1−1∑

i=0

r(i) +
2n−1−1∑

i=0

r(i + 2n−1) (mod 2n+1).

Let us denote the first sum as S and the second as S′. From the fact that x0 �=
x2n−1 (mod 2n), but x0 = x2n−1 (mod 2n−1) it follows that x2n−1 = 2n−1

(mod 2n). Using also (2) (with n replaced by n− 1), we can write

S =
2n−1−1∑

i=0

r(i) =
2n−1−1∑

i=0

r(xi) = x2n−1 = 2n−1 (mod 2n).

So, there is a constant A, such that S = A2n +2n−1 (mod 2n+1). From the fact
that r(x) is an even parameter it follows that S′ = S (mod 2n+1), so, x2n = S+
S′ = 2(A2n+2n−1) = 2n (mod 2n+1). This means that x0 �= x2n (mod 2n+1),
and thus the mapping x→ x+ r(x) mod 2n+1 defines a single cycle for n+ 1.

The mapping x→ x+ C, where C is an odd constant defines a single cycle.
So, the condition “x→ x+ r(x) mod 2N0 defines a single cycle” always holds if
r(x) mod 2N0 is an odd constant. This is always true for r(x) = r′(x)∨C, where
C = 1 . . . 1︸ ︷︷ ︸

N0

2, although other constants are also possible.

We already know that for n ≥ 3, x2 is an even parameter. So, x → x +
(x2 ∨ 1112) defines a single cycle modulo 2n for arbitrary n. It turns out that
∀x, [x2

]
1

= 0, so x2 ∨ 1012 (mod 23) is also a constant. So, x → x + (x2 ∨ C)

Cryptographic Applications of T-Functions 253

defines a single cycle if and only if C = � · · · � 1 � 12, where � denotes 0 or 1.
(It is easy to check by direct calculation modulo 23 that it is also a necessary
condition.) This shows that our theorem 2 is a generalization of the theorem
which was proven in [3].

A further generalization of this result, which considers the cyclic use of several
constants C, is

Theorem 3. Consider the sequence {(xi, ki)} defined by iterating

xi+1 = xi + (x2
i ∨ Cki) mod 2n,

ki+1 = ki + 1 mod m,

where for any k = 0, . . . ,m − 1 Ck is some constant. Then the sequence of
pairs (xi, ki) has a maximal period (m2n) if and only if m is odd, and for all k,
[Ck]0 = 1 and

⊕m−1
k=0 [Ck]2 = 1.

The proof of this result is quite complicated, and is omitted due to space limi-
tations.

4 Latin Squares

Let X be a finite set of values. A function f : X × X → X is called a latin
square of order K = |X | if both f(x, ·) and f(·, x) are invertible. Latin squares
have a rich mathematical structure, and they were shown to be useful building
blocks in a variety of cryptographic applications (especially in block ciphers and
hash functions, see e.g. [6]). In order to check that a function f(·, ·) which is a
composition of primitive operations is a latin square it is necessary and sufficient
to check, using machinery developed in [3], that f(x,C) and f(C, x) are invertible
for every value of C.

Let us prove, for example, that (x ⊕ y)(A(x ∧ y) + B) is a latin square,
where A is any even number and B is any odd number (i.e., [A]0 = 0 and
[B]0 = 1): [(x⊕ C)(A(x ∧ C) +B)]0 = ([x]0 ⊕ [C]0)([A]0 [x]0 [C]0 ⊕ [B]0) =
[x]0 ⊕ [C]0, and [(x⊕ C)(A(x ∧C) +B)]i = [x⊕ C]i [(A(x ∧ C) +B)]0 ⊕
[x⊕ C]0 [A(x ∧ C) +B]i⊕α1 = [x⊕ C]i⊕[x⊕ C]0 ([A]i [x]0 [C]0 ⊕ [A]0 [x]i [C]i
⊕ [B]i ⊕ α2) ⊕ α1 = [x]i ⊕ α3.

A pair of latin squares (f, g) is called orthogonal4 if

∀(x, y) �= (x′, y′), (f(x, y), g(x, y)) �= (f(x′, y′), g(x′, y′)). (3)

Such mappings are also known as multipermutations, and were used in several
cryptographic constructions. They are known to exist for all orders except two
and six. There is an easy construction of orthogonal latin squares of odd orderK:
(f, g) = (x+ y, 2x+ y) mod K. We will concentrate on K = 2n. Let F be a finite

4 As Euler used Greek and Latin letters to denote values of f and g respectively, they
got also known as Graeco-Latin squares.

254 Alexander Klimov and Adi Shamir

field with 2n elements. If α, β ∈ F, α, β �= 0 and α �= β then (f, g) = (αx+y, βx+
y) are orthogonal. Actually, this is an abuse of the notation, since f(x, y) =
φ−1(αφ(x)+φ(y)), where φ : {0 . . . 2n−1} → F is a one-to-one mapping between
integers and the field elements. Unfortunately, most processors do not have built-
in operations which deal with finite fields, and thus the mapping is quite slow
when implemented in software. In addition, the resulting transformation is linear,
and thus it is a very weak cryptographic building block.

In [5] it was shown that there are no orthogonal latin squares formed by
a pair of polynomials modulo 2n. Let us prove that this is true not only
for polynomials modulo 2n but also for the wider class of all the possible T-
functions. Consider the latin square of order 2n formed by a T-function f(x, y).
Given arbitrary x0, y0 < 2n−1 let x′0 = x0 + 2n−1 and y′0 = y0 + 2n−1.
Since f is a T-function and (x0, y0) = (x′0, y′0) (mod 2n−1) it follows that
f(x0, y0) = f(x0, y

′
0) = f(x′0, y

′
0) (mod 2n−1). The function f(x0, y) is invert-

ible modulo 2n, so f(x0, y
′
0) = f(x0, y0)+ 2n−1 (mod 2n). For the same reason

f(x′0, y′0) = f(x0, y
′
0) + 2n−1 (mod 2n), so f(x0, y0) = f(x′0, y′0) (mod 2n).

Suppose that a pair (f, g), where f and g are T-functions is a pair of orthog-
onal latin squares. Similar to the above g(x0, y0) = g(x′0, y

′
0) (mod 2n), so

(f(x0, y0), g(x0, y0)) = (f(x′0, y
′
0), g(x

′
0, y

′
0)) (mod 2n) which contradicts (3).

In spite of this negative result, we can construct a pair of orthogonal latin
squares using T-functions, if we consider the top and bottom half of each vari-
able as a separate entity. This is a natural operation in many processors, which
allows us to consider each machine word either as one word of length 2n or as
two consecutive words of length n. Every 0 ≤ x < 22n could be represented as
x = xu2n +xv, where 0 ≤ xu, xv < 2n. There exist T-functions fu(xu, xv, yv, yv),
fv(xu, xv, yv, yv), gu(xu, xv, yv, yv) and gv(xu, xv, yv, yv), such that (f, g) =
(fu2n + fv, gu2n + gv) is a pair of orthogonal latin squares of order 22n. Let
us construct them.

Table 1. A pair of orthogonal latin squares of order four

0,0 1,1 2,2 3,3
1,2 0,3 3,0 2,1
2,3 3,2 0,1 1,0
3,1 2,0 1,3 0,2

Table 1 shows a pair of orthogonal latin squares of order four (n = 1).
Columns correspond to x and rows to y, for example, f(0, 1) = 1 and g(0, 1) = 2
or more explicitly for arguments (xu = 0, xv = 0, yu = 0, yv = 1) fu = 0, fv =
1, gu = 1 and gv = 0. Each of xu, xv, yv and yv consists of only a single bit,
so fu, fv, gu and gv are clearly T-functions. Suppose we have a pair (f, g) of
orthogonal latin squares of order 22n, where fu, fv, gu and gv are T-functions.
To construct a pair (f ′, g′) of orthogonal latin squares of order 22(n+1) we do
the following. Let [f ′

u]i ≡ [fu]i, [f ′
v]i ≡ [fv]i, [g′u]i ≡ [gu]i and [g′v]i ≡ [gv]i for

Cryptographic Applications of T-Functions 255

i = 0, . . . , n − 1. This way bit number i of f ′ depends on the same bits of the
arguments as f , which is a T-function and so, f ′ is also a T-function. The same
holds for fv, gu and gv. For every fixed (xu, xv, yu, yv) (mod 2n) let us define
(f ′, g′) in such a way that [f ′, g′]n forms a pair of orthogonal latin squares. Let us
prove that f ′ and g′ are latin squares. Suppose that there exists a row y0 such
that ∃x0, x1 : f ′(x0, y0) = f ′(x1, y0). There are two possibilities: either x0 �=
x1 (mod 2n), so, f ′(x0, y0) = f(x0, y0) �= f(x1, y0) = f ′(x1, y0) (mod 2n)
or x0 = x1 (mod 2n), but in this case [f ′(x0, y0)]n �= [f ′(x1, y0)]n, because for
any fixed n the least significant bits of arguments [f ′]n forms a latin square. The
same proof applies to the columns of f ′, to g′ and to the orthogonality of f ′

and g′.
Let us show some examples of orthogonal latin squares. First we need to

encode table 1:5

f�
u = 0011001111001100= xv ⊕ yv,

f�
v = 0101101001011010= xu ⊕ yu,

g�
u = 0011110011000011= xv ⊕ yu ⊕ yv,

g�
v = 0101010110101010= xu ⊕ yv.

The next question is how to define (f, g) in such a way that [(f, g)]n forms a pair
of orthogonal latin squares for every fixed (xu, xv, yu, yv) mod 2n. The simplest
way is to use for [f, g]n the same functions (f�, g�), that is f = (xv⊕yv, xu⊕yu),
g = (xv ⊕ yu ⊕ yv, xu ⊕ yv). Note that if (f, g) is a pair of orthogonal latin
squares and φ is an invertible mapping then (φ(f), g) is also a pair of orthogonal
latin squares. The mapping φ(x) = x⊕C is invertible, thus the bit trace [f]n =
(f�

u⊕α, f�
v⊕β), where α and β are parameters, is also admissible. So, for example,

f = (xv ⊕ yv − (x2
u ∨ 1), 7xu + yu) and g = (xv − (yu ⊕ yv) + (x2

u ∨ 1), xu ⊕ yv)
are nonlinear and non-algebraic orthogonal latin squares.

We are not limited to latin squares of size 22n × 22n, since using similar
construction we can build a pair of orthogonal latin squares of size 2mn × 2mn

for any m. For example, if m = 4 and we represent the inputs as x = 23nxs +
22nxt + 2nxu + xv and y = 23nys + 22nyt + 2nyu + yv, then

f = (xs ⊕ ys + 2xvyu, xt + yt, xu ⊕ yu + 2xsxv, xv + yv + 2xsyt),
g = (xs + yt ⊕ 2xuyv, xt ⊕ yu, xu + yv ⊕ ys, xv ⊕ ys ⊕ (x2

s ∨ 1))

is an example of a nonlinear pair of orthogonal latin squares of size 24n × 24n.

5 The Minimality of Mappings

The mapping x→ x+(x2 ∨C), where C = � · · · � 1 � 12 is a nonlinear invertible
function with a single cycle which requires only three primitive operations. The
5 It is not a coincident that the functions are linear. The pair in table 1 was constructed

by (f, g) = (αx+y, βx+y), where F is GF2[t]/(t
2 + t+1), α = 1, β = t. Addition in

the field is just bitwise-xor — this completely explains f�, and multiplication by t
is one bit left shift and xor with 112 in case of “carry”.

256 Alexander Klimov and Adi Shamir

natural question is whether there are any other mappings with these properties
which are compositions of one, two, or three primitive operations. In the full
version of the paper we describe the search technique we used to show that
there are no nonlinear mappings with one or two primitive operations which
have this property. In fact, the term “number of operations” has two possible
interpretations: we can count the number of internal nodes in the parse tree
of an expression, or we can count the number of instructions in a straight-line
program which evaluates this expression. In the first case the only other nonlinear
mapping with three operations which has a single cycle is x → x − (x2 ∨ C),
where C = � · · · � 1 � 12 (note that if x′ = x + (x2 ∨ C) then −x′ = −x −
((−x)2 ∨ C) and thus each one of the sequences is the negation (mod 2n) of
the other sequence). This is true for any word size n and for any choice of n-
bit constants in the mapping, and thus it is impossible to prove such a result
by exhaustively searching the infinite space of all the possible mappings. In the
second model there are exactly two additional families of single cycle mappings:
x → x ± (x ∨ C)2, where C is any odd constant, which can be calculated with
three machine operations: r1 = x ∨C, r2 = r1 × r1, r3 = x± r2. However, since
the squaring is not technically considered as a primitive operation, the parse tree
of the expression is based on x±(x∨C)(x∨C) and thus according to the previous
model it has four operations. The latter model depends on the instruction set
of the target CPU. For example, the SPARC instruction set has a command to
evaluate r1 = x∨C, but in the x86 instruction set the result in most operations
is stored in place of the first operand, and thus to evaluate r1 = x ∨ C we need
to execute two operations: r1 = x and r1 = r1 ∨ C. Because of this architecture
dependency we use the former model in the rest of the section.

By using similar techniques, we can find the smallest number of primitive
operations required to define a nonlinear latin square f(x, y), where nonlinear
means that there is a multiplication operation in which both sides depend on x
and a multiplication operation in which both sides depend on y. One example
is C0 + ((x + y) ∗ (C1 ∨ (x + y))), where C0 is odd and C1 = 1 · · · 112, which is
actually equivalent to the linear mapping C0 + C1(x + y). To avoid such cases
we add another constraint: for any subexpression g (except C) there should be
(x, y) and (x′, y′) such that g(x, y) �= g(x′, y′). Experiment shows that there
are no expressions with fewer than five primitive operations satisfying these
constrains and there are 188 such expressions with five primitive operations. All
of them have the form β ∗ γ with four possible β and 47 possible γ.

6 Combinations of Permutations

Let f(x) and g(x) be arbitrary permutations over n-bit words. Their sum can
never be a permutation, and their XOR is extremely unlikely to be a permuta-
tion. The problem of constructing “random looking” f(x) and g(x) such that
f(x), g(x), and f(x) ⊕ g(x) are all permutations seems to be difficult, but we
can easily construct such T-functions by analyzing their bit-slice mappings. In

Cryptographic Applications of T-Functions 257

fact, we can choose g(x) as the identity, and thus generate nonlinear and non-
algebraic mappings for which both f(x) and f(x)⊕ x are permutations. We can
easily generalize the technique and generate k permutations with the property
that the XOR of any pair of them is also a permutation, or generate a sin-
gle permutation f(x) with the property that various polynomials in f (such as
f(f(f(x))) ⊕ f(x) ⊕ x) are also permutations. Due to space limitations, we can
only describe the basic idea of the construction, which is to split x into multiple
variables x0, . . . , xm−1, and to define f0, . . . , fm−1 so that its bit-slice has the
following form [fj]i =

⊕m−1
k=0 [Cj,k]i [xk]i⊕αj,i, where (Ci,j) is a constant matrix,

such that both C and C ⊕ I (or both C and C3 ⊕ C ⊕ I) are invertible.

7 Fast Iteration and Inversion of T-Functions

Consider the sequence {xi}, where xi+1 = f(xi) mod 2n. The problem consid-
ered in this section is how to efficiently calculate xk given x0 and k without going
through all the intermediate values. This problem has at least two cryptographic
applications. If f(x) is used as the state transition function in a stream cipher,
the solution allows us to jump into an arbitrary position of the stream without
calculating all the intermediate states. If f(x) is used as the round function of
a block cipher, then in order to decrypt the ciphertext we have to run f(x)
backwards (i.e., calculate x−1 in the above sequence) more efficiently than in
the bit-by-bit manner considered so far. The length of each cycle of a T-function
is 2k for some k ≤ n, and thus x2n = x0 which implies that f−1(x) = x2n−1.

Suppose that f(x) is a polynomial p̂(x) of degree d, then the iterated ex-
pression xm = p̂(m)(x0) is also some polynomial, but unfortunately its degree
is dm. Let k and l be constants such that kl ≥ n. Any x could be represented
in the following form: x = 2ky + r, where r = x mod 2k. For any fixed r there
exists a polynomial p, such that p̂(m)(x) = p̂(m)(2ky + r) = p(2ky). Although
the degree of p could be as high as the degree of p(m), modulo 2n all its coeffi-
cients except the first l are equal to zero: ai(2ky)i = aiy

i2ki = 0 (mod 2n) for
i ≥ l.6 There are 2k possible values of r, so if we prepare a lookup table with
the coefficients of p for each possible value of r then we could calculate xk using
l− 1 multiplications and l− 1 additions modulo 2n.7 Consider, for example, the
RC6 function p(x) = x + 2x2, and let n = 64, k = 16 and l = 4. The straight-
forward calculation of its inverse takes on average8 ≈ n

2 = 32 calculations of

6 Note that in order to calculate p modulo 2n we do not need all the bits of the
coefficients ai, but only ai mod 2k(l−i). So, in order to store the coefficients we need
only k(l + (l − 1) + · · · + 1) = kl(l+1)

2
bits of memory.

7 An interesting consequence of this is that most T-functions over n-bit words are
not representable as a polynomial modulo 2n, since in order to encode a general
T-function we need 2n + 2n−1 + · · ·+ 21 = 2n+1 − 1 bits of memory which is greater
than the size of the table. This is in contrast to the fact that over a finite filed such
as Zp any function can be represented as a (very high degree) polynomial.

8 Note that if we calculate [f(x)]i and find that [x]i = 0 than we do not need to
recalculate f(x) in order to find [f(x)]i+1.

258 Alexander Klimov and Adi Shamir

p(x), that is about 32 multiplications and 32 additions. Our method requires
only three multiplications and three additions which is only three times slower
than the forward calculation. The drawback is that our method needs a fixed
precomputed table of 2k−1kl(l+1) ≈ 223 bits ≈ 1 megabyte of memory, whereas
the slow method does not need precomputations and memory. However, a one
megabyte table is not a problem in many PC-based cryptographic applications.

To construct the lookup table we use the following property: p(a+b)(x) =
p(a)(p(b)(x)), so in order to calculate p(2n)(x) we need n “symbolic” evaluations
of polynomial of polynomial. Care must be taken to use p[r] for the right r in each
step, that is in the general case r = x mod 2k is not equal to r′ = p(b)(x) mod 2k,
so we need to calculate the whole table for p(2k)(x) before constructing the table
for p(2k+1)(x).

Unlike the RC6 function x + 2x2, the function f(x) = x + (x2 ∨ 5) is not
a polynomial, but if k = 3 it is a polynomial for every possible value of r. For
example, if r = x mod 23 = 1 then x2 mod 23 = 1, whereas x2 ∨ 5 mod 23 = 5,
so f(x) can be represented by the polynomial x+ x2 + 4 for each such input x.

8 Cryptanalysis of x → x + (x2 ∨ C) (mod 2n)

Our goal in this paper is to develop new efficient building blocks for larger
cryptographic schemes, and in many cases the security of the building block
depends on how it is used. In particular, we would like to use the x → x +
(x2 ∨ 5) (mod 2n) mapping as a substitute for LFSRs or linear congruential
rand() functions rather than as a stand-alone stream cipher. However, we did
try to analyze the security of the exceptionally simple stream cipher which just
iterates this function and sends the m most significant bits9 of each n-bit state
to the output, and discovered that it is surprisingly strong against all the attacks
we could think of — the running time of all our attacks is exponential in n. The
purpose of this section is to summarize our findings, but due to space limitations
we outline only some of the attacks.

Any PRNG with an n-bit state could be attacked as follows. Precompute the
outputs of the generator for random 2t states, where the length of each output
should be sufficient to identify uniquely the state. Sort them in order to be able
to retrieve the state given the output sequence. Given 2d actual outputs try to
locate any one of them in the table. If the parameters are such that t + d ≈ n
we have a significant probability of success. One possible choice of parameters
is t = d = n

2 .10 In this case we use O(2
n
2) of memory and time, and thus the

effective security of any PRNG is no more than n
2 bits.

9 Note that the i-th least significant bit in any iterated single cycle T-function repeats
every 2i steps and depends only on the first i state bits, and thus the most significant
bits are much stronger than the least significant bits in this application. In addition,
we assume that m � n.

10 Usually the processing time is cheaper than memory, and access to secondary mem-
ory takes a significant amount of time, so in practice it is better to have t > d. We do

Cryptographic Applications of T-Functions 259

Let us show how to attack our generator with the same complexity O(2
n
2) but

without the preprocessing and additional memory, besides those which are used
for the output sequence itself. Consider xi = � . . . �︸ ︷︷ ︸

n
2

0 . . . 0︸ ︷︷ ︸
n
2

, that is xi = 2
n
2 y for

some y. In this case x2
i = 0 (mod 2n), so xi+1 = xi + 5 mod 2n, and thus with

high probability the most significant bits of xi+1 are the same as those of xi.
On the other hand if xi does not end with n

2 zeros then the probability that
the m most significant bits of xi and xi+1 are the same is approximately 2−m.
Also note that if xi = 2

n
2 y then x

i+2
n
2

= 2
n
2 y′. So, checking a few pairs of the

outputs with a 2
n
2 shift between the pairs we could identify the point at which

the least significant halves of x
i+l2

n
2

are zeros. It is also guaranteed that one of
any 2

n
2 consecutive xi’s has this property.

We now describe an improved attack in which the data, time and memory
complexities are of order 2

n
3 . Let x = 2

2n
3 xu +2

n
3 xv +xw and suppose that xw =

0. In this case (2
2n
3 xu +2

n
3 xv +xw) → (2

2n
3 xu +2

n
3 xv +xw)+ ((2

2n
3 xu +2

n
3 xv +

xw)2 ∨ 5) = 2
2n
3 (xu + x2

v) + 2
n
3 xv + 5 (mod 2n), and so the difference between

the most significant bits of consecutive outputs is approximately x2
v. If xv is

known (and xw = 0) we can easily calculate the value of xv after 2
n
3 k steps for

several k. If we make a lookup table of these values for all possible xv we can
find xv after inspecting a few pairs of the outputs with a 2

n
3 shift between them.

To reduce the amount of data needed to attack the generator, we can use
a different approach. In section 7 it was shown how to represent xi as a poly-
nomial of degree l − 1 in x0 − r if r = x0 mod 2k was guessed correctly. Given
{xi = ai,l−1y

l−1
0 + · · · + ai,0}p−1

i=0 it is possible, as we will see below, to find
{βi ∈ {−1, 0,+1}}p−1

i=0 such that

∀j,
p−1∑
i=0

βiai,j = 0 (mod 2k(l−j)). (4)

If the sum is zero as a polynomial then S =
∑
βixi = 0 as long as the k

least significant bits of x0 are guessed correctly. On the other hand if the guess
is incorrect then S is likely to be random. Provided that we could distinguish
these cases we could find the k least significant bits of x0 after about 2k

2 tests.
Using the same technique while incrementing k we could find the rest of the
state x0. The only two remaining questions are:

– How to notice that
∑
βixi = 0 given only the m most significant bits of xi?

– How to find those βi?

not store all the preprocessed sequences but only those that have some distinguish-
able feature (like starting with l zeros), thus reducing memory and postprocessing
time by factor of 2l.

260 Alexander Klimov and Adi Shamir

Let us denote by ui the m most significant bits of xi, that is xi = 2n−mui+vi,
where vi < 2n−m. This way

S =
p−1∑
i=0

βixi = 2n−m

p−1∑
i=0

βiui +
p−1∑
i=0

βivi = 2n−mA +B (mod 2n).

If the guess is correct, then S = 0 (mod 2n), and thus B = S = 0
(mod 2n−m). Let us denote B′ = B

2n−m . In the general case B′ = q2m − A,
where q ∈ Z and A ∈ [1, 2m]. If p < 2m then B′ < 2m so an attacker could
calculate B′ = −A mod 2m and it should behave approximately as the sum of p
uniformly distributed in [0, 1] random variables which is approximately normal
with mean p

2 . On the other hand if the guess is wrong A should be uniformly dis-
tributed in [1, 2m]. An attacker can easily tell apart the cases by inspecting the
expectation (average) of A for several different tuples {βi}. If p > 2m the test of
the expectation is not sufficient because B′ is not guaranteed to be less than 2m

and thus q is not always 1. But if p < 22m then Var(B′) ≈ p
12 so the standard

deviation is smaller than 2m−1 and thus with high probability q = 1 + � p
2m+1 �,

so A = q2m − B′ is normal and Var(A) ≈ p
12 . On the other hand if the guess is

incorrect VarA ≈ 22m

12 , so an attacker again could tell if his guess is correct.
The second question is more difficult. The probability that a random poly-

nomial conform to (4) is 2−t, where t = kl(l+1)
2 . There are 3p ways to assign

{−1, 0,+1} to {βi}p−1
i=0 , so as long as p > τt, where τ = log 3

log 2 ≈ 0.63 such tuple
exists with high probability. For example if k = 16 and l = 4 then t= 160 and
p > 101. Unfortunately, exhaustive search would take O(t) time which is not
practical even for a precomputation step. There are several practical approaches
to the problem.

We could relax the problem of finding βi ∈ {−1, 0,+1} conforming to (4) to
finding βi which are small integers. The new problem could be solved by LLL
reduction of the following (row) lattice:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 a0,0ψ a0,0ψ · · · a0,l−1ψ
0 1 0 · · · 0 a1,0ψ a1,0ψ · · · a1,l−1ψ
0 0 1 · · · 0 a2,0ψ a2,0ψ · · · a2,l−1ψ
...

. . .
...

...
...

...
...

0 0 0 · · · 1 ap−1,0ψ ap−1,0ψ · · · ap−1,l−1ψ
0 0 0 · · · 0 2klψ 0 · · · 0
0 0 0 · · · 0 0 2k(l−1)ψ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 2kψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ψ is a sufficiently large constant. If p > τt we know that the squared
length of the smallest vector in the lattice is smaller than p. On the other hand
LLL algorithm with 1

4 < δ ≤ 1 is guaranteed to return a non-zero basis vector

which is no more than
(

1
δ− 1

4

)p+l−1

times longer then the shortest vector in the

Cryptographic Applications of T-Functions 261

lattice. This theoretical guarantee is not acceptable but in practice LLL behaves
much better. For example, if11 p = 160, the LLL algorithm returns after a few
seconds on a standard PC a vector such that

∑
i |βi| = 108 and maxi |βi| = 9.

In order to solve efficiently the exact problem we could use a variation [2]
of Wagner’s algorithm [7]. Given approximately 2ω (for our purposes ω2 = t)
members {xi} of a group G′ = Gω (|G| = 2ω) and the target value z ∈ G′ it finds
{βi} from {−1, 0,+1} such that

∑
i βixi = z using O(2ω) time and memory. By

using this approach we are not limited to zero on the right hand side of (4),
so we could find {βi} such that

∑
i βixi(y) = 2my and thus reveal the m most

significant bits of y or, equivalently, of x0 instead of repeating with larger k’s.
For example, if n = 64, k = 16, l = n

k = 4, t = kl(l+1)
2 = 160, ω = 13, then

preprocessing and checking each of 2k consecutive positions needs roughly O(216)
data, memory and time. Note that this attack works only if the constant C is
smaller than 2k, so if, for example, size of C is n

3 the attack is still exponential
and requires O(2

n
3) time.

References

[1] V. Anashin, “Uniformly Distributed Sequences of p-adic integers, II”, To appear in
Diskretnaya Mathematika (Russian), English translation in Diskrete Mathemat-
ics (Plenum Publ.). Available from http://www.arxiv.org/ps/math.NT/0209407.
250

[2] A. Joux, “Cryptanalysis of the EMD Mode of Operation”, EUROCRYPT 2003.
261

[3] A. Klimov and A. Shamir, “A New Class of Invertible Mappings”, CHES 2002.
249, 250, 253

[4] R. Rivest, M. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 block cipher”. Avail-
able from http://www.rsa.com/rsalabs/rc6/.

[5] R. Rivest, “Permutation Polynomials Modulo 2ω”, 1999. 254
[6] S. Vaudenay, “On the need for multipermutations: Cryptanalysis of MD4 and

SAFER”, FSE 1995. 253
[7] D. Wagner, “A Generalized Birthday Problem”, CRYPTO 2002. 261

11 In fact {βi = 0}p−1
i=54, so the same vector is returned if p = 54.

	Cryptographic Applications of T-Functions
	Introduction
	Invertible T-Functions
	Invertible T-Functions with a Single Cycle
	Latin Squares
	The Minimality of Mappings
	Combinations of Permutations
	Fast Iteration and Inversion of T-Functions
	Cryptanalysis

