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Abstract. Vectorial functions (i.e. mappings from �
n
2 into �

m
2 , also

called S-boxes) can be used in pseudo-random generators with multiple
outputs. The notion of maximum correlation of these S-boxes to linear
functions, introduced by Zhang and Chan, plays a central role in the
resistance of the resulting stream ciphers to correlation attacks. It can
be related to a notion of “unrestricted nonlinearity”. We obtain a new
lower bound on the overall maximum correlation to linear functions of
vectorial functions which results in an upper bound on the unrestricted
nonlinearity. We compare it with the known upper bounds on the nonlin-
earity (which are also valid for the unrestricted nonlinearity of balanced
functions). We study its tightness and we exhibit a class of balanced func-
tions whose nonlinearity and unrestricted nonlinearity are high relatively
to the upper-bounds.

1 Introduction

Let n and m be two positive integers. We focus in this paper on the mappings
from �

n
2 to �m

2 , called (n, m)-functions or S-boxes. These mappings play a central
role in block ciphers. In stream ciphers as well, it would be natural to use S-boxes
in order to combine the outputs of n linear feedback shift registers (LFSR) or to
filter the contents of a single LFSR, and then to generate m bits at each clock-
cycle instead of a single one. This would result in a speed up of the encryption
and of the decryption. But the robustness of such pseudo-random generators has
to be studied and compared with the single-output ones.

A fundamental principle introduced by Shannon [23] for the design of conven-
tional cryptographic systems is confusion, which aims at concealing any algebraic
structure. Concerning S-boxes involved in the system, their adequacy with this
principle must be quantified, so that we have a precise criterion for choosing
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these S-boxes. In the case of a Boolean function (m = 1), the main characteris-
tic quantifying some kind of confusion induced into the system by the function
is the nonlinearity. As shown in [3, 4, 18], this characteristic is related to the
resistance to the fast correlation attacks on single-output stream ciphers intro-
duced by Meier and Staffelbach [17].

In [7, 21] is studied a generalization of the nonlinearity of Boolean functions
to S-boxes. This generalization is closely related to the linear attack of block
ciphers introduced by Matsui [16]. A second generalization of the nonlinearity of
Boolean functions to S-boxes, called unrestricted nonlinearity, can be related to
their maximum correlation coefficients introduced by Zhang and Chan in [26],
which quantify a certain type of correlation between an S-box and linear func-
tions. Given a multi-output combining function in a combination generator or
a multi-output filtering function in a nonlinear filtering generator, these coeffi-
cients must be as low as possible to make difficult correlation attacks (see [26]).
So, we are interested in the maximum possible value of the maximum correlation
coefficients (let us call it the overall maximum correlation to linear functions)
which leads to the notion of unrestricted nonlinearity. Having low overall max-
imum correlation to linear functions is equivalent, for an S-box, to have high
unrestricted nonlinearity. Zhang and Chan give only an upper bound on the max-
imum correlations of any S-box to linear functions (this upper-bound has been
improved by the authors for perfect nonlinear S-boxes and, more recently, by
Gong and Khoo [15] for some balanced S-boxes), which results in a lower bound
on their unrestricted nonlinearity. This bound does not permit to know what is a
reasonably high unrestricted nonlinearity. In this paper we study upper-bounds
on the unrestricted nonlinearity and we exhibit S-boxes approaching them.

The paper is organized as follows. In Section 2, we recall the basic facts about the
nonlinearity of functions (Boolean or vectorial). In Section 3, we recall how the
notion of nonlinearity is relevant to fast correlation attacks on nonlinear filtering
generators or on combination generators, and we recall the background on the
maximum correlation to linear functions. We conclude this section by introduc-
ing the new notion of unrestricted nonlinearity. When the S-box F : �n

2 �→ �
m
2 is

balanced, i.e. when it takes every value in �
m
2 the same number 2n−m of times,

then its unrestricted nonlinearity is always lower than or equal to its nonlinearity
and when n = m, it is null. In section 4, we exhibit a new general upper bound on
the unrestricted nonlinearity of balanced S-boxes (equivalent to a lower bound on
the overall maximum correlation to linear functions). We show that this bound
is more precise than the upper bound 2n−1 − 2n/2−1 if and only if n/2 < m.
To settle the remaining case m ≤ n/2, we exhibit a class of balanced (n, m)-
functions whose nonlinearity and unrestricted nonlinearity equal 2n−1 − 2n/2,
which can be considered as high with respect to the introduced upper-bounds.

Length constraints do not permit us to give all proofs in details. They can be
found in [6].
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2 Preliminaries

2.1 Nonlinearity of Vectorial Functions

For every Boolean function f on �
n
2 , the set {x ∈ �

n
2 ; f(x) = 1}, denoted

by Supp f , is called the support of f . The cardinality of Supp f is called the
Hamming weight of f and is denoted by ωH(f). The Hamming distance between f
and another function g, denoted by dH(f, g), being defined as the size of the set
{x ∈ �

n
2 | f(x) �= g(x)}, the nonlinearity Nf of f is the minimum Hamming

distance between f and all affine functions �(x) = a1x1+· · ·+anxn+a0 = a·x+a0

(where a = (a1, · · · , an) ranges over �n
2 and a0 ranges over �2). The value a · x

in �2 is the usual inner product between a and x. Since the Hamming distance

between two Boolean functions f1 and f2 equals 2n−1−1
2

∑
x∈�n

2

(−1)f1(x)+f2(x), the

nonlinearity Nf equals 2n−1 − 1
2 max�∈R(1,n)

∑
x∈�n

2
(−1)f(x)+�(x), where R(1, n)

denotes the set of all affine functions. Equivalently, we have

Nf = 2n−1 − 1
2

max
u∈�n

2

|
∑

x∈�n
2

(−1)f(x)+u·x|. (1)

The set of (n, m)-functions shall be denoted by Bn,m (if m = 1, we will denote
it by Bn, instead of Bn,1). To every (n, m)-function F , we associate the m-tuple
(f1, · · · , fm) of its coordinate Boolean functions such that F (x) = (f1(x), · · · ,
fm(x)). In [7, 21] is studied a generalization of the nonlinearity of Boolean func-
tions to S-boxes: the nonlinearity of an (n, m)-function F , denoted by NF , is the
minimum nonlinearity of all the Boolean functions x �→ v ·F (x), v ∈ �

m
2 , v �= 0,

which implies

NF = 2n−1 − 1
2

max
v∈�m

2
∗, u∈�n

2

∣∣∣∣∣∣
∑

x∈�n
2

(−1)v·F (x)+u·x

∣∣∣∣∣∣ . (2)

In other words, NF equals min�∈R(1,m)∗ minu∈�n
2

dH(� ◦F, �u), where �u denotes
the linear Boolean function x ∈ �

n
2 �→ u ·x and where R(1, m)∗ denotes the set of

non-constant affine Boolean functions on �
m
2 . Notice that the nonlinearity, NF ,

can be rewritten 2n−1 − 2n−1 maxu∈�n
2

cF (u), where cF (u) is called the linear
correlation to the linear function �u and is defined by

cF (u) =
1
2n

max
�∈R(1,m)∗

∑
x∈�n

2

(−1)�◦F (x)+u·x =
1
2n

max
v∈�m

2
∗

∣∣∣∣∣∣
∑

x∈�n
2

(−1)v·F (x)+u·x

∣∣∣∣∣∣ .

Relation (2) relates the nonlinearity of F to the Fourier transform of the so-
called sign function, χF (x, v) = (−1)v·F (x), of F . This transform, that we shall
call Walsh transform, is defined by the formula

χ̂F (u, v) =
∑

x∈�n
2

(−1)v·F (x)+u·x .
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More generally, the Fourier transform of an integer-valued function ϕ on �
n
2 is

defined by ϕ̂(u) =
∑

x∈�n
2

ϕ(x)(−1)u·x, u ∈ �
n
2 .

Using the Walsh transform, one can rewrite Relations (1) and (2) respecively
as Nf = 2n−1 − 1

2 maxu∈�n
2
|χ̂f (u) | and

NF = 2n−1 − 1
2

max
v∈�m

2
∗,u∈�n

2

|χ̂F (u, v) |. (3)

For any (n, m)-function F , let ϕz denote the indicator function of the set F−1(z)
(ϕz is defined by ϕz(x) = 1 if F (x) = z and ϕz(x) = 0 otherwise), then we have

χ̂F (u, v) =
∑

z∈�m
2

ϕ̂z(u)(−1)v·z (4)

(note that, cF (u), u ∈ �
n
2 , equals 1/2n maxv∈�m

2
∗ |∑z∈�m

2
ϕ̂z(u)(−1)v·z|).

We recall that every numerical function ϕ defined on �
n
2 satisfies Parseval’s

relation, ∑
u∈�n

2

ϕ̂2(u) = 2n
∑

x∈�n
2

ϕ2(x), (5)

and the inverse Fourier formula ̂̂ϕ = 2nϕ. (6)

In the case of the Walsh transform of an (n, m)-function F , Relation (5) shows
that

∑
u∈�n

2
χ̂F

2(u, v) = 22n, for every v ∈ �
m
2 , which implies that NF is upper

bounded by 2n−1 − 2n/2−1 for every (n, m)-function F . If n is even and m ≤ n
2 ,

then this bound is tight [20]. The functions achieving it are called bent. Chabaud
and Vaudenay proved in [7] that the nonlinearity NF also satisfies NF ≤ 2n−1−
1
2

√
3 × 2n − 2 − 2 (2n−1)(2n−1−1)

2m−1 . This bound equals 2n−1 − 2n/2−1 if and only

if m = n − 1 and it is better than 2n−1 − 2n/2−1 if and only if m ≥ n. When
m = n, then Chabaud-Vaudenay’s bound implies that the maximum possible
nonlinearity of any (n, n)-function is upper bounded by 2n−1 − 2

n−1
2 . The func-

tions achieving this nonlinearity are called almost bent [7] and exist only when n
is odd. In the other cases (when m = n and n is even or when m < n < 2m),
the maximum values achieved by the nonlinearity are unknown.

2.2 Resilient Functions

A combination generator consists of several linear feedback shift registers whose
output sequences are combined by a nonlinear Boolean - or vectorial - func-
tion (called a nonlinear combining function or a combining function). Let F be
an (n, m)-function, used as combining function, and let t be a positive integer
smaller than n. We know (see [2, 24]) that a stream cipher using F as com-
bining function opposes a maximum resistance to correlation attacks involving
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at most t LFSRs, if and only if F is t-th order correlation immune i.e. if and
only if its output distribution probability is unchanged when t - or at most t -
of its input bits are kept constant. A function F is t-resilient if it is balanced
and t-th order correlation immune. Clearly, an (n, m)-function F is t-th order
correlation immune if and only if all the Boolean functions ϕz (z ∈ �

m
2 ) defined

before Equation (4) are t-th order correlation immune and it is t-resilient if and
only if all the Boolean functions ϕz (z ∈ �

m
2 ) have Hamming weight 2n−m and

are t-th order correlation immune. The property of t-th order correlation immu-
nity (resp. the property of t-resiliency) can also be characterized (see [25, 2])
by the fact that χ̂F (u, v) is null for every nonzero vector v ∈ �

m
2 and for every

vector u ∈ �
n
2 such that 1 ≤ wH(u) ≤ t (resp. such that 0 ≤ wH(u) ≤ t). Thus,

an S-box F is t-th order correlation immune if and only if all the functions v ·F
(v ∈ �

m
2

∗) are t-th order correlation immune and it is t-resilient if and only if all
the functions v · F (v ∈ �

m
2

∗) are t-resilient. Equivalently, an (n, m)-function F
is t-th order correlation immune if and only if all the functions g ◦F are t-th or-
der correlation immune when g ranges over the set, Bm, of m-variables Boolean
functions (see [24]) and F is t-resilient if and only if all the functions g ◦F are t-
resilient when g ranges over the set of m-variables balanced Boolean functions.

Sarkar and Maitra proved in [22] that the values of the Walsh transforms of t-
th order correlation immune (resp. t-resilient) Boolean functions on �

n
2 are all

divisible by 2t+1 (resp. 2t+2). Obviously, according to the observations above,
this property can be extended to S-boxes. This divisibility resulted in upper
bounds (partially also obtained by Tarannikov and Zheng and Zhang) on the
nonlinearities of t-th order correlation immune Boolean functions and t-resilient
Boolean functions (see [22]), which are still valid for vectorial functions (see more
in [6]).

3 Maximum Correlation and Unrestricted Nonlinearity

A nonlinear filtering generator consists of a single LFSR which is filtered by
a nonlinear function. More precisely, the output sequence of a nonlinear filter-
ing generator corresponds to the output, during a number of clock cycles, of a
nonlinear function whose input bits are taken from some stages of the LFSR.
To make a stream cipher with nonlinear filtering generator resistant against fast
correlation attacks (see [1, 12, 13, 14, 17, 19]), the Boolean filtering function
must be highly nonlinear. In the case of stream ciphers with a Boolean combin-
ing t-resilient functions f as well, Canteaut and Trabbia [4] and Canteaut [3]
show that fast correlation attacks are as unefficient as possible if the coefficients
χ̂f (u) are small for every vector u of Hamming weight higher than, but close to, t
and this condition is satisfied by highly nonlinear Boolean t-resilient functions.
Since every known attack on a Boolean combining - or filtering - function can be
applied to a Boolean function taking the form v·F , where F is an (n, m)-function
and v is a nonzero vector in �

m
2 , a vectorial combining - or filtering - function

must be highly nonlinear (this ensures, by definition of the nonlinearity, that
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every nonzero linear combination v · F has also a high nonlinearity) and must
also admit, in the case of stream ciphers with combination generator, a high
resiliency order (ensuring then, as showed in section 2.2, that all the nonzero
linear combinations v ·F have also a high resiliency order). But, as observed by
Zhang and Chan in [26], a correlation attack on stream ciphers involving a vec-
torial function F can still be made by considering all the non-constant Boolean
combinations, g ◦ F , instead of only the non-zero linear ones. As we recalled
in section 2.2, the high-resiliency of an (n, m)-function F implies the high cor-
relation immunity of the Boolean functions g ◦ F . However, as mentioned by
Zhang and Chan (see [26]) the high nonlinearity of F does not imply the high
nonlinearity of the functions g ◦ F .

3.1 Maximum Correlation of Vectorial Functions

The maximum correlation of a vectorial (n, m)-function F to the linear function
x �→ u · x, denoted CF (u), has been defined by Zhang and Chan as CF (u) =
1
2n maxg∈Bm

∑
x∈�n

2
(−1)g(F (x))+u·x.

We shall exclude henceforth the case g = cst in the definition of the maximum
correlation during our study of the coefficients of CF , since composing F by
a constant function g has no cryptographic relevance. Notice that this changes
only the value of CF (0), since the summation

∑
x∈�n

2
(−1)g◦F (x)+u·x is null for

every constant function g and every nonzero vector u ∈ �
n
2 . So we define

CF (u) = 2−n max
g∈B∗

m

∑
x∈�n

2

(−1)g(F (x))+u·x; u ∈ �
n
2 , (7)

where B∗
m denotes the set of all non constant Boolean functions defined on �

m
2 .

The restriction on g (being not constant) makes CF (0) an indicator of the bal-
ancedness of F whereas the definition of CF (0) by Zhang-Chan (i.e. without this
restriction) makes it always equal to 1.

Remark 1. The maximum correlation of the S-box to the null function is not
of the same type as its maximum correlation to the nonzero linear functions.
Indeed, the value CF (0) gives statistic information about the system whereas
the other coefficients are directly related to correlation attacks. Recall that an
S-box gives no statistic information to the attacker if it is balanced. If F is an
(n, m)-function, then we have

CF (0) ≥ 1 − 2−m+1, (8)
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the bound being tight if and only if F is balanced. Indeed, there always exists z0 ∈
�

m
2 such that #F−1(z0) ≤ 2n−m and choosing g equal to the indicator of the

singleton {z0} in (7), shows Relation (8). The case of equality is easy to prove.
Relation (8) shows that, for every function F , the coefficient CF (0) takes a value
near 1 (if m is large enough) whereas we shall see that, for a highly nonlinear
(n, m)-function, the other coefficients are close to zero (see Remark 2). �
It is shown in [26] that

CF (u) =
1
2n

∑
z∈�m

2

|
∑

x∈F−1(z)

(−1)u·x| =
1
2n

∑
z∈�m

2

|ϕ̂z(u)| . (9)

This implies, as shown in [26], the following relation between the maximum
correlation to non-zero linear functions and the Walsh transform:

∀u ∈ �
n
2
∗, CF (u) =

1
2m+n

∑
z∈�m

2

|
∑

v∈�m
2

χ̂F (u, v)(−1)v·z|. (10)

Relation (9) and the facts recalled at Subsection 2.2 imply:

Proposition 1. A balanced (n, m)-function F is t-resilient if and only if, for
every vector u ∈ �

n
2 such that 1 ≤ wH(u) ≤ t, one of the two following conditions

is satisfied :
1. cF (u) = 0,
2. CF (u) = 0,
that is, if and only if, for every vector z ∈ �

m
2 ,

3. the Boolean function ϕz is t-th order correlation immune.

We recall now the following theorem giving an upper bound on the maximum
correlation coefficients and which can be deduced straightforwardly from Rela-
tion (10).

Theorem 1. [26] Let F be an (n, m)-function. For any nonzero vector u ∈ �
n
2 ,

we have
CF (u) ≤ 2m/2(1 − 2−n+1NF ). (11)

Remark 2. If an (n, m)-function F (m small compared to n) has a high nonlin-
earity, say NF ≥ 2n−1 − c × 2n/2−1, where c is any constant value close to 1,
then a first consequence of this theorem, is that, for u ∈ �

n
2
∗, the maximum cor-

relation coefficients to linear functions, CF (u), are close to zero since according
to Relation (11), we have CF (u) ≤ c × 2m/2−n/2. �

3.2 A New Notion of Nonlinearity of Vectorial Functions:
The Unrestricted Nonlinearity

We introduce, now, a generalization of the nonlinearity of Boolean functions
to S-boxes, which is directly related to the maximum correlation coefficients to
linear functions.
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Definition 1. Let F be an (n, m)-function. We call unrestricted nonlinearity
of F and we denote by UNF the minimum Hamming distance between all Boolean
functions g ◦ F (g ∈ Bm

∗) and all non-constant affine functions � on �
n
2 , that

is, the minimum distance of the functions g ◦ F to R(1, n)∗.

According to Relations (1) and (7), we have

UNF = 2n−1 − 2n−1 max
u∈�n

2
∗ CF (u). (12)

For m > 1, we are obliged to exclude the case � constant in Definition 1 (that
is to exclude u = 0 in Relation (12)). If we did not, then, according to Re-
mark 2, for all S-boxes F with reasonably high nonlinearities, we would have
UNF = 2n−1−2n−1CF (0) and UNF would only quantify the balancedness of F .
Note that g ∈ Bm

∗ can then be replaced by g ∈ Bm in Definition 1.

We shall call overall maximum correlation of an (n, m)-function F to non-zero
linear functions, the value maxu∈�n

2
∗ CF (u).

Relation (12) and Relation (9), for every u ∈ �
n
2
∗, imply

UNF = 2n−1 − 1
2

max
u∈�n

2
∗

∑
z∈�m

2

|ϕ̂z(u)|. (13)

According to Theorem 1 and to Relations (11) and (12), the unrestricted non-
linearity, UNF , of any (n, m)-function F satisfies

2n−1 − 2m/2(2n−1 − NF ) ≤ UNF . (14)

Remark 3. If F is balanced, then χ̂F (0, v) = 0, for every v ∈ �
m
2

∗, and we have
then NF = 2n−1 − 1

2 maxu�=0,v �=0 |χ̂F (u, v)| that is NF = min�∈R(1,m)∗ minu∈�n
2
∗

dH(� ◦ F, �u), which implies:

UNF ≤ NF ≤ 2n−1 − 2n/2−1. (15)

�
This implies that the unrestricted nonlinearity of a surjective linear mapping L
is null, since the inequality 0 ≤ UNL ≤ NL ≤ 0 holds.

The nonlinearity UNF is actually “unrestricted” only for balanced functions F ;
for these functions, the condition � �= cst (that is, u �= 0) does not make UNF

greater than NF .

Since R(1, n)∗ is invariant under the right action of an affine invertible mapping,
we deduce that, for any balanced (n, m)-function F , the unrestricted nonlinearity
of F is unchanged when F is right-composed with such a mapping. Moreover,
if A is a surjective linear (or affine) function from �

p
2 into �

n
2 , then we have

UNF◦A = 2p−nUNF .
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Proposition 2. Let F be an (n, m)-function and let p be any integer, then, for
every (m, p)-function φ, we have UNφ◦F ≥ UNF . If φ is a permutation on �

m
2 ,

then we have UNφ◦F = UNF .

Remark 4. If F is a surjective (that is, balanced) affine function from �
n
2 into

�
m
2 , then we showed that UNF = 0. Thus, the relation UNφ◦F = UNF , valid for

every permutation φ, implies that, for every surjective affine (n, m)-function A
and for every permutation φ on �

m
2 , the unrestricted nonlinearity of the (n, m)-

function φ ◦ A is null. �
The classical nonlinearity NF corresponds, for balanced functions, to a version
of UNF in which g is chosen in the set of non-constant affine functions and not
in the whole set B∗

m (cf. Remark 3). It is well known that the low nonlinearity
of a function F permits a linear attack on block ciphers using this function
as S-box. This attack is based on the fact that there exists at least one linear
combination of the outputs of an S-box whose Hamming distance to the set of
affine functions is small. Due to the iterative structure of a block cipher, the
knowledge of a combination of the outputs of F with a low nonlinearity does
not make more efficient the linear attack if the combination is not a linear one.
But the knowledge of a nonlinear combination of the outputs of F with a low
nonlinearity does make more efficient the correlation attacks in the case of stream
ciphers. Indeed, as explained in [26], the maximum correlation to linear functions
is relevant to stream ciphers because, when an S-box is used to combine n LFSR’s
or a single one (as filtering function), all of the m binary sequences it produces
can be combined by a linear, or nonlinear, function g to perform correlation
attacks. From this point of view, the unrestricted nonlinearity of an S-box used as
combining - or filtering - function plays the same role with respect to correlation
attacks on stream ciphers as nonlinearity with respect to linear attacks on block
ciphers.

4 Analysis of the Unrestricted Nonlinearity

We recalled that the nonlinearity of any (n, m)-function is upper bounded by
2n−1 − 2n/2−1 and by 2n−1 − 2

n−1
2 if m = n. Since we considered not only

the non-constant affine functions but all the Boolean functions in Bm
∗ to define

the unrestricted nonlinearity, there may exist a better upper bound on UNF

than 2n−1 − 2n/2−1. We study now such a bound.

4.1 An Upper Bound
on The Unrestricted Nonlinearity of S-Boxes

We shall derive for any balanced (n, m)-function F such that m < n, a lower
bound on the overall maximum correlation to non-zero linear functions, that is,
an upper bound on UNF .
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Theorem 2. Let F be a balanced (n, m)-function, then its overall maximum
correlation to non-zero linear functions satisfies maxu∈�n

2
∗ CF (u) ≥ Cn,m, where

Cn,m is defined for every pair (n, m) by

Cn,m =
1
2n

⎛⎝22m − 2m

2n − 1
+

√
22n − 22n−m

2n − 1
+
(

22m − 2m

2n − 1
− 1
)2

− 1

⎞⎠ ,

and its unrestricted nonlinearity is upper bounded by

min
(
2n−1 − 2n/2−1, 2n−1 − 2n−1Cn,m

)
.

To prove this Theorem, we need the following lemma:

Lemma 1. Let S be a set and let λ =
∑

z∈S λz be a sum of #S non-negative
integers indexed by the elements of S. Let M and k be two integers such that∑

z∈S λ2
z ≥ M and 0 ≤ λz ≤ k, for z ∈ S. Then we have

λ ≥ M

2k2
+

1
2

√
4M +

(
M

k2
− 1
)2

− 1
2
. (16)

Proof. Since, for every vector z ∈ S such that λz �= 0, the value of λz is lower
than or equal to k, we deduce that M ≤∑z∈S λ2

z ≤ #{z ∈ S; λz �= 0}× k2 i.e.

#{z ∈ S; λz �= 0} ≥ M

k2
. (17)

On the other hand, we have(∑
z∈S

λz

)2

=
∑
z∈S

λ2
z +

∑
z,z′∈S,z �=z′

λzλz′ =
∑
z∈S

λ2
z +

∑
z∈S

λz [
∑

z′∈S,z′ �=z

λz′ ].

According to Inequality (17), the summation
∑

z′∈S,z �=z′ λz′ contains at least
M
k2 − 1 nonzero terms (upper than or equal to 1). We deduce that

λ2 ≥
∑
z∈S

λ2
z +

(
M

k2
− 1
)∑

z∈S

λz ≥ M + λ

(
M

k2
− 1
)

,

that is λ2 − λ
(

M
k2 − 1

)− M ≥ 0 and therefore λ ≥ 1
2

(
M
k2 − 1 +

√
∆
)

, where ∆

equals
(

M
k2 − 1

)2
+ 4M (since M

k2 − 1 −√
∆ is negative).

Proof of Theorem 2.
Due to Parseval’s Relation (5), for every z ∈ �

m
2 , we have

∑
u∈�n

2
ϕ̂z

2(u) =

2n
∑

u∈�n
2

ϕ2
z(u), which becomes

∑
u∈�n

2
ϕ̂z

2(u) = 2nωH(ϕz) since ϕz is a
Boolean function. Thus, for every z ∈ �

m
2 , we have∑

u∈�n
2
∗
ϕ̂z

2(u) = 2nωH(ϕz) − ϕ̂z
2(0) = 2nωH(ϕz) − ω2

H(ϕz),
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that is
∑

u∈�n
2
∗ ϕ̂z

2(u) = 2n(2n−m)−22(n−m), since F is assumed to be balanced.
After summing up over z ∈ �

m
2 , we get∑

u∈�n
2
∗

∑
z∈�m

2

ϕ̂z
2(u) = 22n − 22n−m, (18)

which implies

max
u∈�n

2
∗

∑
z∈�m

2

ϕ̂z
2(u) ≥ 22n − 22n−m

2n − 1
. (19)

On the other hand, for every z ∈ �
m
2 and for every u ∈ �

n
2
∗, the value

of |ϕ̂z(u)| is upper bounded by ωH(ϕz) = 2n−m, since we have |ϕ̂z(u)| =
|∑x∈�n

2
ϕz(x)(−1)u·x| ≤ ∑

x∈�n
2
|ϕz(x)| = ωH(ϕz) and since F is balanced.

Moreover, F being balanced and m being strictly lower than n, the number
ϕ̂z(u) =

∑
x∈�n

2
ϕz(x)(−1)u·x is a summation of an even number of ±1’s and

thus, ϕ̂z(u) is even. Then, due to Equations (18) and (19), one can apply
Lemma 1 to

(S, λ, M, k) = (�m
2 , max

u∈�n
2
∗

∑
z∈�m

2

|ϕ̂z(u)|
2

,
22n − 22n−m

4(2n − 1)
, 2n−m−1),

and Relation (13) easily completes the proof. �

When the resiliency order t of a balanced (n, m)-function is strictly positive,
then it is possible to improve the upper bound given in Theorem 2 by applying
the divisibility property of Sarkar and Maitra and Relations (15), (12) and (7).

Proposition 3. Let F be a t-resilient (n, m)-function. Then its unrestricted
nonlinearity UNF is upper bounded by the highest multiple of 2t+1 which is
smaller than or equal to 2n−1 − 2n/2−1, and to the highest multiple of 2t which
is smaller than or equal to

2n−1 +
1
2
− 22m − 2m

2(2n − 1)
− 1

2

√
22n − 22n−m

2n − 1
+
(

22m − 2m

2n − 1
− 1
)2

.

Remark 5. If the degrees of the functions ϕz are all upper bounded by some
integer d < n − t − 1, then the bounds above can be slightly improved if n −
m ≥ t + 1 +

⌊
n−t−1

d

⌋
: according to the proof of [5, Theorem 6] and since all

the functions ϕz have weight 2n−m, the values of the Fourier transforms of
the functions ϕz are then divisible by 2t+1+�n−t−1

d � and UNF is then upper
bounded by the highest multiple of 2t+�n−t−1

d � which is smaller than or equal to

2n−1 + 1
2 − 22m−2m

2(2n−1) − 1
2

√
22n−22n−m

2n−1 +
(

22m−2m

2n−1 − 1
)2

. �

We checked that Theorem 2 gives better information than the general upper
bound 2n−1 − 2n/2−1 if and only if m ≥ n/2 + 1.
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4.2 Construction of Balanced Vectorial Functions
with High Nonlinearity and High Unrestricted Nonlinearity

Since the upper bound on the unrestricted nonlinearity of balanced (n, m)-
functions given in Theorem 2 does not improve the general bound 2n−1−2n/2−1,
when m is lower than or equal to n/2, we can try to find (n, n/2)-functions whose
unrestricted nonlinearities approach 2n−1−2n/2−1. This will give a lower bound
on the maximal possible value achieved by the unrestricted nonlinearity of the
(n, m)-functions such that m ≤ n/2.

In his Phd Thesis [9], Dillon introduces and studies a function, that we shall
call Dillon’s function, defined on the product of two finite fields of order 2n/2 by
F (x, y) = xy2n/2−2, (x, y) ∈ �2n/2 × �2n/2, or equivalently:

F (x, y) =
{ x

y if y �= 0
0 if y = 0

(20)

One can check that, for a given even integer n, this Dillon’s function admits an
unrestricted nonlinearity equal to 2n−1−2n/2+1. However, being bent, this func-
tion cannot be balanced and hence, does not satisfy an essential cryptographic
criterion. One can modify the definition of Dillon to obtain balanced functions
which still have high unrestricted nonlinearities (recall that the idea of modifying
bent functions was that of Dobbertin in [10] to design highly nonlinear balanced
Boolean functions). For a given even integer n, we shall call modified Dillon’s
function the function F defined on the product of two finite fields of order 2n/2

as:

F (x, y) =
{ x

y if y �= 0
x if y = 0

(21)

One can easily check that this kind of function is balanced.

Proposition 4. Let F be the modified Dillon’s function defined on �2n/2×�2n/2,
then its unrestricted nonlinearity equals 2n−1 − 2n/2.

Proof. For every pair (x, y) ∈ �2n/2 × �2n/2 and for every z ∈ �2n/2 , we have

ϕz(x, y) = 1 ⇐⇒
{

x = 0 , if z = 0
(x = yz and y �= 0) or (x = z and y = 0) , if z �= 0

We deduce that

ϕz =

{
�{0}×�

2n/2
, if z = 0

��
2n/2×(z,1) − δ(0,0) + δ(z,0) , if z �= 0

where �2n/2 × (z, 1) denotes the set {(uz, u); u ∈ �2n/2}. So we have ϕz =
��

2n/2×(z,1) − δ(0,0) + δ(z,0) for every z. Then, for every element z ∈ �2n/2 and
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every nonzero pair (u, u′) ∈ �2n/2 × �2n/2, the value of ϕ̂z(u, u′) equals:∑
(x,y)∈�

2n/2×�2n/2

[��
2n/2×(z,1) − δ(0,0) + δ(z,0)](x, y)(−1)tr(ux)+tr(u′y)

=
∑

(x,y)∈�
2n/2×(z,1)

(−1)tr(ux)+tr(u′y) − 1 + (−1)tr(uz).

The summation
∑

(x,y)∈�
2n/2×(z,1)(−1)tr(ux)+tr(u′y) equals∑

y∈�2n/2

(−1)tr(uyz)+tr(u′y) =
∑

y∈�2n/2

(−1)tr(y(uz+u′)).

The right-hand side equals 2n/2 if uz = u′ i.e. if (u, u′) belongs to �2n/2 × (1, z)
and equals 0 otherwise. Thus, we have

ϕ̂z(u, u′) = 2n/2
��

2n/2×(1,z)(u, u′) − 1 + (−1)tr(uz), (22)

and the result follows from Relation (13).

Remark 6. When the parameters m and n satisfy m ≤ n/2, then one can ap-
ply Proposition 2 to modified Dillon’s functions to establish that every (n, m)-
function φ ◦ F , where φ is an (m, n/2)-function and where F is a modified
Dillon’s (n, n/2)-function, has an unrestricted nonlinearity greater than or equal
to 2n−1 − 2n/2. If φ is balanced, then φ ◦ F is balanced. �
According to Proposition 4, modified Dillon’s function is an example of balanced
function having a high unrestricted nonlinearity. Thus, for m ≤ n/2, an upper
bound on the unrestricted nonlinearity of the (n, m)-functions cannot lie be-
low 2n−1 − 2n/2.

Note that the nonlinearity of modified Dillon’s (n, n/2)-function equals 2n−1 −
2n/2. Indeed, due to Equation (4), for every pair (u, u′) ∈ �2n/2×�2n/2 and every
element v ∈ �

∗
2n/2 , the number χ̂F ((u, u′), v) equals

∑
z∈�

2n/2
ϕ̂z(u, u′)(−1)tr(vz)

and the result can thus easily be deduced from Relation (22).

Modified Dillon’s functions seem to satisfy all the criteria needed to be used
as a filtering function in a nonlinear filtering registor. However, a new kind of
attacks, called algebraic attacks, has been introduced against cryptosystems in-
volving S-boxes as cryptographic primitives. The best such attacks have been
led by Faugere and Ars or Courtois (see [8, 11]) against stream ciphers. Also, fur-
ther work has to be done to define criteria, others than the algebraic degree, on
Boolean or vectorial functions related to algebraic attacks (the algebraic degree
has been pointed out as a relevant criterion but other criteria are needed; the
classical criteria as resiliency and nonlinearity seem to be irrelevant to quantify
the resistance of an S-box against this kind of cryptanalysis).
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As it can be easily check, the resiliency of modified Dillon’s functions cannot be
greater than 0 and, thus, it is still an open problem to define resilient vectorial
functions having a high unrestricted nonlinearity and being, then, good combin-
ing functions for a multi-output stream cipher with combination generator.
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