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Abstract. Differential power analysis (DPA) attacks can be of major
concern when applied to cryptosystems that are embedded into small
devices such as smart cards. To immunize elliptic curve cryptosystems
(ECCs) against DPA attacks, recently several countermeasures have been
proposed. A class of countermeasures is based on randomizing the paths
taken by the scalar multiplication algorithm throughout its execution
which also implies generating a random binary signed-digit (BSD) rep-
resentation of the scalar. This scalar is an integer and is the secret key of
the cryptosystem. In this paper, we investigate issues related to the BSD
representation of an integer such as the average and the exact number of
these representations, and integers with maximum number of BSD repre-
sentations within a specific range. This knowledge helps a cryptographer
to choose a key that provides better resistance against DPA attacks.
Here, we also present an algorithm that generates a random BSD repre-
sentation of an integer starting from the most significant signed bit. We
also present another algorithm that generates all existing BSD represen-
tations of an integer to investigate the relation between increasing the
number of bits in which an integer is represented and the increase in the
number of its BSD representations.

Keywords: Differential power analysis, elliptic curve cryptosystems, bi-
nary signed-digit representation, scalar multiplication, smart cards.

1 Introduction

Smart cards and wireless devices are vulnerable to a special type of attacks,
those are side-channel attacks. For these systems, a correct implementation of
a strong protocol is not necessarily secure if this implementation does not take
into account the leakage of secret key information through side channels. Exam-
ples of side channels are execution time [8], computational faults [1] and power
consumption [9, 12, 13]. The mentioned systems are vulnerable since the task
of monitoring the power consumption or the execution time of cryptographic
protocols running on them is relatively easy.

Power Analysis attacks are those based on monitoring and analyzing the
power consumption of devices while executing a cryptographic algorithm in or-
der to obtain significant information about the secret key. Kocher et al. were the
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first to present attacks based on simple and differential power analysis (referred
to as SPA and DPA respectively). In SPA, a single power trace of a cryptographic
execution is measured and analyzed to identify large features of a cryptographic
algorithm and specific operations that are typical of the underlying cryptosys-
tem. On the other hand, to mount a DPA attack, an attacker collects hundreds of
power signal traces, and manipulates them with statistical techniques to extract
the differential signal. Therefore, DPA is in general more powerful than SPA.

Coron [3] has explained how power analysis attacks can be mounted on ECCs
— which are more suitable for memory limited devices because of the small size of
their keys — and suggested countermeasures against both types of attacks. Other
authors have proposed DPA countermeasures for both general and specific types
of elliptic curves [4, 5, 6, 10, 15, 16]. Specifically, the approach followed by the
authors in [4, 16] was based each on randomizing the number and the sequence
of execution of operations in the scalar multiplication algorithm. This random-
ization consists of inserting a random decision in the process of building the
representation of the scalar k. The algorithms to which this randomization is
applied were originally proposed to speed up the elliptic curve (EC) scalar mul-
tiplication. They are based on replacing the binary representation of the scalar k
by another representation with a fewer number of nonzero symbols by allowing
negative symbols to be inserted (e.g. binary signed-digit (BSD) representation
of an integer). This yields a fewer number of executions of the point addition (or
subtraction) in the EC scalar multiplication algorithm. This speedup was possi-
ble using the fact that the negative of a point on an elliptic curve is available at
no extra computational cost. The algorithms proposed were computing what we
referred to as the canonical BSD (also known as the sparse or NAF) represen-
tation of the integer k by scanning the bits of its binary representation starting
from the least significant bit. A brief overview of the EC scalar multiplication
and the possible power attacks on it is presented in Sect. 2.

When we consider the DPA countermeasures based on randomizing the BSD
representation of the integer k£ some natural questions arise, those are: What is
the average number of BSD representations for an integer k represented in n
bits, where the BSD representations are to be of length [ signed bits — which we
will refer to as sbits — for both cases | = n and [ = n+17 For integers represented
in n bits, which one has the maximum number of BSD representations since this
may affect the choice of the secret scalar for cryptosystems that will adopt this
countermeasure? In this paper, we are interested in answering those questions
and the answers are presented in Sect. 3. Also, in the same section, we present
an algorithm that calculates the exact number of those representations for any
integer k in O(n).

In Sect. 4, we present an algorithm that generates a random BSD represen-
tation for an integer k£ by scanning its bits starting from the most significant bit
in O(n) and another algorithm that generates all BSD representations for an inte-
ger k in O(3L21) in the worst case. We also demonstrate the effect of increasing n
on the number of BSD representations of k. Many of the proofs and examples
have been omitted due to the space limitations. For a complete version of this ar-
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ticle, we refer the reader to the corresponding CACR technical report published
at http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-11.ps

2 EC Scalar Multiplication and Power Analysis Attacks

In the context of ECCs, the EC scalar multiplication is the core cryptographic
operation performed. This operation computes () = kP, i.e. the addition of P to
itself k times, where Q and P are two points on a predefined elliptic curve over
a finite field and are public, and k is a secret integer. The EC scalar multiplication
is conventionally performed using the double-and-add algorithms which are also
referred to as the binary algorithms [7, Sect. 4.6.3]. The doubling of a point and
the addition of two points on an elliptic curve are operations performed using
basic finite field operation as explained in [11].

The side channel attacks on the EC scalar multiplication aim to discover the
value of k. We assume that the attacker gets hold of the cryptographic token per-
forming the EC scalar multiplication. Coron [3] has explained the possible SPA
and DPA attacks that can be mounted on this token. He suggested a reasonable
SPA countermeasure at the expense of the execution time of the algorithm. We
will focus here on DPA countermeasures.

To mount a DPA attack, the attacker inputs to the token a large number of
points and collects the corresponding power traces. As Coron [3] and Hasan [5]
have explained, knowing the input point to the algorithm, the attacker starts
by guessing the bits of the scalar k starting by the first bit involved in the
computation, and accordingly computes the intermediate value for each point
he inputs to the algorithm after the bit considered is processed. Based on the
representation of the intermediate results, he chooses some partitioning function
to partition the power traces he collects and processes them with statistical
techniques, such as averaging, to conclude the real value of the bit considered.
The attacker then repeats this procedure with every bit of the scalar.

Many of the countermeasures proposed to defeat DPA where based mainly
on some form of randomization. They suggested either randomizing (or blinding)
the point P or the scalar k. For example, one of the countermeasures proposed by
Coron [3] suggested randomizing the value of £ modulo the order of the point P,
this is done as the first step in the scalar multiplication algorithm. Another type
of countermeasures, that is of interest to us, is based on modifying the repre-
sentation of the scalar k throughout the execution of the scalar multiplication
algorithm. The representation of &k in [4, 16] on which this approach is applied
is the BSD representation. The underlying idea is as follows. The right-to-left
EC scalar multiplication can be speed up by computing the NAF of k along
with performing the corresponding doubling and addition (or subtraction) of
points [14]. Random decisions can be inserted in the NAF generating algorithms
so that they do not generate the NAF of k but any of the possible BSD repre-
sentations of k (including the NAF). A different representation for the scalar k
is chosen, and hence a different sequence of EC operations is followed, every
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time the algorithm is executed. We refer the reader to the paper by Oswald and
Aigner [16] and the one by Ha and Moon [4] for the details since they are not
relevant to the work presented here.

3 Number of Binary Signed Digit Representations

Considering the binary representation of k as one of its BSD representations,
different BSD representations for k can be obtained by replacing 01 with 11 and
vice versa and by replacing 01 with 11 and vice versa [17, equations 8.4.4- and
8.4.5-]. The binary representation of k, must include at least one 0 that precedes
a 1, so that starting from it we can obtain other BSD representations.

We consider in this case positive integers k, i.e. 0 < k < 2". In general, the
integers x, represented in [ = n sbits in BSD system, would be in the range
—20 < 2 < 2!, There are 3! different combinations for 2. Also, in this system, for
every positive integer corresponds a negative one obtained by exchanging the 1s
with 1s and vice versa. Hence, the total number of non-negative combinations is
3l; L This result can be confirmed using the lemmas below.

3.1 Useful Lemmas

In this subsection, we present a number of lemmas related to the number of BSD
representations of an integer k. These lemmas will be used to derive the main
results of this article.

Let A(k,n) be the number of BSD representations of k for 0 < k < 2" that
are [ = n sbits long. Then the following lemmas hold.

Lemma 1. (i) A(0,n) =1, (ii) A\(1,n) = n, (iii) A\(2',n) =n — .
Lemma 2. For2" 1 <k <2"—1, A(k,n) = Ak —2""1,n—1).
Lemma 3. For k even, A(k,n) = A(¥,n —1).

Lemma 4. For k odd,

AMk,n)=Ak—1,n)+Xk+1,n) ,

eor=a([ga- s[5 20

3.2 Number of BSD Representations of Length I = n + 1

or

The algorithms that we are concerned with as DPA countermeasures are based
on algorithms that generate the NAF representation of an integer. Since the
NAF of an integer may be one sbit longer than its binary representation, we are
interested in knowing the number of BSD representations of an integer k that
are [ sbits long, where in this case | =n + 1.
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A part of these representations are the ones that are n sbits long and their
number is A(k,n). For [ = n + 1, those representations will have a 0 as the most
significant sbit. If we were to change this 0 to a 1, i.e. add 2" to the value of k,
we should subtract 2" — k in the remaining n sbits, that is the 2’s complement
of k. 2" —k has A\(2"—k, n) BSD representations of length n. The negative of these
representations is obtained by interchanging ls and 1s. Thus, if we let d(k,n)
represent the number of BSD representations of k in n + 1 sbits for 1 < k < 2",
we have

O(k,n) = Ak,n) + 2" —k,n) . (1)

The same argument applies to the 2’s complement of &
02" —k,n) = A2" — k,n) + XNk,n) = 0(k,n) . (2)

For k = 0, 6(0,n) = A(0,n) = 1. From (2), we conclude that, for k in the
defined range, the distribution of §(k,n) is symmetric around k = 2"~ 1.

Let ¢(n) be the total number of BSD representations of length n 4 1 for all
integers k € [0,2™ — 1], we can prove that

s(n) =3". (3)

Remark 1. We conclude that, for any n-bit integer, the average number of its
— (n+ 1) sbits long — BSD representations, i.e. of possible random forms it can
take, is roughly (g)n

It is clear from the definitions of A(k,n) and &(k,n) that, for 0 < k < 2n~1
AEk,n) =6(k,n—1) (4)

since in this range, the binary representation of k has a 0 as the leftmost bit.
In other words, the algorithm that computes A\(k,n) presented in the following
section can be used to compute d(k,n) as

5(k,n) = Ak,n+1) . (5)

3.3 Algorithm to Compute the Number
of BSD Representations for an Integer

Here we will present an algorithm that computes A(k,n) for any integer k €
[0,2™ — 1]. This algorithm is based on the lemmas presented in Sect. 3.1.

Algorithm 1. Number of BSD representations of an integer k in [ = n sbits
INPUT: k € [0,2" — 1], n
Outrput: C = A(k,n)
external \2(ke, ko, we, wo,n) /*computed by Algorithm 2 that follows™/
1. if (k =0) then
C —1
2. else if (k = 1) then
C—n
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3. else if (k> 2"') then
C—Ak—2""1n-1)
4. else if (k is even) then
C—Abn-1)
5. else
5.1 if (k=1 (mod 4)) then
C—x(5],[5]+1L1,1,n-1)
5.2 else
C—X(5]+1,15],1,1,n-1)
6. return C

Algorithm 1 uses Lemma 1(i) and 1(ii) to return the value of A(k,n) directly
if the value of k is either 0 or 1. Otherwise, it uses Lemmas 2 and 3 to trim k
recursively from any leading 1’s or trailing 0’s since they don’t add to the number
of BSD representations of k. Then this algorithm calls Algorithm 2 to find the
actual number of BSD representations of k£ which is then an odd integer in the
range |0, on'=1 _ 1], for some n’ < n. Hence, Lemma 4 is applicable to this k.

Algorithm 2. Auxiliary algorithm used by Algorithm 1 to compute A(k, n)
INPUT: ke, ko, We, Wo, N
OuTPUT: ¢ = A2(ke, ko, We, Wo,n)
1. if (ko =1 AND ke = 2) then
ce—nxwo+ (n—1)*we
2. else
2.1 if (ke =0 (mod 4)) then
2.1.1 if (ko =1 (mod 4)) then
c )\2(k26, k; + 1, wo + We, wo,n — 1)
2.1.2 else
c— )\Q(k;, k; — 1, wo + We, wo, n — 1)
2.2 else
2.2.1 if (ko =1 (mod 4)) then
c— )\2('“2‘5 -1, k;,wo,wo—kwe,n— 1)
2.2.2 else
c—X2(% + 1,5 wo, wo + Wwe,m — 1)

’ 9
3. return c

Using Lemma 4, A\(k,n) for k odd constitutes of two other evaluations of the
same function A; one is for an even integer, k. which is the closest even integer
to k/2, and the other is for the preceding or the following odd integer, k,. If we
start using Lemmas 3 and 4 recursively to evaluate \ for k. and k, respectively,
at each iteration there will be always two terms for the A function multiplied by
a certain weight each, w, and w,. In general, at the i*" iteration

)\(ka n) = We,n—i )\(ke,nfiv n— Z) + Wo,n—i )\(ko,nfia n— Z) .

At the beginning, we, = won, = 1. It can be shown that when ke ,—; = 0
(mod 4), the weights are updated as follows

We,n—i—1 = Wo,n—i + We n—i Wo,n—i—1 = Wo,n—i
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and when k. ,—; = 2 (mod 4), they are updated as
) )
We,n—i—1 = Wo,n—i Wo,n—i—1 = Won—i + We,n—i -

For the complexity of Algorithm 1 — including its usage of Algorithm 2 — it
is clear that it runs in O(n) time and occupies O(n) bits in memory. This time
complexity results from the fact that both algorithms deal with the integer k
one bit at a time. For the space complexity of Algorithm 1, even in its recursive
form, the new values that it generates for £ and n can replace the old values in
memory. The same argument is valid for Algorithm 2 regarding the new values
of ke, ko, we, w, and n.

3.4 Integer with Maximum Number of BSD Representations

From the view point of DPA countermeasure, while choosing a secret key k, it
is desirable to know which integer k € [0,2" — 1], for a certain number of sbits
l=norl=mn+ 1, has the maximum number of BSD representations. We note
from (4) that this integer with the largest §(k, n) is the same one with the largest
A(k,n +1). Also from the symmetry of 6(k,n) around 2"~ !, we note that there
are two values of k for which 6(k,n) is the maximum value. We will denote them
as kmaz,,n and Kpmazs,n-

From Lemma 3 and Lemma 4, kpae,,n and Kipaz,,» must be odd integers.
There are two cases:

Case 11 kmaz,,n =1 (mod 4)
In this case, 0(kmaz,,n +1,1) > (kmaz,.n — 1, 1), since knaq, n —1 has
two zeros as the least significant sbits while k42, ,n + 1 has only one
zero. Those rightmost zeros are trimmed by Algorithm 1.
Thus, from Lemma 4, we have

kmaml,n—l-l - kmaml,n + kmazl,n +1=2 kmazl,n +1=3 (mOd 4) (6)

Case 2: kmaz,.n =3 (mod 4)
In this case, (kmaz,,n — 1,1) > 0(kmag, n + 1,n). Thus, we have

kmawthrl = kmazhn + kmawhn —1=2 kmawhn —-1=1 (mOd 4)
(7)

With every increment of n, cases 1 and 2 alternate. Case 1 occurs when n is even
and Case 2 occurs when n is odd.
We can use recursive substitution to find that, for n even,

and for n odd,

kmawhn

1 n
=, +1). 9)



On Randomizing Private Keys to Counteract DPA Attacks 65

Since kpmazy,n and Knqz,,n are equidistant from 2"~1 we can obtain kmaza.n
for n even as follows

1
kmazg,n - 27171 + 2n71 — kmazl,n =2" — 3(2” — 1)

1
= 3(2n+1 + 1) = kmaml,n+1 (10)
where the last equality follows from (9).

Similarly, for n odd, we have

1

3(271—H —1) = kmazi 41 - (11)

kmazg,n =

Finally we should notice that, for n even, Kz, n is of the form ({0 1)2),
and, for n odd, kmaz,,n is of the form ({0 1) "t 1)2.

Knowing the integer with maximum number of BSD representations can help
the cryptographer choose a secret key as follows. He can run Algorithm 1 with
that integer as input to know the maximum number of representations. Then,
he can pick an integer at random and run the same algorithm again to compare
the number of BSD representations of that integer with the maximum one and
accept that integer as the secret key if the number of its representations is
within a predefined range of the maximum number. In general, from Lemma 4,
odd integers have a number of BSD representations of order of twice that of
their neighboring even integers. We have also observed that integers having a
good random distribution of their bits are more probable to have larger number
of BSD representations.

4 Left-to-Right BSD Randomization
and Generation Algorithms

The algorithms mentioned in Sect. 2 that are used to generate a random BSD
representation of k are modified versions of NAF generation algorithms. Those
latter ones scan the bits of the integer k from right-to-left and hence, perform
the EC scalar multiplication from right to left.

Sometimes, it is advantageous to perform the EC scalar multiplication from
left to right, especially when a mixed coordinate (projective and affine) system
is used for saving computational cost in scalar multiplication [2].

In this section, we will present an algorithm that generates a random — (n +
1) sbits long — BSD representation of k while scanning it from left to right.
Also we will present another algorithm that generates all of these possible BSD
representations of k.

4.1 Left-to-Right Randomization Algorithm

The underlying idea of the algorithm is that the binary representation of k is
subdivided into groups of bits — of different lengths — such that each group is
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formed by a number of consecutive Os ending with a single 1. For each of these
groups a random BSD representation is chosen. Whenever the choice yields a 1
at the end of a group — which happens when any representation for that group
other than the binary one is chosen — and a 1 at the beginning of the next group
— which happens when the representation chosen for the next group is the one
that has no 0s — another random decision is taken so as whether to leave those
two sbits (i.e., 11) as they are or to change them to 01.

The choice of a random representation for a certain group is done by counting
the number of Os in it, say z, and choosing a random integer ¢t € [0, z] which
will be the number of 0s to be written to the output. If ¢ is equal to z, the last
sbit to be written to the output for this group is 1, and it is actually written.
Otherwise, after writing the ¢ Os, a 1 and only z — ¢t — 1 1s are written, that is
the last 1 is not written, but saved as the value of a variable labeled as last.
We then do the same for the next group. If for the next group ¢t = 0, we take
a random decision whether to write 11 to the output or 01 at the boundary of
the two groups. This leads to the following algorithm.

Algorithm 3. Left-to-Right Randomization of an integer’s BSD representation

INPUT: k = (knfl . ]{30)2
OurpuT: k' = (k), ... k{)BsD, a random BSD representation of k
1. Set ky, — 0; i —n+1; last — 1
2. for j from n down to 0 do
if (k; = 1) then
21 t—p [0,i—j—1]
2.2 if (t =0 AND last # 1) then
2.2.1 ¢+r{0,1}
2.2.2 if (¢ = 0) then
ki—1;i«—i—1; ki — 1
2.2.3 else
ki —0
2.3 else
2.3.1 if (last # 1) then
ki —1
2.3.2 while (¢ > 0) do
ie—i—1; Kkl «—0; t—t—1
233 i —i—1; K —1
2.4 if (i = j) then
last — 1
2.5 else
2.5.1 while (i > j+1) do
ie—i—1; k — 1
252 i«—1i—1; last — 1
3. if (last # 1) then
k1
4. while (i > 0) do
i—i—1; ki <0
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The algorithm runs in O(n) time. The bits of k' can be used as they are
generated in left-to-right scalar multiplication algorithms in EC cryptosystems
or in left-to-right exponentiation algorithms in RSA or ElGamal cryptosystems.
This means that there is no need to store k’.

4.2 Left-to-Right Generation Algorithm

The algorithm presented here is a modified version of Algorithm 3 that recur-
sively and extensively substitutes every group of Os ending with a 1 with one of
its possible forms. It also takes into consideration the alternative substitutions at
the group boundary when the representation of a group ends with a 1 and that
of the next group starts with 1. This algorithm can be used as a straight-forward
check that Algorithm 3 is capable of generating any possible — (n + 1) sbits long
— BSD representation of an integer k in the range [1,2™ — 1], i.e. there is no BSD
representation of k that cannot be generated by that algorithm. It was tested
on small values of n.

Algorithm 4. Left-to-Right Generation of all BSD representations of k

INPUT: k = (kn—1 ... ko)2
OuTpUT: all possible strings k' = (k;, ... k{)BsD
1. Subdivide k from left to right into groups of consecutive Os each ending with a single
1. Store the length of each group in a look-up table G. Let g be the index of the
table.
2. Set g —0; i —n+1;
last — 1; j —i—Glgl; k' < ()
3. fort=0toi—j—1do
ChooseForm(k, g,t,1, j, last, k)

Algorithm 5. ChooseForm(k, g,t,1, j, last, k'), a recursive procedure employed by Al-
gorithm 4

INPUT: Kk, g, t, 1, ], last, k'
OUTPUT: returns k', a string of sbits, as a possible BSD representation of k.
1. if (¢t > 0) OR (last = 1) then  //this step is equivalent to step 2.3 in
Algorithm 4
1.1 if (last # 1) then
kK — K1 //concatenate k' with 1
1.2 while (¢ > 0) do
te—i—1; K —K|0; t —t—1
13 i—i—1; k — k|1
2. if (i = 7) then
last — 1
3. else
3.1 while ( > j+1) do
te—i—1; kK1
3.2 i+—1—1; last — 1
4. if (j = 0) then
4.1 if (last # 1) then
kK — K1
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4.2 return k’
5. 9—g+1; j—j—Glg
6. if (j =0) AND (k is even) then
6.1 if (¢ > 0) then
6.1.1 if (last # 1) then
K — K1
6.1.2 while (¢ > 0) do
i—i—1; K — K0
6.2 return k’
7.t=0
8. if (last # 1) then
ChooseForm(k, g,t,i — 1, j,last, k'|11)
ChooseForm(k, g,t,1, j, last, k'|0)
9. else
ChooseForm(k, g,t,1, j, last, k')
10. fort=1toi—j—1do
ChooseForm(k, g,t,1, j, last, k)

To better explain how this algorithm works we present in Fig. 1 the tree
explored by the algorithm for k¥ = 21 and n = 5. This tree is explored by the
algorithm in a depth-first fashion. That is, the recursive function ChooseForm is
first called from Algorithm 4 at node a in the figure. Then this function calls itself
at node b and then at node ¢ where it returns with the first BSD representation
for k = 21 which is 111111. With the flow control at node b the function calls
itself at node d where the second BSD representation is generated and so forth.

The algorithm works as follows. The integer k is first subdivided into groups
of bits where each group consists of consecutive Os and a single 1 at the end
as for Algorithm 3. We should mention that a 0 is prepended to the binary
representation of k, so that the BSD representations, k' of k are (n + 1) sbits
long. Starting from the leftmost group, a particular BSD representation for that

010101

b o111 f o1 1/01

R

1|11 0|11 1|01 1|11 0J11 1|01 11 111 0|11 1]01 11 01
c d e

Fig.1. The tree explored by Algorithm 4 for k =21 and n =5
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0010101

1]110/111]011]110[111]0111 01 1]110[111]011|110|111[0111 01 1|110J111|0111 01

Fig. 2. The tree explored by Algorithm 4 for k =21 and n =6

group is chosen starting with the one that contains no 0s (i.e. ¢, the number of Os
to be written to the output for that group, is equal to 0). The representation is
formed inside the function ChooseForm which takes t as one of its arguments. In
turn, this function goes through the possible values of ¢ for the following group
and, for each one, calls itself to form the corresponding BSD representation of
that group. When ¢ is equal to 0, the two possible alternatives at the group
boundary are considered as was explained in Sect. 4.1. For example, in Fig. 1,
the last sbit in the group at node a may remain 1 or change to 0 depending
on the random decision taken at the group boundary when ¢t = 0 for the next
group. This is why this last sbit is written at nodes b and f before the symbol
‘|” which designates the boundary between the groups.

The worst-case complexity analysis of Algorithm 4 is presented in the follow-
ing. The worst case occurs for the integer with the maximum number of BSD
representations in the range [1,2"™ — 1]. There are actually two integers with
this property for any given n, which we referred to as kpaz, n and kpmag,,n in
Sect. 3.4. We mentioned that, for n even, k,qz, » is of the form ({0 1) 2 ). For ex-
ample, ka0, ,6 = 21 = (010101)5 (see Fig. 2). We also mentioned that, for any n,
Emazs,n = Emaz, ,nt1. For example, knaq, 5 = 11 = (01011)2 and kygz,,5 = 21 =
(10101)2 (see Fig. 2). Therefore, our analysis is conducted on those integers k of
the binary form ({0 1) 2 ) for n even and (1(0 1) " )2 for n odd. In the following
discussion, we will drop the subscript n from £y,q2,,n and ky,aq,,» for simplicity,
since it will be obvious from the context.

For n even, we have the following.

n=2" kmaz, = kmaz, =1 =(01)2, 6(1,2) = A(1,3) = 3.
The tree explored here is the same as the one having as root the node b
in Fig. 1. The difference is that in this case t can take the values 0, 1 and
2 with only one representation for ¢ = 0.

n=4: kpaz, =5 =(0101)2, 6(5,4) = \(5,5)=8=3-3— 1.
The tree explored for this integer is the same as the one having as root a
in Fig. 1.

n=06: Kkmas, =21 =(010101)2, 6(21,6) = A(21,7) =21=3-3-3—(3.1+ 3).
The tree explored for this integer is illustrated in Fig. 2.



70 Nevine Ebeid and M. Anwar Hasan

Let m = 7. By induction we can deduce the following

MEmaz,,n+1) = 3™ — (m — 1)3m 2 (Zzl> gm—4
m—>5 i1 11171 17 i1
S(Exe)r (R Y]

i1:1i2:1 11 112 1’L3 1

(12)

Also, for n odd, by induction we can deduce the following

AMbmazy,n+1)=2-3™ — [3m L4 o(m — 1)3m 2

+ (m—2)3m3+2< >3m 4

- m—4 Zlnt 5 11
- (Zm) 3m—5+2< 222> ] (13)
+ (Z Zig) 3™ T 42 (Z > Zzg) 3m8]

igil i3:1 11 114

where m = ”;1.

From this discussion, we state the following theorem.

Theorem 1. For any n, the number of BSD representations generated by Algo-
rithm /4 is, in the worst case, O(3L21).

4.3 Effect of Increasing n on the Number
of BSD Representations of an Integer k

In an attempt to improve DPA countermeasure, one may increase the length of
the binary representation of the integer k. Below we show how the number of
BSD representations of k increases if we lengthen its binary representation by
adding Os at the most significant end.

If we compare Fig. 1 with Fig. 2, we see that for the same integer k = 21,
increasing n from 5 to 6 had the effect of increasing the number of branches
emerging from the root by one. The added branch has the same tree structure
as the leftmost branch a in Fig. 1. This is because the number of BSD repre-
sentations of the first group — recall how the integer is subdivided into groups —
has increased by one. Since all representations of a group, except for the original
binary representation, end with a 1, the added representation would generate
two alternatives when ¢ = 0 for the next group. If we increase n to 7, another
subtree like the one having as root a will be added to the tree. The same subtree
is repeated with every 0 prepended to the binary representation of k. It is easy
to verify that this is true for any integer k.
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As was mentioned before, the subtree having as root the node a is the tree
explored for k =5 and n = 4. In general, the subtree that is repeated is the one
formed for the integer with the binary representation having the same groups
as k except for the leftmost group. That is

Ak) = Mk, n4+1) — Ak, n) = Ak — 2U°%2*] |log, k| 4+ 1) (14)

where A(k) is the number of leaves in the repeated subtree.
We notice that A(k) does not depend on n and hence, based on (14), we have
the following theorem.

Theorem 2. The number of BSD representations of an integer increases lin-
early with the number of bits in which it is represented in its binary form.

5 Conclusion

In this paper, we have presented a number of cryptographically important issues
related to the binary-signed digit (BSD) representation of integers, such as the
average number of BSD representations of an integer k in the range [0,2" — 1],
the integer in this range that has maximum number of BSD representations. Our
results provide a mechanism for choosing integers (i.e. cryptographic keys) with
larger space of BSD representations and hence, with better resistance to DPA
attacks. We have presented an algorithm that calculates for any integer k repre-
sented in n bits the exact number of BSD representations with the same length
in O(n). We have also presented an algorithm that generates a random BSD rep-
resentation of an integer by scanning its bits starting from the most significant
end which can be used where the EC scalar multiplication is to be performed
from left to right to reduce computational cost using a mixed coordinate system.
This algorithm runs in O(n). In addition, we presented an algorithm that can
generate all BSD representations of an integer, which runs in O(3L2)) in the
worst case, i.e. in the case of the integer with maximum number of BSD repre-
sentations in the range [0,2" — 1]. We have also proved that the number of BSD
representations of an integer increases linearly with the number of bits in which
it is represented.
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