
J.X. Yu, X. Lin, H. Lu, and Y. Zhang (Eds.): APWeb 2004, LNCS 3007, pp. 234–245, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Graphical Representation of XML Schema

Flora Dilys Salim1, Rosanne Price2, Maria Indrawan1, and Shonali Krishnaswamy1

1School of Computer Science and Software Engineering
 2School of Business Systems

Monash University, Victoria, Australia
floradilys@yahoo.com.au,

[Maria.Indrawan|Shonali.Krishnaswamy|Rosanne.Price]@infotech.
monash.edu.au

Abstract. XML is becoming the de-facto standard for exchanging information
in distributed applications and services. This has resulted in the development of
a large number of XML documents with their associated schemas, such as DTD
and XML Schema. A major challenge in using XML Schema is the difficulty in
reading and understanding even a relatively small XML Schema because of its
textual nature and its XML syntax. In this paper, we present transformations
from textual XML Schema to graphical UML to facilitate understanding of
XML Schema. Our transformation approach is unique in that we focus on all
thirteen building blocks of XML Schema and is based on existing UML
notation without introducing new stereotypes that would require additional user
training. Keywords: XML Schema, UML, transformation, graphical modelling,
conceptual, reverse engineering.

1 Introduction

The number and size of XML documents developed based on XML Schema has
grown rapidly in the last few years. Maintenance of these XML Schema documents is
necessary. Maintenance requires understanding and, given that XML Schema is
textual and is described using XML syntax, this becomes tedious. In general, the
larger the XML Schema document, the more difficult it is to understand and maintain
[Bird00]. Graphical and higher level conceptual languages can be used to clarify
XML Schema structure. In particular, graphical modelling languages are a more
effective means of detailing and communicating data requirements [Bird00]. As a
result, research in the area of graphical and higher-level modelling of XML Schema is
becoming increasingly relevant.

Existing work in the area of reverse engineering XML schemas have some
limitations, such as:
• they deal with the transformation of XML Schema predecessors (such as SOX,

DTD), as in [Booch99b, Mello01],
• they do not use UML (the de-facto standard in Object-Oriented conceptual

modelling) as the higher-level model, as in [Mani01, Mello01, Widj02],

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 72 dpi
 Downsampling für Bilder über: 108 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 72 dpi
 Downsampling für Bilder über: 108 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 3000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Nein
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts false
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 72
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 300
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 72
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Graphical Representation of XML Schema 235

• the transformation rules are not comprehensive or are missing completely, as in
[Booch99b, Mani01, Rout02b, Widj02],

• the resulting diagrams are not simple and require special training as new UML
constructs are created to represent XML constructs, as in [Booch99b, Rout02b],

• they depend on user defined rules and so are not automatic (i.e. existing
automation tools), as in [Ratio00, Sun].

The most closely related work, involving XML Schema as a source of
transformation and UML as a result of transformation is [Rout02b]. The
transformation work is oriented towards reverse engineering; therefore, a new UML
construct is created to represent each XML Schema construct. The method used relies
on a one-to-one transformation of XML Schema to UML constructs, which has the
advantage that most of the information in the original XML Schema document is
preserved. However, the disadvantage of this method is that it employs an extensive
collection of new constructs that must be learned and complicate the resulting UML
diagram. In addition, this research does not cover transformation of all thirteen XML
Schema building blocks.

The research presented in this paper aims to: (1) assist understanding and
documentation of XML Schema by converting them to graphical form, i.e. UML, and
(2) to adopt a transformation approach that does not require additional training
beyond standard UML.

In terms of the research goals of the transformation work described here, having
clarity in the resulting UML diagram takes precedence over complete reverse
engineering (allowing generation of the original XML Schema document from the
UML diagram). Reverse engineering an XML Schema requires that everything in the
schema, including less important details and processing instructions, be transformed
to UML constructs and captured within the resulting diagram. Including less
important syntactic details of XML Schema complicates the resulting UML diagrams.
On the other hand, total reverse engineering is only needed when the XML Schema is
not preserved, which is not the case considered here. The XML Schema is still
maintained because XML instance documents need to refer to an XML Schema
document to be validated. Therefore, in this paper, maintaining clarity is our focus,
rather than preserving completeness in the UML diagram resulting from the
transformation process.

Using existing constructs instead of creating new constructs or datatypes have
several advantages. Firstly, it simplifies the resultant UML diagram. Secondly, the
transformation result can be understood by anyone who knows UML. There is no
need to learn special symbols or additional stereotypes. This contrasts with the
transformation approach of Routledge et al. [Rout02b]. As existing UML constructs
are used to represent the semantics of each given XML Schema construct in our
transformation approach, this implies the use of a pattern-based approach as described
in [Price00]. In resolving which UML modeling constructs should be used to
represent a set of given XML Schema constructs, several alternative UML patterns
(UML diagram fragments) are provided with guidelines as to the context in which
each alternative should be used. Existing UML constructs are used to specify a UML
pattern [Price00], as illustrated in the transformation examples in Section 3. These

236 F.D. Salim et al.

examples illustrate representative constructs of XML Schema that are commonly
found in a XML Schema document. In this paper, the use of C++ to describe
individual constructs is for illustrative purposes. In fact, any commonly understood
language, whether programming, natural, or logic-based could be used instead, as
specified by [Rumb99]. As stated previously, this approach has the advantage over
stereotypes of being immediately understandable and thus not requiring training.
Furthermore, the readers of UML are not distracted by an array of special symbols.

This paper is structured as follows. Section 2 presents the overview of
transformation rules. Section 3 demonstrates the application of the transformation
rules for the primary components of XML. Section 4 concludes the paper and
discusses future work.

2 Overview of the Transformation Rules

The XML Schema constructs transformed comprise the thirteen XML building blocks
defined in the XML Schema Recommendation [W3C].

In UML, a construct should not be anonymous; however, in XML Schema, it is
possible to find anonymous constructs. In such cases, artificial names need to be used
for naming UML constructs that are transformed from anonymous XML Schema
constructs. For consistency, in generating artificial names, a set of rules should be
followed. The naming rules employed in this paper follow the rules described in
[Sal03].

Table 1 summarizes the rules of transforming XML Schema constructs to UML.
Refer to [Sal03] for full details and examples of transformation of each XML Schema
construct. The working definition of each XML Schema construct in this research is
based on [Duck01, W3C], whereas the definition of each UML construct is based on
[Booch99a, Rumb99b].

Table 1. Summary of Transformation Rules of XML Schema Constructs

XML Schema Constructs UML Constructs
Namespace Package

Global element Class and {root} property (if
necessary)

Local element Attribute
Occurrence constraints

(minOccurs, maxOccurs)
Multiplicity of attribute

fixed constraint {frozen} constraint
default constraint {changeable} constraint

Element
declaration

Nillable Individual constraint {can be
NULL}

Global attribute Class
Local attribute Attribute
fixed constraint {frozen} constraint
default constraint {changeable} constraint
optional constraint Multiplicity [0..1]

Attribute
declaration

required constraint Multiplicity [1..1]

Graphical Representation of XML Schema 237

Global simple type Class
and <<type>> stereotype (if
necessary)

Local simple type Attribute
Attribute

Child
constructs

Individual constraints of the
attribute

Base type Type of the attribute

restriction

enumeration C++ enum datatype
list datatype C++ list datatype

Simple type
definition

union datatype C++ union datatype
sequence compositor C++ struct datatype, or

{ordered} running constraint in
attribute compartment

choice compositor C++ union datatype
all compositor Transform each child element

using the rules for element
transformation.

Simple content Follows simple type
transformation rules. Additional XML
Schema attributes will be transformed
to UML attributes.

Empty content Follows the rules for transforming
elements of complex type.

Mixed content A class with optional artificial
string attributes and either a running
constraint or a UML note specifying
the UML class must contain text or
string

Derived by extension Subclass with generalization
relationship to the class that
represents the base type of the XML
Schema derived type

Complex
type
definition

Derived by restriction A new class
Substitution group C++ union, or classes associated

with {xor} constraint
Model group Not transformed. Text substitution

rule is used if necessary.
Attribute group Not transformed. Text substitution

rule is used if necessary.
Qualifier on an association

between the qualified class and the
target class

key element Qualified class

Identity
constraint
definition

keyref element Target class
Notation declaration Note
Ancillary XML Schema construct Note

238 F.D. Salim et al.

3 Discussion

This section illustrates the application of the transformation rules to selected XML
Schema constructs. The constructs include simple type and complex type. We start
the discussion by examining the transformation rule for simple type definition.

3.1 Simple Type

A simple type definition is a named set of constraints applicable to a single attribute
or a single element having no child elements or attributes [Duck01, W3C]. Simple
types may be defined locally within an element or globally as a direct child of a
schema construct.

 The general rules to be followed in transforming simple type definitions are as
follows:

• A simple type definition that is defined globally as a direct child of schema
construct is transformed to a UML class having an artificial attribute.

• A local simple type definition is transformed to a UML attribute.

• The datatype of the resulting UML attribute is either the restriction base type or an
appropriate C++ datatype (i.e. depending on the specific constructs used in the
simple types).

• Restrictions on simple types may be transformed either to individual constraints
applied on the UML attribute or incorporated in the C++ datatype used by the
UML attribute.

As described in [Rumb99], any programming language can be used to describe
attribute datatypes in UML. C++ is used throughout this paper to describe UML
attribute datatypes because it is one of the most widely recognised and established
programming languages. Using C++ is different than using stereotypes because there
is no need to learn constructs specific to the transformation approach. Any language
can be used in UML to describe attribute types, as specified in [Rumb99]. We choose
C++ as an example.

Atomic datatypes are simple types whose values cannot be divided. Atomic
datatypes are typically used in element declarations or attribute declarations. Atomic
datatypes include built-in datatypes, which are primitive, and derived datatypes of
XML schema previously defined by W3C [Duck01, W3C]. An atomic datatype that is
used within an element declaration will be transformed to UML as follows. The XML
element declaration will be represented as an UML attribute whose type matches that
of the nested XML atomic datatype.

For example, the declaration of global element Name uses xs:string, a built-in
primitive datatype that is also an atomic datatype. The element will be transformed to
a class since it is global. An artificial attribute is created with the atomic datatype as
the type of the UML attribute (Figure 1).

Graphical Representation of XML Schema 239

<xs:element name = "Name" type = "xs:string" />

Code Listing 1. Name global element declaration

Fig. 1. Transformation of atomic datatype used by a global element

If the above element is a local declaration within a Person element, it will be
transformed to a UML attribute within the Person class (Figure 2)

<xs:element name = "Person" >
<xs:complexType>

<xs:sequence>
<xs:element name = "Name" type =
"xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>

Code Listing 2. Name local element declaration

Person

{ordered}
Name : string

Fig. 2. Transformation of atomic datatype used by a local element

In addition to existing simple types, there are user-defined atomic datatypes that can
be derived from built-in datatypes by applying restrictions. There are several
constraining features that are applicable to any suitable derived datatype, which are:
length, minLength, maxLength, whitespace, pattern, enumeration,
minExclusive, maxExclusive, minInclusive, maxInclusive,
totalDigits, fractionDigits [Duck01].

240 F.D. Salim et al.

The general transformation rule for a user-defined atomic datatype definition are to
apply an individual constraint in the resultant class and to convert the base type of the
XML Schema simple type definition to be the datatype of the UML attribute. If the
simple type definition is a global definition, it will be converted to a class with an
artificial UML attribute with an individual constraint and with type the same as the
base type of the original XML Schema simple type definition. Otherwise, if the
simple type definition is not global (i.e. converted from an XML Schema element or
attribute having local atomic-datatype definition) it will only be mapped to an
individual constraint applied to the UML attribute with type the same as the base type
of the original XML Schema simple type definition.

Next, complex type transformation is discussed. A complex type definition is a set
of element and/or attribute declarations or a content type specification that is
applicable to an element. A complex type can be named or anonymous. An
anonymous complex type is a local complex type definition that is nested within an
element declaration. A named complex type is a global complex type definition that
has a name, which then can be used by any element declaration [Duck01, W3C].

3.2 Complex Type

A complex type definition needs one or more compositors. A compositor is an XML
Schema construct that creates a set of element declarations and provides rules for all
elements declared within it. There are 3 types of compositors, which are sequence,
choice, and all [Duck01, W3C]. A sequence construct is a compositor that
constrains the elements in the instance documents to appear in the order in which they
are declared in the schema. A choice construct is a compositor whose constraint is
that only one immediate child element can appear in the instance document, unless if
the maximum occurrence is specified to be more than one. An all construct is a
compositor that allows the immediate child elements to appear in any order with
multiplicity of either 0 or 1 [W3C]. Due to paper size limitation, we illustrate only of
the three possible complex type compositors.

A choice construct is a compositor that enforces the constraint that only one
immediate child element can appear in the instance document, unless if the maximum
occurrence is specified to be more than one [Duck01]. The choice compositor is
transformed to union datatype (as in C++); likewise, every choice compositor is
transformed to an artificial UML attribute of union datatype (as in C++). Each child
element of the choice compositor is transformed to a C++ variable that is initialised
with the child element’s type as its type. All these variables are the members of the
C++ union.

For example, the contact details of a student may either be a mailing address, a
phone number, or an email address. A student may have more than one contact
details. The following is the schema (Code Listing 3) and its transformation result in
UML (Figure 3)

Graphical Representation of XML Schema 241

<xs:element name="Student">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Name" type="NameType" />
 <xs:choice>
 <xs:element name = "MailingAddress">
 <xs:complexType>
 <xs:sequence>
 <xs:element name ="Street" type =
 "xs:string" />
 <xs:element name ="Suburb" type =
 "xs:string" />
 <xs:element name ="PostCode" type =
 "PostCode_AUS" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name ="EmailAddress" type ="xs:string" />
 </xs:choice>
 <xs:element ref = "Phone" />
 <xs:element name = "DateOfBirth" type = "xs:date" />
 </xs:sequence>
 <xs:attribute name = "StudentID" type = "xs:NMTOKEN" />
 </xs:complexType>
</xs:element>

Code Listing 3. Complex type with nested compositors

Fig. 3. Transformation of complex type with nested compositors

The following is the code listing of a full XML Schema (Code Listing 4) and the
transformation result (Figure 4). The association between instances of Student and
NameType, and instances of Student and Phone, can be represented in the
diagram either by an association line between the two classes concerned, or by the use
of class-valued attributes (i.e. an attribute whose domain is a class) [Rumb99]. We
chose to use class-valued attributes for illustrative purposes

242 F.D. Salim et al.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name = "Enrollment">

<xs:complexType>
<xs:sequence>

<xs:element ref = "Student" />
<xs:element name = "CourseID" type = "xs:string" />
<xs:element name = "StudyMode" type =

"studyModeType"
 default = "FullTime" />
<xs:element name = "DateEnrolled" type = "xs:date"

/>
</xs:sequence>
<xs:attribute name = "StudentID" type = "xs:NMTOKEN" />

</xs:complexType>
<xs:keyref name = "RefEnrollmentToStudent" refer =
"StudentKey">

<xs:selector xpath = "." />
<xs:field xpath = "@StudentID" />

</xs:keyref>
</xs:element>
<xs:element name="Student">

<xs:complexType>
<xs:sequence>

<xs:element name = "Name" type = "NameType" />
<xs:choice>

<xs:element name = "MailingAddress">
<xs:complexType>

<xs:sequence>
<xs:element name =
"Street"
 type = "xs:string"
/>
<xs:element name =
"Suburb"
 type = "xs:string"
/>
<xs:element name =
"PostCode"
 type =
"PostCode_AUS" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name = "EmailAddress" type =
 "xs:string" />

</xs:choice>
<xs:element ref = "Phone" />
<xs:element name = "DateOfBirth" type = "xs:date"
/>

</xs:sequence>
<xs:attribute name = "StudentID" type = "xs:NMTOKEN" />

</xs:complexType>
<xs:key name = "StudentKey">

 <xs:selector xpath = "." />
<xs:field xpath = "@StudentID" />

</xs:key>
</xs:element>
<xs:complexType name = "NameType">

<xs:sequence>
<xs:element name = "GivenName" type = "xs:string" />

Graphical Representation of XML Schema 243

<xs:element name = "Initial" type = "xs:string"
 minOccurs = "0" />

<xs:element name = "FamilyName" type = "xs:string" />
</xs:sequence>

</xs:complexType>
<xs:element name = "Phone">

<xs:simpleType>
<xs:restriction base = "xs:integer" >

<xs:length value = "11" />
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:simpleType name = "PostCode_AUS" >

<xs:restriction base = "xs:integer" >
<xs:length value="4" />

</xs:restriction>
</xs:simpleType>
<xs:simpleType name = "studyModeType">

<xs:restriction base = "xs:string">
<xs:enumeration value = "FullTime" />
<xs:enumeration value = "PartTime" />
<xs:enumeration value = "DistanceEducation" />

 </xs:restriction>
</xs:simpleType>

</xs:schema>

Code Listing 4. The Whole XML Schema Document

Fig. 4. The Whole UML Diagram

244 F.D. Salim et al.

4 Conclusion and Future Work

A major challenge in using XML Schema is the difficulty in reading and
understanding even a relatively small XML Schema because of its textual nature and
its XML syntax. Therefore, to address this issue, we have aimed to, firstly, assist
understanding and documentation of XML Schema by converting them to graphical
form, i.e. UML, and, secondly, adopt a transformation approach that does not require
additional training beyond standard UML.

We have presented a summary of rules for transforming constructs of XML
Schema to UML patterns. The primary contributions of this research are as follows:

The transformation work includes all thirteen building blocks of the XML Schema.
The UML constructs used to form a UML pattern are predefined in UML. No new

UML constructs are created. This makes the resulting UML diagram simpler and
generally understandable (i.e. not requiring special training beyond that required for
understanding standard UML).

There are several future directions proposed following from the work in this paper.
One could be case studies or user testing to evaluate the degree of improved
understanding using the graphical UML transformation versus the original textual
XML schema. Other future work includes implementation of an automated
transformation tool based on the transformation rules proposed in this research.
Another direction would be to develop rules for mapping XML Schema datatypes to
other datatypes in one or more programming languages. For example, one could map
XML Schema datatypes to equivalent Java or C++ datatypes. We also intend to
investigate the feasibility of extending this approach to support reverse engineering.

References

[Bird00] L. Bird, A. Goodchild, and T. Halpin. “Object Role Modeling and XML-Schema”. In
19th International Conference on Conceptual Modeling (ER’2000), Salt Lake City, USA,
October 2000, Springer, pp. 309-322.

[Booch99a] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide, Addison-Wesley, Reading, M.A., 1999.

[Booch99b] G. Booch, M. Christerson, M. Fuchs, and J. Koistinen. UML for XML Schema
Mapping Specification. Rational Software and CommerceOne, 1999. Available at:
http://www.rational.com/media/uml/resources/media/uml_xmlschema33.pdf

[Duck01] J. Duckett, O. Griffin, S. Mohr, F. Norton, I. Stokes-Rees, K. Williams, K. Cagle, N.
Ozu, J. Tennison. Professional XML Schemas, Wrox Press Ltd, Birmingham, U.K., 2001.

[Mani01] M. Mani, D. Lee, and R.R. Muntz. “Semantic Data Modeling using XML Schemas”.
In Proceedings. 20th International Conference on Conceptual Modeling (ER 2001),
Yokohama, Japan, November 2001, Springer, pp. 149-163.

[Mello01] R.d.S. Mello and C.A. Heuser. “A Rule-Based Conversion of a DTD to a Conceptual
Schema”. In Proceedings. 20th International Conference on Conceptual Modeling (ER
2001), Yokohama, Japan, November 2001, Springer, pp. 133-148.

[Price00] Price, R., N. Tryfona, and C.S. Jensen. Extended Spatiotemporal UML: Motivations,
Requirements, and Constructs, Journal of Database Management, Vol. 11, Issue 4, Oct-Dec
2000, pp. 14-27.

Graphical Representation of XML Schema 245

[Ratio00] Rational Software Corporation. “Migrating from XML DTD to XML Schema using
UML”. Rational Software White Paper, 2000. Available at:
http://www.rational.com/media/whitepapers/TP189draft.pdf

[Rout02a] N. Routledge, L. Bird, and A. Goodchild. “UML and XML Schema”. In Proc.
Thirteenth Australasian Database Conference (ADC 2002), Melbourne, Australia, ACS.

[Rout02b] N. Routledge, A. Goodchild, and L. Bird. XML Schema Profile Definition. Honours
thesis extract, DSTC, Queensland, Australia, 2002. Available at:
http://titanium.dstc.edu.au/papers/xml-schema-profile.pdf

[Rumb99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual, Addison Wesley, 1999.

[Sal03] F.D. Salim. UML Representation of XML Schemas. Honours thesis, Monash University,
Australia, 2003.

[Sun] Sun Corporation. Java™ Architecture for XML Binding (JAXB). Available at:
http://java.sun.com/xml/jaxb/index.html

[W3C] W3C. XML Schema. Available at: http://www.w3.org/XML/Schema.
[Widj02] N. D. Widjaya, D. Taniar, J.W. Rahayu, and E. Pardede. “Association Relationship

Transformation of XML Schemas to Object-Relational Database”, Proceedings of
IIWAS2002, Bandung, Indonesia, 2002.

	Introduction
	2	Overview of the Transformation Rules
	3	Discussion
	3.1 Simple Type
	3.2 Complex Type

	4 Conclusion and Future Work
	References

