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Abstract. In this paper, we introduce a new notion called the dual func-
tion for studying Boolean functions. First, we discuss general properties
of the dual function that are related to resiliency and additive autocor-
relation. Second, we look at preferred functions which are Boolean func-
tions with the lowest 3-valued spectrum. We prove that if a balanced
preferred function has a dual function which is also preferred, then it
is resilient, has high nonlinearity and optimal additive autocorrelation.
We demonstrate four such constructions of optimal Boolean functions
using the Kasami, Dillon-Dobbertin, Segre hyperoval and Welch-Gong
Transformation functions. Third, we compute the additive autocorrela-
tion of some known resilient preferred functions in the literature by using
the dual function. We conclude that our construction yields highly non-
linear resilient functions with better additive autocorrelation than the
Maiorana-McFarland functions. We also analysed the saturated func-
tions, which are resilient functions with optimized algebraic degree and
nonlinearity. We show that their additive autocorrelation have high peak
values, and they become linear when we fix very few bits. These potential
weaknesses have to be considered before we deploy them in applications.

1 Introduction

Resiliency and high nonlinearity are two of the most important prerequisites of
Boolean functions when used as combiners in stream cipher systems. Resiliency
ensures the cipher is not prone to correlation attack [22] while high nonlinear-
ity offers protection against linear approximation attack [16]. Another criteria,
studied in many recent papers, is low additive autocorrelation [23, 24, 25, 26].
This ensures that the output of the function is complemented with a probability
close to 1/2 when any number of input bits are complemented. As a result, the
cipher is not prone to differential-like cryptanalysis [1]. This is a more practical
condition than the propagation criteria of order k which, in the case of high
nonlinearity, may cause linear structures to occur (as pointed out in [24]).
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In this paper, we study the autocorrelation and resiliency properties of
Boolean functions with 3-valued spectrum. This is an important class of func-
tions with many applications in cryptography, for example see [2, 4, 5, 20, 27].
We give several new constructions of resilient Boolean functions with high non-
linearity and optimally low additive autocorrelation. Then we show that our
construction yields functions with better additive autocorrelation than known
highly nonlinear resilient functions. Our findings are summarized in the following
paragraphs.

First, we introduce a new notion called the dual function, which is defined
as the characteristic function of the Hadamard transform. This notion turns out
to be a very useful tool for studying functions with 3-valued spectrum. For such
functions, we show that propagation criteria of order k and correlation immunity
of order k are dual concepts. From this, we deduce that a function with 3-valued
spectrum is correlation immune of order 1 if and only if its dual function is not
affine.

Second, we look at preferred functions which have the lowest 3-valued spec-
trum 0,42"+t1/2. We prove that, if a balanced preferred function f(x) has
a dual function that is non-affine or preferred, then f(x) has several optimal
cryptographic properties like 1-resiliency, high nonlinearity and optimal addi-
tive autocorrelation. We present some functions used in the construction of cer-
tain Hadamard difference sets, which achieve these properties. They include the
Kasami functions, the Dillon-Dobbertin functions, the Segre hyperoval functions
and the Welch-Gong Transformation functions [7, 8, 9, 11]. Moreover, some of
these functions have high algebraic degree (for algebraic complexity) and large
linear span (which offers protection against an interpolation attack [13]).

Third, we compute the additive autocorrelation of some known resilient
functions with high nonlinearity. We show that our constructed functions have
better additive autocorrelation than resilient preferred functions based on the
Maiorana-McFarland construction [3]. We also investigate an important class
of functions with 3-valued spectrum: the saturated functions constructed in [20]
(which are resilient functions optimizing Siegenthaler and Sarkar-Maitra inequal-
ity). We compute a lower bound for the additive autocorrelation which improves
on a bound given in [23]. We show that they have very high additive autocor-
relation close to 2™. Moreover an n-bit saturated function becomes linear when
we fix just very few bits (logy(n) or less bits). Thus, although a saturated func-
tion satisfies some very strong cryptographic properties, it may lead to a rigid
structure which causes other weaknesses to occur.

2 Definitions and Preliminaries

The trace function Tr : GF(2") — GF(2) is defined as Tr(z) = Z?;OI 2 Tt
is a linear function and is basic to the representation of polynomial functions
f:GF@2") — GF(2).

The Hadamard Transform of a polynomial function f : GF(2") — GF(2) is
defined by f(A) = 3, cqpgn (—1)TrODH @),
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There is a natural correspondence between polynomial functions f : GF'(2")
— GF(2) and Boolean functions g : GF(2)" — GF(2). Let {ao,...,a,—1} be
a basis of GF(2") and g(x) be the Boolean function representation of f(x), then
this correspondence is given by

g(xo, ..., xn_1) = flxoao + -+ + Tp_105—1).

The Hadamard Transform of a Boolean function f : GF(2)" — GF(2) is
flw) = ZmeGF@)n(—l)w'“f(z). This is equivalent to the definition for the cor-
responding polynomial function over GF(2™) [17].

We say the function [ : GF(2)" — GF(2) has 3-valued spectrum if its
Hadamard Transform f()\) only takes on the values 0, £2°.

Definition 1 Let n be odd and f : GF(2)" — GF(2). If f(w) only takes on the
values 0,2 T1/2 then we say f is preferred.

Remark 1. Tt is desirable for a Boolean function to have low Hadamard trans-
form. We deduce from Parseval’s equation: ) f(w)? = 22" that a preferred
function has the lowest Hadamard transform among functions with 3-valued
spectrum. That is the reason they are called preferred functions in [12].

The nonlinearity of a function f : GF(2)" — GF(2) is defined as Ny =
MiN{q affine function} |[1Z].f () # a(x)}]. A high nonlinearity is desirable as it offers
protection against linear approximation based attacks [16, 22].

A Boolean function f : GF(2)" — GF(2) is kth order correlation immune,
denoted CI(k), if f(w) = 0 for all 1 < wt(w) < k where wt(w) is the number of
ones in the binary representation of w. Correlation immunity offers protection
against correlation attack [22]. Furthermore, if f is balanced and C'I(k), we say f
is resilient of order k.

The additive autocorrelation at a is defined as Ag(a) = 3 (—1)f @+ (@+a),
We say f satisfies the propagation criteria of order k, denoted PC(k), if Ay(a) =
0 for all 1 < wit(a) < k. If Ap(a) = £2", then a is called a linear structure of f
which is undesirable.

Definition 2 The additive autocorrelation of f is Ay := maxez0|Af(a)l.

Remark 2. This value is also called the mazimum indicator in [24]. For a bal-
anced function f, we want Ay to be low so that any change in the input bits
will complement the output with probability close to 1/2. It was conjectured
by Zhang and Zheng in [24, Conjecture 1] that Ay > 2("*1/2 for a balanced
function f: GF(2)" — GF(2). Although this conjecture was later disproved by
Clark et. al. when n is even (see [6, Table 3]), it still holds when n is odd. Thus,
we make the following definition.

Definition 3 Let n be odd and f : GF(2)™ — GF(2) be balanced. [ has optimal
additive autocorrelation if Ay = 2("+1)/2,
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The linear span, denoted LS(f), of a polynomial function f(x) = ), fx®,
0; € GF(2"), is the number of monomials 2% in its polynomial representation.
We want it to be high to defend against interpolation attacks [13]. The algebraic
degree, denoted deg(f), of the corresponding Boolean function is given by the
maximum weight of the exponents max; wt(s;) (see [17]). We want it to be high
so that algebraic analysis is complex.

3 Cryptographic Properties of the Dual Function

Definition 4 Let f : GF(2)" — GF(2). Its dual function oy is defined as

tw if f(w) =0
sw) = { 1if f(w) #0.

Remark 3. From Parseval’s equation: ) f(w)2 = 227 we see that of(w) has
weight 22(=9 if f has 3-valued spectrum 0, £2°.

Next, we show that the Hadamard transform of the dual function is proportional
to the additive autocorrelation of a function with 3-valued spectrum. It can be
applied to derive several useful results in the next few subsections.

Lemma 1. If f : GF(2)" — GF(2) is a Boolean function with 3-valued spec-
trum 0, £2%, then for all a # 0

Ag(a) = =22 D55 a).

Proof. We make use of the well known Wiener-Khintchine theorem (e.g. see [2,
Lemma 1)): f(w)? = >, A¢(a)(—1)*". By applying inverse Hadamard trans-
form®, we have the equivalent formula:

(a) =1/2" ) flw)*(=1)*". (1)

By definition, f(w)? = 2% 0 (w). Substituting this in equation (1), we get
a) =2*"" Y "oy (w)(~

By noting that 20 (w) = 1 — (—1)77 () we get

Af(a) _ 22i—(n+1) (Z(_l)a.w . Z(_l)gf(w)—m‘w) .

This is —2%~ ("1 (a) when a # 0 and 2" when a = 0. O

! The inverse Hadamard transform is the formula: F(w) = > f(z)(-1)** =

fl) =1/2" 30, Flw)(=1)"*
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3.1 Correlation Immunity and Non-Affine Dual Function

In this section, we derive several useful results on correlation immunity from
Lemma 1.

Proposition 1 Let f : GF(2)" — GF(2) be a Boolean function with 3-valued
spectrum 0,£2°. Then f is PC(k) if and only if o is CI(k).

Proof. f is PC(k) <= Ag(a) = 0 for 1 < wt(a) < k <= oc(a) = 0 for
1 <wt(a) <k (by Lemma 1) <= oy is CI(k). O

We need the following result from [2] for proving correlation immunity of Boolean
functions.

Proposition 2 (Canteaut, Carlet, Charpin and Fontaine [2, Theorem 7]) Let
f: GF(2") — GF(2) be a polynomial function with 3-valued spectrum 0, £2¢.
Then there ezists a basis of GF(2™) such that the Boolean representation of f is
CI(1) if and only if [ is not PC(n — 1) under any basis representation.

Remark 4. We stated Proposition 2 in a modified form (from the original in [2])
so that it applies to polynomial functions. From the proof of Proposition 2, we
see that the set {A|f(\) = 0} contains n linearly independent vectors. Based on
these n vectors, Gong and Youssef gave an algorithm to find a basis of GF(2")
such that the Boolean form of f is 1-resilient in [11]. Proposition 2 was proven in
another form by Zheng and Zhang [27, Theorem 2]. A related result concerning
resilient preferred functions can be found in [15, Section 3].

Theorem 1 is a corollary of Proposition 1 and 2. Some applications can be found
in Section 4.

Theorem 1 Let f : GF(2") — GF(2) be a polynomial function with 3-valued
spectrum 0,£2%. Then there exists a basis of GF(2") such that the Boolean rep-
resentation of f(x) is CI(1) if and only if o¢ is not affine.

Proof. fis CI(1) in some basis <= f is not PC'(n — 1) in any basis (by Propo-
sition 2) <= oy is not CI(n — 1) in any basis (by Proposition 1) <= o is not
affine. O

3.2 Computing Additive Autocorrelation from the Dual Function

In this section, we derive formulas to compute the additive autocorrelation of
functions with 3-valued spectrum.

Proposition 3 Let f : GF(2)" — GF(2) has 3-valued spectrum 0, +2¢. Then
Ap < 22—l _ 22“"N,,f. Thus N, is high => Ay is low.

Proof. By Lemma 1, we have o7 (a) = —2""172/A¢(a) for a # 0. By substituting
this in the formula N,, = 2"~! —1/2max, [y (a)|, we see that Ay is

mi‘())( |Af(a)| _ 22i7(n+1) mi‘())( |5}(a)| < 22i7(n+1) max |5}(a)| e 22i7nNUf'
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Low additive autocorrelation, i.e. toggling any number of input bits will result
in the output being complemented with probability close to 1/2, is a useful
generalization of the propagation criteria of order k. The next theorem shows
when low additive autocorrelation can be achieved. Some applications can be
found in Section 4.

Theorem 2 If f : GF(2)" — GF(2) is a balanced preferred function and oy is
preferred, then Ay = 200+1)/2 gnd Ag(a) =0 for 271 — 1 a’s. That is, [ has
optimal additive autocorrelation.

Proof. By Lemma 1, of(a) = —Ay¢(a) for a # 0 when f is preferred. oy is
preferred means 7 (a) = 0, £2("*1/2 which implies A (a) = 0, £2"+1/2 for all
a# 0. Thus, Ay = 2(n+1)/2,

Let v be the number of elements a such that o7(a) = 0. By Parseval’s equa-
tion and the fact that o is preferred, we have

> Gila)? =27 = (2" —)2" T =2 = p =2

From remark 3, o7(0) = 0 because oy is balanced (note that Af(0) = 2").
Therefore 77(a) = 0 for 2" "' —1 non-zero a’s. By Lemma 1, A¢(a) = 0 for 27~ —
1 elements a’s. O

3.3 Nonlinearity and Algebraic Degree

Proposition 4 follows easily from the following relation:

Ny=2"""—1/2max |f(w)|. (2)

Proposition 4 A function f : GF(2)" — GF(2) with 3-valued spectrum 0, 42¢
have nonlinearity 2"~ — 21, By remark 1, a preferred function has the highest
nonlinearity 2"~ — 2*=V/2 among functions with 3-valued spectrum.

Remark 5. In Section 4 and 5.1, we will concentrate on resilient preferred func-
tions. Their nonlinearity 27~ —2("=1)/2 ig considered high among resilient func-
tions according to Carlet [3]. Sarkar and Maitra constructed resilient functions
with nonlinearity > 2"~ —2("=1/2 [19, Theorem 6]. But their construction only
works when n > 41 for 1-resilient functions and n > 55 for 2-resilient functions.

From [27], if f : GF(2)" — GF(2) satisfies f(A) = 0 (mod 2%) for all A, then
deg(f) <mn — i+ 1. The following proposition follows easily.

Proposition 5 A function with 3-valued spectrum 0, 42" satisfies deg(f) < n—
1+ 1. By remark 1, the preferred functions have mazimal bound for algebraic
degree: deg(f) < (n+1)/2 among functions with 3-valued spectrum.
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4 Construction of Resilient Highly Nonlinear Boolean
Functions with Optimal Additive Autocorrelation

Our main result in this section is to construct four classes of Boolean functions
with desirable cryptographic properties, from functions used in the construction
of Hadamard difference sets. This is achieved by applying Theorem 3 and 4,
which are corollaries of Theorem 1, Theorem 2 and Proposition 4.

Theorem 3 If [ : GF(2") — GF(2) is a balanced preferred function such that
its dual oy is non-affine, then

1. f is resilient of order 1 for some basis conversion.
2. f has high nonlinearity 2"~ — 2(n=1)/2,

Theorem 4 If f: GF(2") — GF(2) is a balanced preferred function such that
its dual oy is preferred, then

1. f is resilient of order 1 for some basis conversion.

2. f has high nonlinearity 2"~ — 2(n=1/2,

3. [ has optimal additive autocorrelation, i.e. Ay = 200 +1)/2 gnd A¢(a) =0
for2n=t —1 a’s.

Our first construction is based on a class of Kasami functions whose Hadamard
transform distribution is found by Dillon.

Lemma 2. (Kasami-Dillon [7, 1/]) Let n be odd, ged(n,3) = 1 and [ :
GF(2") — GF(2) be defined by f(z) = Tr(z?) where d = 2?F —2F +1, 3k =1
(mod n). Then f is preferred and satisfies

o if Tr(A*"+1) =0

Theorem 5 The Kasami function f(z) in Lemma 2 is 1-resilient, Ny = 2"~ —
200=1/2 gnd Ay = 20"+1/2. Moreover, the algebraic degree is deg(f) = [n/3]+1.

Proof. By Lemma 2, f is balanced because f(0) = 0. Also by Lemma 2, of(x) =

Tr(z%"+') which is preferred by [10]. Therefore, we can apply Theorem 4 be-
cause f is balanced and both functions f, oy are preferred.

For any k, the degree of f is wt(2?2% —2F + 1) =k +1for 1 <k < (n—1)/2
and wt(2%F —2F4+1) = (n—k)+1 when (n—1)/2 <k <n—1[14]. When 3k = 1
(mod n), k = £[n/3] (mod n). Therefore deg(f) = [n/3] + 1 in this case. O

Our next construction is based on a class of functions from the construction of
cyclic Hadamard difference sets by Dillon and Dobbertin [3].
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Lemma 3. (Dillon-Dobbertin [S]) Let n be odd. Define f : GF(2") — GF(2)
by
0 if 221 € Im(A)
fx) = P LES]
lifx ¢ Im(Ayg).
where Ag(z) = (x+1)4+2%+1, d = 22% —2F +-1 and ged(k,n) = 1. Then f(x)
1s preferred and satisfies

oo ot =
+2041)/2 rp(N7) = 1.

Theorem 6 Let f(x) be the Dillon-Dobbertin function in Lemma 3

1. f(z) is 1-resilient and Ny = 2"~ — 2(n=1)/2,

2. Furthermore, if k = 3 or 3k = 1 (mod n), then f(x) is 1-resilient, Ny =
on—1 _ 2(n—1)/2 and Af _ 2(n+1)/2.

3. If 3k =1 (mod n), then LS(f) = 5n where

f(x) _ TT(J;S n x2k+1 " x22k+1+1 n x22k+2k+1+1 n x22k+1+2k+1+3). (3)
The algebraic degree satisfies deg(f) =4 forn #5. deg(f) =3 for n =5.

Proof. 1. By Lemma 3, f is balanced because f(0) = 0. Also by Lemma 3, f is
preferred and the dual function is o¢(x) = Tr(x(2k+1)/3) which is not affine.
Therefore, we can apply Theorem 3.

2. If k = 3, then (2¥ +1)/3 = 3 and o4(z) = Tr(23) which is preferred by [10].
If 3k =1 (mod n), then 2% +1=2+41=3 (mod 2" — 1). Therefore

2F+1)/3=2F+1)/2%* +1)=1/(2** -2k +1)=d™' (mod 2" —1).

where d = 22 — 2% 4 1. Therefore the dual function is of(z) = Tr(z? )
which is preferred by the following argument:

We define g(z) := Tr(z?) which is preferred from [14]. This implies o (z) is
preferred from the following computation.

5}()\) _ Z(_I)Tr(xd—l)-;-Tr()\z) — Z(—l)TT(A*d_ly)'*‘Tr(yd) _ g(}\_dﬂ).

T Y

where we let 2 = A~!y?. Therefore, we can apply Theorem 4 because f is
balanced and both functions f, oy are preferred.

3. f(x) is a 2F + l-decimation of the characteristic function by(z) of the
Hadamard difference set By, in [3, 9], i.e. f(z) = by(2* +!). When 3k = 1
(mod n), the trace representation of by (x) in [8, 9] is

2k | ok 2k | ok 2k _ ok k
bk(l‘)ZTT(IQ +2 +1—|—1‘2 +2 _1—|-1‘2 -2 +1—|—1‘2 +1+$).

The exponents of f(z) in Equation 3 are obtained by multiplying all the
exponents of by (x) by 2F + 1, and noting that 3k = 1 (mod n) implies 23F =
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2 modulo 2™ — 1. When we expand the 5 trace terms of f(x), we get bn
monomials, i.e. LS(f) = bn.
The maximum weight of the exponents of f(x) in Equation 3 is 4 which
comes from the exponent 22*+1 4 25+1 1 3 for n > 5. Thus, deg(f) = 4. For
n =5, we can verify deg(f) = 3.

O

Our final construction is based on the hyperoval functions in [7].

Lemma 4. (Hyperoval [7]) Let n be odd. Define f : GF(2") — GF(2) by

0 if z € Im(Dy,)
@)= {1 if v ¢ Im(D:)

where Dy(z) = @ + 2 is a 2-to-1 map on GF(2"). Then f(x) satisfies f(\) =
g(/\’“il) where g(x) = Tr(z®).

The known values of k for which  +2* is a 2-to-1 map are k = 2 (Singer), k = 6
(Segre) and two cases due to Glynn. We will consider the Segre case k = 6.

Theorem 7 Let f(x) be the Segre hyperoval function for k = 6 in Lemma 4.
Then f(z) is 1-resilient and Ny = 2"~ — 2(n=1/2,

Proof. We see from Lemma 4 that when k = 6, f is balanced because f 0) =
G(0) = 0 where g(z) = Tr(x5%) = Tr(z?). f is preferred because g is preferred [10]
and f(\) = §(A%/) by Lemma 4. By the distribution of § from [10] and Lemma 4,

R R 0 if Tr(p) =0
f()\) = g(lu’) = {:l:Q(n+1)/2 if Tr((l;)) =1

where y1 = \>/6. Therefore, of(z) = Tr(x%/) which is not affine. Thus, we can
apply Theorem 3 because f is a balanced preferred function and o is not affine.
O

The Welch-Gong Transformation functions also corresponds to optimal Boolean
function with low additive autocorrelation in the following remark.

Remark 6. In [11], the Welch-Gong Transformation function was shown to have
good cryptographic properties: 1-resiliency, high nonlinearity 2"~ — 2(n=1)/2,
high algebraic degree deg(f) = [n/3] + 1 and large linear span LS(f) =
n(2"/31 —3). A description of the function can be found in [11, Section 2].

Here, we remark that the Welch-Gong function has the additional property
of optimal additive autocorrelation. This is because the Welch-Gong Transfor-
mation function f(z) is a balanced preferred function and its dual function is
of(xz) = Tr(z? "), d = 22% — 28 + 1 where 3k = 1 (mod n) [11, Lemma 2]. By
the same reason as in Theorem 6 part (2), we can apply Theorem 4 because f
is balanced and both f, o are preferred.

We present Table 1 to summarize our results and example 1 to demonstrate
our construction.
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Table 1. Cryptographic Properties of Preferred Functions

Kasami® Dillon-Dobbertin® Segre hyperoval® Welch-Gong™
(Theorem 5) (Theorem 6) (Theorem 7) (Remark 6)
Balance Balance Balance Balance
High High High High
Nonlinearity Nonlinearity Nonlinearity Nonlinearity
Resiliency Resiliency Resiliency Resiliency
Optimal Optimal Optimal
Additive Additive - Additive
Autocorrelation  Autocorrelation Autocorrelation
For odd n, 3 fn Forodd n >5  Foroddn >5 For odd n, 3 fn
deg(f) = [n/3]+1  deg(f) =3,4 deg(f) = [n/3] +1
when k = 37! - LS(f) = n(2M/31 —3)

*Remark: All the functions listed in Table 1 satisfies 2-level (multiplicative) auto-
correlation, ie. C¢(A) = ZzEGF(Qn)(—l)f(”Hfo‘z) =0 for all A # 1 [7, 8, 9], for
applications in pseudorandom number generation and communication systems.

Example 1. Let GF(27)* be generated by the element « satisfying a”+a+1 = 0.
Define f : GF(27) — GF(2) by f(z) = Tr](z® + 2° + 2° + 21 + 22%), which
is the Dillon-Dobbertin function of Theorem 6 with 3k = 1 mod 7, i.e. Kk =5
(we have reduced the exponents of f to their cyclotomic coset leaders). By
applying Algorithm 1 of [11] with the 7 linearly independent vectors {a’|i =
1,2,3,4,5,6,13} satisfying f(af) = 0, a 1-resilient Boolean form of f is given by

9(1'67 X5,T4,T3,T2,T1, -TO) = TeX3T1T0 + T5T4T1T0 + T5T3T2X0
+ T5T3T1T0 + T4X32221 + T6T5T3 + TeLs5L0 + TeXaZo + T6T2T1 + T5L4T2
+ T5X3T2 + X5X1T0 + T4T3T1 + T4X2X1 + T4T1T0 + T3T2X0 + T3T1T0
+ Tax1T0 + T5T4 + T5T3 + TsT2 + TsXo + T4x3 + T4X2 + T4T0 + X371

+ X320 + Lox1 + Toxg + X100 + X6 + T4 + X2 + 21 + X0.

g is a Boolean function with 7 input bits, is 1-resilient and has algebraic degree 4,
which is highest among all preferred functions by Proposition 5. The nonlinearity
is 26 — 23 = 56 which is optimal among 7-bit Boolean functions, see [15]. The
additve autocorrelation is optimal, given by Ay = 2(T+1)/2 — 16.
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5 Additive Autocorrelation of Known Resilient Functions
with High Nonlinearity

5.1 Comparison with Known Resilient Preferred Functions

In the known literature, there were many constructions for resilient preferred
functions. Some examples include [2, 3, 11, 21]. A common construction be-
long to the Maiorana-McFarland class, see [3] for a summary. We present in
Proposition 6 a general construction for Maiorana-McFarland resilient preferred
functions.

Proposition 6 (Carlet [3, page 555]) Let n be odd and f : GF(2)" — GF(2)
be defined by

fa,y) =z 6(y) +g(y), v € GFR)2 ye GRE2)H2 (4)

where g is any (n — 1)/2-bit Boolean function, and ¢ : GF(2)" PR, GF(2 )n+1
is an injection such that wt(¢(y)) > k+ 1. Then f is a k-resilient function with
nonlinearity 2n—1 — 2(n=1)/2,

The above construction is quite useful. When n =1 (mod 4), we can construct
(n — 1)/4-resilient functions having nonlinearity 2"~ — 2(*=1/2 from it.

We will show that the function f(z,y) in Proposition 6 is preferred, and
deduce its dual function and additive autocorrelation in Theorem 8. We define
the characteristic function xa(x) on a set A to be: xa(z) =1if x € A and 0
otherwise. We also denote the image set of ¢ by Im(¢).

Theorem 8 Let f(xz,y) be the function defined in Proposition 6. Then it is pre-
ferred with dual function o¢(x,y) = Xrm(e)(x). The additive autocorrelation of f

satisfies Ay > 2= 1) /2\/2"+1/ 2(n+1)/2 _ 1) which is approzimately 2°™/* >
2(n+1)/2

Proof. From [3], the Hadamard transform of f is:

fla,b) =3 "(-1 y)+byz yorlatew) — gnr/2 T (Lqyewtoy

Y yep~1(a)
0,if a & Im(¢),
2200072 if g e Im(),

because ¢ is injective. Therefore, f is preferred and oy (z,y) = Xrm(s)(z). To
find the additive autocorrelation of f, we can compute oy:

Gr(a,b) =Y (—1)Xrm@ @Faatby - N 1)byy H(1)Xime (@) e

z,y Y z

{ 0,ifb#0,
2 =D/2y s (a) L ifb=0
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Note that Xl/m\(¢)(0) = 0 because X7, (g) is balanced. Therefore, by Parseval’s
equation: 37, o X7m(g) (a)? = 2" and Lemma 1: Ay = max (4 520,007 (a, )],

Af _ 2(n—1)/2 rg;za( |XI/m\(¢) (a)l > 2(%—1)/2\/2n+1/(2(n+1)/2 _ ]_)

This lower bound is approximately 27/2 x Von/2 = 93n/4, a

Remark 7. We note that for n odd, Canteaut et. al. [2, Corollary 3] con-
structed 1-resilient preferred functions that can achieve all algebraic degree be-
tween 2 and (n + 1)/2 by restricting a Maiorana-McFarland bent function to
a hyperplane. The dual function and additive autocorrelation can be computed
by a method similar to the proof of Theorem 8.

By Theorem 8, we see that the Maiorana-McFarland construction of resilient
preferred functions have higher (worse) additive autocorrelation than our con-
structed functions from Table 1. Moreover, the Maiorana-McFarland function in
equation (4) becomes linear when we fix (n—1)/2 input bits y. Our construction
can avoid this possible weakness:

Example 2. The construction of Proposition 6 for a 7-bit 1-resilient preferred
function with nonlinearity 56 is

flay) =z-6y) +9(y), v € GF(2)*,y € GF(2)".

where ¢ : GF(2)® — GF(2)* is an injection such that wt(¢(y)) > 2.

f becomes linear when we fix three bits y = (yo, y1,y2). In comparison, our 1-
resilient preferred function in example 1 is not linear when we fix any three bits.
By Theorem 8, we deduce that Ay > [23x/28/(24 — 1)] = 34 while the additive
autocorrelation of our function in example 1 is 16.

5.2 Potential Weaknesses of Saturated Functions

In this section, we investigate an important class of Boolean functions with 3-
valued spectrum. They are the saturated functions introduced by Sarkar and
Maitra [20]. If an n-bit Boolean function f have algebraic degree d, then the
maximal order of resiliency it can achieve is k := n — 1 — d by Siegenthaler’s
inequality [22]. If the order of resiliency is k, then the maximal nonlinearity it can
achieve is 2" ! — 28+ by Sarkar-Maitra inequality [20, Theorem 2]. When both
these conditions are achieved, we say f is a saturated function and it necessarily
have 3-valued spectrum 0, £2%+2 [20]. Fix d > 2, Sarkar and Maitra constructed
an infinite class of saturated functions having algebraic degree d in [20]. They
denoted their class of functions by SS(d — 2).

Proposition 7 ([20, Theorem 5] Sarkar and Maitra) Construction for functions
in SS(d—2). Fixrd>2,letn=r+s+t wherer =291 -1, s=d—1 and
t > 0. Define f: GF(2)" — GF(2) by

fl@y,z)=2-¢(y)+9(y)+2z0+ - +2z-1, v € GF(2)",y € GF(2)°,z € GF(2)".
(5)
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where g : GF(2)° — GF(2) is any function and ¢ : GF(2)® — GF(2)" is an
injection such that wt(¢(y)) > r —1 for all y € GF(2)®. Then deg(f) = d, f
is k-resilient having nonlinearity 21 — 281 where k =n —1—d. f necessarily
has 3-valued spectrum 0, +£2K+2.

The Boolean functions in Proposition 7 achieve two very desirable properties,
maximal resiliency and nonlinearity, for applications in stream cipher systems.
However, we will see in Theorem 9 that they have certain weaknesses that have
to be considered in applications.

A good lower bound for the additive autocorrelation of a general k-resilient
function? is given by Tarannikov et. al. in [23, Theorem 4]. In Theorem 9, we
give a better (sharper) bound for the function in Proposition 7.

Theorem 9 Fiz d > 2, let f(x,y,z2) be a function in SS(d — 2) as defined in
Proposition 7.

1. Whent =0, Ay > (1— 2)2". This bound is sharper than a general bound
obtained by [23, Theorem 4]. Thus Ay has an asymptotic linear structure:
Ap/2" — 1 asn — oo.

2. Whent > 1, Ay = 2" and the function has linear structures at (0,0,a) for
all a € GF(2)*.

Furthermore, when we fix loga(n) or less input bits, f becomes linear.
Proof. 1. When t = 0, we do not have any z-terms in equation (5):

As(a,b) = Z(_1)fr:-¢(y)+g(y)+(z+a)-¢(y+b)+g(y+b)

x

@y
— Z(_1)a'¢>(y+b)+g(y)+g(y+b) Z(_l)w-(¢(y)+¢(y+b))
y

0,ifb+#0,
2y (=1)®°W) i b =0.

Note that |{x € GF(2)"|wt(z) > r — 1} = r+ 1 = 2° = |Im(¢)|. Therefore
we necessarily have Im(¢) = {x € GF(2)"|wt(x) > r — 1} and {100...0 -
é(y)ly € GF(2)*} = {0,1,1,...,1,1}. This implies

_ 2n o 2n75+1.

|A7(100...0,000...0)| =27 | " (=1)!00-0-¢)

Y

Therefore, Ay > 27 — 2n=s+l > 9n _ gn=log;(M)+1 — (1 — 2/p)2". The last
inequality is true because n =7 +s=2°—14+5 = 2° <n = s < log,(n).

2 We note that such a lower bound was first given by Zheng and Zhang in [26, Theorem
2]. Later this bound was improved by Tarannikov et. al. in [23, Theorem 4] for
functions with order of resiliency > (n — 3)/2.
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n+1 n+1
is the order of resiliency of f. It is easy to see by elementary algebra that

their lower bound (1 — 25;11 )) 2" is not as sharp as our bound (1 — 2) 2"

2. When t > 1, A;(0,0,a) = 2577y (1)1t batilob(ha) = fostrdt — yon,
It is easy to see that equation (5) becomes linear when we fix y which has
s < loga(n) bits. O

By [23, Theorem 4], Ay > (2’“*”*3) 2" = (1 — 2(S+1)) 2" where k = r — 2

Remark 8. We have used the direct approach for computing additive autocorre-
lation in Theorem 9 because it gives sharper bounds than by using dual functions.

The saturated functions constructed by Proposition 7 are ‘nearly linear’ because
they become linear when we fix very few (< loga(n)) bits. Moreover, they have
linear structures or asymptotic linear structures for the case t = 0. We see that
although the resilient functions in Proposition 7 optimize Siegenthaler [22] and
Sarkar-Maitra [20, Theorem 2] inequality. These strong conditions may cause
the function to have linear-like structure.

6 Conclusion

We have introduced the dual function as a useful concept in the study of functions
with 3-valued spectrum and derived several useful results for such functions.
Then we constructed highly nonlinear resilient Boolean functions with optimal
additive autocorrelation from functions used in the construction of Hadamard
difference sets. Finally, we showed that our constructions have better additive
autocorrelation than known highly nonlinear resilient Boolean functions.
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