More Generalized Mersenne Numbers
(Extended Abstract)

Jaewook Chung* and Anwar Hasan

Centre for Applied Cryptographic Research
University of Waterloo, Ontario, Canada
j4chung@uwaterloo.ca
ahasan@ece.uwaterloo.ca

Abstract. In 1999, Jerome Solinas introduced families of moduli called
the generalized Mersenne numbers [8]. The generalized Mersenne num-
bers are expressed in a polynomial form, p = f(¢), where ¢ is a power
of 2. It is shown that such p’s lead to fast modular reduction meth-
ods which use only a few integer additions and subtractions. We further
generalize this idea by allowing any integer for ¢t. We show that more
generalized Mersenne numbers still lead to a significant improvement
over well-known modular multiplication techniques. While each general-
ized Mersenne number requires a dedicated implementation, more gen-
eralized Mersenne numbers allow flexible implementations that work for
more than one modulus. We also show that it is possible to perform long
integer modular arithmetic without using multiple precision operations
when t is chosen properly. Moreover, based on our results, we propose
efficient arithmetic methods for XTR cryptosystem.

Keywords: Generalized Mersenne Numbers, RSA, XTR, Montgomery,
Karatsuba-Ofman, Modular Reduction

1 Introduction

Many cryptosystems such as RSA, XTR, and elliptic curve cryptosystems (ECC)
based on prime field involve significant use of modular multiplications and squar-
ing operations. Hence it is very important to implement efficient modular mul-
tiplication and squaring operations in implementing such cryptosystems.

There are many well-known techniques for efficient implementation of modu-
lar arithmetic operations [5, 3]. The Montgomery algorithm is the most popular
choice since it is very efficient and it works for any modulus. RSA cryptosys-
tems are usually implemented using the Montgomery algorithm and ECC defined
over prime field and XTR cryptosystems can also benefit from the Montgomery
algorithm.

* This research was funded in part by Natural Sciences and Engineering Research
Council of Canada (NSERC) through Post Graduate Scholarship — B (PGS-B) and
in part by Canadian Wireless Telecommunications Association (CWTA) Scholarship.

M. Matsui and R. Zuccherato (Eds.): SAC 2003, LNCS 3006, pp. 335-347, 2004.
© Springer-Verlag Berlin Heidelberg 2004

336 Jaewook Chung and Anwar Hasan

There are techniques that take advantage of special form of modulus. The
Mersenne numbers m = 2% — 1 [3] are well-known examples. However Mersenne
numbers are never primes and thus they are not cryptographically useful. Due to
Richard Crandall [2], the Mersenne numbers are generalized to the form 2% — ¢
where ¢ is a small integer. Such families of integers are known as pseudo-Mersenne
numbers. Modular reductions by pseudo-Mersenne numbers are very efliciently
done using a few constant multiplications by a small integer ¢. However pseudo-
Mersenne numbers are often avoided due to the patent issue [2].

In 1999, Jerome Solinas introduced families of moduli called the general-
ized Mersenne numbers [3]. The generalized Mersenne numbers are expressed in
a polynomial form p = f(¢) where t is a power of 2. Such representations lead to
fast modular reduction which uses only a few integer additions and subtractions.
It is well-known that all 5 NIST-recommended curves [7, (] defined over prime
fields are based on the generalized Mersenne numbers.

However the generalized Mersenne numbers have a significant limitation:
there could be only one number for a given bit length of p and a fixed f(¢).
Hence, if p = f(t) is not a desired number, we have to change either the bit
length of p or f(¢). It follows that each generalized Mersenne number requires
a dedicated implementation for that number. In some applications, this property
makes the generalized Mersenne numbers less useful.

In this paper, we further extend the idea of generalized Mersenne numbers
by removing the restriction that ¢ must be a power of 2. Surprisingly, it will be
shown that modular arithmetic based on such integers could lead to much faster
modular arithmetic than the classical and the Montgomery modular arithmetic
methods. We give criteria for choosing good f(t)’s and show further improve-
ments are possible by choosing pseudo-Mersenne numbers for ¢ or by choosing ¢
whose bit length is a few bits shorter than processor’s word size. The latter
technique is quite useful in practice, since it makes possible to implement long
integer modular arithmetic without using multiple precision operations. We also
apply our methods and principles to the arithmetic operations required in XTR
cryptosystems. We begin with a simple example.

2 An Example

We use the same polynomial f(t) = t3 — ¢+ 1 used in [3]. We generalize the
ideas from [8] by removing the restriction that ¢ must be a power of 2. Hence we
assume that ¢ could be any positive integer.

Let p be in the form p = f(t) = t3 —t+1 where ¢ can be any positive integer.
Note that any integers z and y, where 0 < z, y < p, can be expressed in the
form of the second degree polynomial in Z[t],

xr = m2t2 +z1t+x0 , (1)
y=1yat® +yrt +yo ,

More Generalized Mersenne Numbers 337

where |2;|, |y;| < t for i« = 0, 1, 2. Using simple polynomial multiplication and
reduction, the modular multiplication of x and y is done as follows,

xy = (z2y0 + T1Y1 + Zoy2 + 1’2y2)t2
+ (z1y0 + Toy1 — T2y2 + T2y1 + 1Y)t (2)
+ Toyo — T2y1 — w1y2 (mod t* —t 4+ 1) .

If the school-book method is used in computing (2), 9 multiplications are re-
quired. However, when multiplying two second degree polynomials, it is advan-
tageous to use the 3-segment Karatsuba-Ofman Algorithm (KOA) [1]. We first
compute 6 intermediate values, Dy through Ds, using 6 multiplications (or 6
squarings when x = y). Note that the normal application of KOA would require
7 multiplications (or 7 squarings when x = y).

Doy = zoyo
Dy =z1y1 ,
Dy = z2y2

D3 = (xo+x1)(yo +v1)
Dy = (2o + x2)(yo + ¥2) »
Ds = (1 +22)(y1 +y2) -

Then the modular multiplication of x and y is done in Z[t]/ f(t) as follows.
xy =cot? + it +c¢o (mod 2 —t+1) , (4)
where,
¢2=Ds—Do+ Dy ,
c1 = D3 — (Do — D5) - 2(D1 + DQ)) (5)
co = (Do —Ds)+ (D1 + D) .
Note that, at this stage, modular reduction is partially done by a polynomial
reduction which uses simple integer additions and subtractions only. Since the
bit lengths of ¢;’s are about twice as large as that of ¢, ¢;’s must be reduced
before further modular multiplication or squaring operations are performed. We
express ¢;’s in the form of the first degree polynomial in Z[t] as follows,
cg = cat+cy
cp =ciit+ C10 (6)
co = co1t + coo
where |c;o] < ¢ for 0 < i < 2. To compute (6), 3 integer divisions are required.
Then it follows that,
2y = (c11 + c20)t> + (co1 + c10 + c21)t + oo — c21 (mod f(t)) . (7)

We repeatedly apply this reduction process until the absolute values of the re-
sulting coefficients are all less than ¢.

338 Jaewook Chung and Anwar Hasan

2.1 Analysis

We assume that the modular multiplication is implemented in software. Note
that microprocessors usually deal with the units of data known as words. Hence
we analyze our modular arithmetic method in terms of word length.

Let ¢, and t4 respectively denote the time required for a microprocessor
to compute word level multiplication and division operations. According to [5],
the running times required to compute long integer multiplication, squaring and
division are given as follows,

M(a) = d*t,, ,
2
Sa) = * ;“tm 7 (®)

D(a,b) = (a —b)(b+ 2)tm + (a —b)tq ,

where M (a) and S(a) are the running times for a long integer multiplication
and a long integer squaring respectively, when multiplicands are both a words
long. D(a,b) is the running time for a long integer division when the dividend
is a words long and the divisor is b words long.

Now, let n be the number of words required to store t. Suppose that t is fully
occupying the n word blocks. Then the word length of p = t3 — t + 1 should be
about 3n.

For simplicity, we do not consider the time required for additions and sub-
tractions in our analysis. In (3), we need 6 integer multiplications (6M (n)).
In (5), there are only additions and subtractions. For the first application of (7),
we need 3 integer divisions (3D(2n,n)). Note that, after this first reduction,
the size of coefficients should be about the same size as t. Therefore, we only
need integer additions and subtractions in the subsequent applications of (7).
Hence the total running time, T,,(n) where n is the word length of ¢, of modular
multiplication is,

T (n) =6M(n)+3D(2n,n)

9
= (9% + 6n)t,, + 3ntq . ©)

Similarly, the total running time, Ts(n), for modular squaring is,

Ts(n) =65(n)+3D(2n,n)

) (10)

= (6n° + In)ty, + 3nty .
In Table 1, we compare these results with the running times required for the
classical methods and the Montgomery methods.

In Table 1, we see huge advantage of our modular multiplication and squar-
ing methods over the classical algorithms. Our methods also should be usually
faster than the Montgomery methods, since it is unlikely that there exists a mi-
croprocessor in which computing 9n? multiplications is faster than computing
3n divisions.

More Generalized Mersenne Numbers 339

Table 1. Running Time Comparison

Modular Multiplication Modular Squaring

Classical (1812 + 6n)tm + 3ntq (13.5n° 4 7.50)tm + 3ntg
Montgomery (18n2 + 6n)tm (13.5n + 7.50)tm
Our methods (9n? + 6n)tm + 3nty (602 + 9n)tm + 3ntq

Our methods (no KOA) (120 + 6n)t, + 3ntq (7.5n% + 10.5n)t,, + 3ntg

In Table 1, we used the 3-segment KOA in the analyses of our methods, but
we did not do the same in the analyses of the classical and the Montgomery al-
gorithms. Note that typical software implementation of KOA leads to only 10%-
20% improvement in the running time of long integer multiplications. Moreover
such a noticeable improvement is expected only when the program is written
very carefully and the operand size is very long (typically > 32 blocks). How-
ever, in our method, it is easy to see that the running time for computing (4) is
directly proportional to the required number of integer multiplications. For fair
comparisons, in the last row in Table 1, we also provide the analysis results for
our method assuming no 3-segment KOA is used in (3). Even without the KOA,
our methods are still faster than the classical and the Montgomery algorithms.

3 The Ideas

In section 2, we have seen that efficient modular arithmetic is possible even
though t is not a power of two. In this section, we discuss how the method
shown in section 2 leads to fast modular arithmetic.

The proposed modular arithmetic is done in 3 steps as follows.

1. Polynomial multiplication (polynomials in Z[t])
2. Polynomial reduction by f(¢)
3. Coefficient reduction (divisions by t)

It is clear that applying the KOA in polynomial multiplication step leads
to a slight speed-up. Note that there could be similar theoretical improvements
in the running times of the classical algorithms by applying the KOA. How-
ever, in practice, the KOA has significantly greater impact when it is applied to
polynomial multiplications than when it is applied to integer multiplications.

The main source of speed-up is in the two reduction steps. Our method
effectively splits one modular reduction into two steps: polynomial reduction step
and coeflicient reduction step. In polynomial reduction step, modular reduction
is partially done using only a few integer additions and subtractions which are
considered trivial. The rest of the reduction is done in coefficient reduction step.
In that step, divisions are still unavoidable but many multiplications are saved.

The main idea of proposed modular arithmetic method is best described by
Proposition 1.

340 Jaewook Chung and Anwar Hasan

Proposition 1. Computing one long integer division takes more time than per-
forming k short integer divisions where operands are shortened by the factor
of k.

Proof. We need to prove the following inequality.

D(a, b) > k- D((11)

kv]ﬂ))
where a > b and k > 1. For simplicity, we assume that kla and k|b. Now it is
easy to verify that,

a b k—1
D(mb)—k-D(k, k)-b(a—b) i tm >0, (12)

fora>band k > 1. O

What Proposition 1 says is that we can save about b(a — b)(k — 1)/k multi-
plications if we can break a long integer division into a number of short integer
divisions. In practice, a should be about 2b. Therefore the proposed modular
arithmetic method saves about b?(k — 1)/k multiplications, where k is the de-
gree of f(t) and b is the word length of p. In our example in section 2, the word
length of p is 3n and k& = 3. Hence, 6n? multiplications are saved in reduction
steps. Note that the number of saved multiplications increases as k increases.
For large k, the number of saved multiplications gets close to b2.

As shown in Proposition 1, now it appears to be clear that the pro-
posed method is faster than the classical algorithms, since our method saves
about b?(k — 1) /k multiplications. Then, is the proposed method faster than the
Montgomery algorithm? Note that the Montgomery algorithm uses the same
number of multiplication as the classical algorithm but it does not use any di-
vision. If p is b words long, then the Montgomery algorithm saves b division
instructions. Therefore, if b2(k —1)/k-t,, > b-t4, our method should be superior
to the Montgomery algorithm. In our example in section 2, b = 3n and k = 3.
In such a case, if 2n multiplications take more time than single division, the
proposed method should be faster than the Montgomery algorithm.

4 Desirable Properties of f(t)

We discuss which polynomials f(t) are advantageous in our modular arithmetic
method. The following is a list of desirable properties for good f(t)’s.

1. High degree polynomials.
We have seen in section 3 that the efficiency of modular arithmetic increases
as the degree of f(t) increases. Hence it is advantageous to make the degree
of f(t) as high as possible. However using f(t) of degree much higher than
the word length of p should be avoided since it will increase the total number

More Generalized Mersenne Numbers 341

of multiplications and divisions. In fact, it is best to choose the degree of
f(t) such that the following conditions are satisfied.

word(p)

deg(f)
word(t) - deg(f) ~ word(p) ,

~l-w,
(13)

where word(-) denotes the word length of an integer, w is the processor’s
word size and [> 0 is an arbitrary positive integer. If the conditions (13)
are not satisfied, the proposed modular arithmetic method could be slower
than the classical algorithms.

2. Avoid using coefficients greater than 1.
If any coefficient in f(¢) is greater than 1, it will introduce some constant
multiplications by that coefficient value in polynomial reduction step.

3. Polynomials with small number of terms.
It is easy to see that the number of terms in f(¢) has direct effect on the
performance of polynomial reduction step. Suppose that degree k polynomial
f(t) has [terms. Then the number of additions or subtractions required to
reduce polynomial of degree 2k —2is (I —1)(k — 1). Hence it is advantageous
to choose f(t) which has smaller number of terms.

4. Trreducible polynomials.
For prime number generation, f(¢) should be chosen to be an irreducible
polynomial. However, irreducible f(¢) does not guarantee the primality of

p=f(t).

It seems that choosing binomial f(t) = t* + 1 is a good choice for most
applications. Note that, for prime number generation, we have to choose k such
that f(t) = t* + 1 is irreducible. For example, f(t) = > + 1 should not be
used for prime generation since f(¢) is not an irreducible polynomial. In case
f(t) = t* + 1 is not irreducible, either choose a small integer ¢ # 0, 1 which
makes f(t) = t* + ¢ irreducible or use polynomials other than binomials.

It should be noted that ¢ in f(¢) = t* + 1 must be limited to even numbers in
prime generation, since otherwise p = f(t) is never a prime. This restriction does
not occur in polynomials with odd number of terms (trinomial, pentanomial,
etc.), provided that all coeflicients are either 0 or 1. Thus such polynomials have
a better chance to generate prime numbers.

5 Improvements

5.1 Improvement by Using t = 2™ — ¢ for Small ¢

In our method, we require k£ divisions by ¢ in the coefficient reduction step. Note
that division is an expensive operation in most microprocessors. However, for
some special form of ¢, division can be avoided.

It is well-known that pseudo-Mersenne numbers ¢ = 2™ — ¢, where c¢ is a small
(preferably positive) integer, lead to fast modular reduction methods [2, 5]. Here

342 Jaewook Chung and Anwar Hasan

we derive an efficient algorithm which computes both remainder and quotient
when t = 2" —c.

Suppose an integer z is to be divided by ¢. Define ¢y = [z/2"] and o =
(z mod 2™) 4 ¢ - qo. Define ¢;’s and r;’s for i > 1,

o VﬂiflJ
qi on s (14)
ri = (ri.g mod 2") +c-¢q; .
Then we can write x as follows,

xr=gqo-t+ro
=q-t+tq-t+mn

: (15)
= <qu> Tt
i=0
Observe that the inequality,
Tic1=Ti+t-q >, (16)

where ¢ > 0, must hold since ¢;’s are non-negative integers. Since r; is a strictly
decreasing sequence, there exists an integer s such that r, < ¢. If r4 < ¢, the
quotient is 3.7 ¢; and the remainder is r,. Algorithm 1 is a formal description
of the division method when ¢ = 2" — ¢. Note that the size of ¢ has no effect
on the performance of Algorithm 1 as long as the word length of ¢ is fixed.
Therefore it is easy to observe that the running time of Algorithm 1 is O(n),
assuming that ¢ is a small, fixed integer.

Algorithm 1. Integer Division by t = 2" — ¢
INPUT: Dividend x > 0.
OuTPUT: ¢ and rem, such that z = ¢ -t + rem and 0 < rem < t.
1. rem «— x, g — 0.
2. While rem >t do:
21 A« |rem/2"].
2.2 g+ q+ A.
2.3 rem «— rem mod 2" + ¢ - A.
3. Return ¢ and rem.

5.2 Avoiding Multiple Precision Operations

We propose using ¢t whose bit length is a few bits shorter than processor’s word
size. In such a case, we could avoid multiple precision operations in modular
arithmetic.

Suppose t is only a few bits shorter than a processor’s word size. Then, when
operands are expressed as polynomials in Z[t], all the coefficients are one word

More Generalized Mersenne Numbers 343

long. Therefore, in polynomial multiplication step, we only require processor’s
multiplication instructions, not the multiple precision multiplications. Since the
bit length of ¢ is slightly less than the word size, the results of the coefficient
multiplications are stored in at most two words. Note that this does not cause
problems, since many currently available processors support double word regis-
ters and instructions for simple arithmetic between double word operands. The
results of coefficient multiplications should have enough bit margin in double
word registers to prevent overflows and underflows during polynomial multipli-
cation and polynomial reduction steps. The divisions in coefficient reduction step
can also be implemented efficiently, since division instructions in most processors
support dividing a double word dividend by a single word divisor.

We give a practical example. Suppose modular arithmetic operations are
implemented on a processor where the word size is 32 bits long and the modulus p
is about 160 bits long. Suppose 2-bit margin for ¢ is required to prevent overflows
and underflows during the modular arithmetic. Then ¢ should be at most 30 bits
long. It follows that the degree of f(¢) should be [160/30] = 6. Therefore we
have to choose [160/6] = 27 bit ¢. In such a case, p = f(¢) will be about 162
bits long.

One drawback of this method is that it may increase the number of words
required to store operands. In the above example, our method requires 6 word
blocks, but originally only 5 words are sufficient. The increased word length may
result in performance degradation. However, if the increment is not too large,
this is not a serious issue. Usually there is a lot of unavoidable redundancy in the
implementations of multiple precision arithmetic operations. In some cases when
operand size is not too large, such redundancy overwhelms the running time of
multiple precision operations. Hence, if the operand sizes are not too large, it
is better to avoid multiple precision arithmetic, even though the increased word
length may cause a slight drop in performance.

6 Advantages of Our Proposed Method

Note that one big issue for the generalized Mersenne numbers proposed in [8]
is that there could be only one p for a given bit length and a polynomial f(t).
If f(t) for some ¢t = 2™ is not useful, then we have no choice but to choose
other polynomial f(t) or change the bit length n of ¢t. However our methods do
not impose this kind of constraints. For a fixed f(t), one can find many prime
numbers p = f(t) of the same bit length.

This makes significant difference in implementation. Note that there could
be no general implementation for the generalized Mersenne numbers. In other
words, each generalized Mersenne number requires a dedicated implementation.
On the other hand, general implementation is possible in our case. If one im-
plements modular arithmetic operations based on a pre-determined f(¢), then
that implementation will work for any value of ¢. Even though f(¢) is not pre-
determined, it is still easy to implement a software that works for any f(t).

344 Jaewook Chung and Anwar Hasan

Since parameter generation is not simple, it is a usual practice in ECC to
share a set of pre-determined parameters among domain users. In this case, one
implementation will benefit the entire domain which shares common parameters,
and hence general implementation may not be needed. In fact, there are only
5 NIST (National Institute of Standards and Technology)-recommended curves
based on prime fields and they all use the generalized Mersenne primes [7, 6].

However every user has to generate their own parameters in RSA cryptosys-
tem and it is recommended that users generate their own parameters in XTR
cryptosystem [41]. The generalized Mersenne numbers are not advantageous in
such cases. On the other hand, the proposed method given in this paper is
highly suitable for RSA and XTR cryptosystems, since it is easy to implement
a software that works for all possible choices of f(¢) and ¢. Note that the more
generalized Mersenne numbers are characterized by only f(¢) and ¢. Hence we
can reduce the storage requirement for the modulus p = f(¢).

Our more generalized Mersenne numbers are also advantageous due to the ef-
ficiency of modular arithmetic. As shown in section 2, our modular multiplication
and squaring methods are much faster than the classical and the Montgomery
arithmetic methods. Moreover, further speed-up is possible by using special form
of t = 2" — ¢ for small integer ¢ or using ¢t whose bit length is a few bits shorter
than the word size.

7 Efficient Arithmetic for XTR Cryptosystem

In this section, we apply our methods to the modular arithmetic operations re-
quired in XTR cryptosystems. Algorithm 2 is the simplest and fastest algorithm
for generating two essential parameters p and ¢ for use in XTR cryptosystem.

Algorithm 2. Selection of ¢ and p [1]
OuTpPUT: XTR parameters ¢ and p such that both are primes and ¢|(p*> — p + 1).

1. 7 €r Z such that ¢ = 7% — r + 1 is a prime.
2. k €g Z such that p = r 4+ kq = kr? + (1 — k)r + k is a prime and is 2 (mod 3).

The prime p = kr? + (1 — k)r + k, generated by Algorithm 2, has special
structure. In [1], it is stated that such p results in fast GF(p) arithmetic. However
they did not show details on how to achieve efficient arithmetic using such p.
Here we show detailed methods and analysis for efficient arithmetic in GF(p).

7.1 Efficient Arithmetic in GF(p) When k =1

When k = 1, p takes its simplest form, p = 72 + 1. We express elements x, y €
GF(p) as polynomials in Z[r].

r=xr+zo (modr?+41) , (17)
y=wyir+yo (mod r2+1) ,

where |z;|, |y;| < for i =0, 1.

More Generalized Mersenne Numbers 345

Then the modular multiplication is computed as follows,

ry =217+ 2 (mod r?+1) (18)
where,
1 = C—-A-B s
zZo = A—B s
A = XoYo , (19)
B = r1Y1

C = (w0 +x1)(Yo+y1) -

Since the bit lengths of x;’s and y;’s are about half the bit length of p, we need
3 half-length integer multiplications to compute (18). However the bit lengths
of two resulting coefficients in (18), z; and zp, can be about twice the bit length
of t. They must be reduced before further multiplication or squaring operations
in GF(p) are performed, since otherwise the size of the multiplication result will
keep growing. Using two divisions by r, we represent z; and z¢ in the following
form,

Z1 = Zz11T + 210 , 20 = 2017 + Z00 (20)
where |z19], |200] < 7. Then it follows that,

xy = (2117 + 210)7 + 2017 + 200 (mod 7% + 1) o
= (210 + 201)7 + 200 — 211 (mod 7% +1) .

Note that |z10 + 201| and |z00 — z11| could be greater than r. In such a case,
we repeatedly apply (21) until the desired results are obtained. However after
the first application of (21), the resulting coefficients have almost equal lengths
with r. Thus, we only need additions and subtractions instead of expensive
integer divisions.

7.2 Efficient Arithmetic in GF(p) When k # 1

When k # 1, p = kr? + (1 — k)r + k. Note that the coefficients are not all 1.
Then we have to express « and y as polynomials in Z[kr].

x=x1(kr) +xo (mod kr? + (1 —k)r+k) ,

) (22)
y=wy1(kr)+yo (mod kr®+ (1 —k)r+k) ,

where |z;|, |y;| < kr for ¢ = 0, 1. The modular multiplication is computed as
follows,

2y =21 (k) + 2 (mod f(r)) | (23)

where,

346 Jaewook Chung and Anwar Hasan

Table 2. Running Time Comparison of Modular Arithmetic Methods

Modular Multiplication Modular Squaring
Our Method (k=1) (5n° + 4n)t., + 2nty (4n? + 4n)t,, + 2nty
Our Method (k # 1) (5n2 + 4An)tm + 2ntq + 4tc (4n2 + 4n)tm + 2ntq + 3te
Classical (8n% + 4n)tm + 2ntq (612 + 5n)tm + 2ntq
Montgomery (8n? + 4n)ty, (61 + 5n)tm

21=C—A—-2B+D ,

z20=A—F ,

A=z0yo0 ,

B =uz1y1 , (24)
C = (21 +20)(y1 + o)

D =Bk ,

E =Dk .

Since z; and zy are not reduced, we express them as follows using two divi-
sions,
Z1 = 211 * (/ﬂ’) + 210 20 = 201 * (/ﬂT) —+ Zoo 5 (25)

where |z19], |200] < 7. Then it follows that,
Ty = (210 — 211 + 201 + kzll) . (lﬂ‘) — k2211 + Zoo (mod f(T‘)) . (26)

We repeatedly apply (26) until the desired result is obtained.

7.3 Analysis

We assume that r is stored in n word blocks. Then p = kr? + (1 — k)r + k
should be about 2n words long. Let t. denote the time required to compute the
constant multiplication by k. We use the same analysis technique from section 2
and the results are shown in Table 2. Table 2 also compares our methods with
the classical and the Montgomery algorithms.

It is clearly seen in Table 2 that our methods save 3n? and 2n? multipli-
cations for modular multiplication and modular squaring, respectively. Hence
our methods are faster than the classical algorithms. Note that constant mul-
tiplications can be done efficiently if £ is a very small integer or it has a low
Hamming weight. Even though our methods use additional 2n divisions over the
Montgomery algorithm, our modular multiplication methods should be faster if
3n? multiplications are more expensive than 2n divisions. Similarly, if 2n? multi-
plications are more expensive than 2n divisions, our modular squaring methods
should be faster than the Montgomery algorithm.

More Generalized Mersenne Numbers 347

8 Conclusions

In this paper, we further extended the generalized Mersenne numbers proposed
in [8]. The generalized Mersenne numbers are expressed in polynomial form,
p = f(t) where t is a power of 2. However our generalization allows any integer
for t. We have shown that efficient modular arithmetic is still possible even
though ¢ is not a power of 2. In our analysis, we have shown that our methods are
much faster than the classical algorithm. We have also shown strong evidences
that our methods are faster than the Montgomery algorithm. We have presented
some criteria for good f(¢)’s which lead to fast modular arithmetic.

Moreover, we have provided techniques for improving the modular arithmetic
methods based on more generalized Mersenne numbers. One is using special form
of t = 2™ —c where ¢ is a small integer. If such ¢ is used, we can perform coefficient
reduction steps using only constant multiplications. Another technique is using ¢
whose bit length is slightly shorter than word size. In this case, the long integer
modular arithmetic does not require multiple precision operations.

We have also shown efficient techniques for modular operations in XTR cryp-
tosystem based on our results. Our analysis results show that the proposed
methods should be faster than the classical and the Montgomery algorithms.

References

[1] Daniel V. Bailey and Christof Paar. Efficient arithmetic in finite field extensions
with application in elliptic curve cryptography. Journal of Cryptology, 14(3):153—
176, 2001. 337

[2] Richard E. Crandall. Method and apparatus for public key exchange in a cryp-
tographic system (oct. 27, 1992). U.S. Paent # 5,159,632. 336, 341

[3] Donald E. Knuth. Seminumerical Algorithms. Addison-Wesley, 1981. 335, 336

[4] Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In Advances
in Cryptology - CRYPTO 2000, LNCS 1880, pages 1-19. Springer-Verlag, 2000.
344

[5] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. 335, 338, 341

[6] National Institute of Standards and Technology. Digital signature standard (DSS).
FIPS Publication 186-2, February, 2000. 336, 344

[7] National Institute of Standards and Technology. Recommended elliptic curves for
federal government use, July, 1999. 336, 344

[8] Jerome A. Solinas. Generalized Mersenne numbers. Technical Report CORR
99-39, Centre for Applied Cryptographic Research, University of Waterloo, 1999.
http://cacr.uwaterloo.ca/techreports/1999/corr99-39.ps. 335, 336, 343, 347

	More Generalized Mersenne Numbers
	Introduction
	An Example
	Analysis

	The Ideas
	Desirable Properties of f(t)
	Improvements
	Improvement by Using t = 2^n -c for Small c
	Avoiding Multiple Precision Operations

	Advantages of Our Proposed Method
	Efficient Arithmetic for XTR Cryptosystem
	Efficient Arithmetic in GF(p) When k = 1
	Efficient Arithmetic in GF(p) When k \not=1
	Analysis

	Conclusions

