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Abstra
t. Experien
e suggests that fully automated s
hema mat
hing

is infeasible, espe
ially for n-to-m mat
hes involving semanti
 fun
tions.

It is therefore advisable for a mat
hing algorithm not only to do as

mu
h as possible automati
ally, but also to a

urately identify the 
riti-


al points where user input is maximally useful. Our mat
hing algorithm


ombines several existing approa
hes with a new emphasis on using the


ontext provided by the way elements are embedded in paths. A pro-

totype tested on biologi
al data (gene sequen
e, DNA, RNA, et
.) and

on bibliographi
 data shows signi�
ant performan
e improvements from

utilizing user feedba
k and 
ontext 
he
ks. In non-intera
tive mode on

the pur
hase order s
hemas used in the COMA proje
t, it 
ompares fa-

vorably, and also 
orre
tly identi�es 
riti
al points for user input.

1 Introdu
tion

Many s
ienti�
 and 
ommer
ial appli
ations use multiple distributed information

sour
es with metadata, of whi
h s
hemas are the most important, and �nding

semanti
 
orresponden
es between di�erent s
hemas is a 
riti
al step in many

su
h appli
ations, in
luding 1) data warehousing, to �nd 
orre
t data trans-

formations from the sour
e s
hemas to a single target s
hema; 2) virtual data

integration, to provide a basis for rewriting user queries over a mediated s
hema

to optimized sub-queries over the sour
e s
hemas (often 
alled query dis
overy)

[6, 7℄; 3) s
hema integration, to �nd similar stru
tures (or \integration points")

a
ross multiple s
hemas [1℄; and 4) e-business or s
ienti�
 work
ow, to identify

semanti
ally 
orre
t mappings of messages, often in XML format, between steps.

The s
hema mat
hing problem is to identity semanti
ally 
orresponding

elements in a set of s
hemas, possibly using some auxiliary information [3, 5,

15℄. This 
an be very diÆ
ult, sin
e even s
hemas for the same entities from

di�erent sour
es may have very di�erent stru
tural and naming 
onventions, and

may also use di�erent data models. Moreover, similar, or even the same, labels

may be used for s
hema elements having totally di�erent meanings, or having

subtly di�erent semanti
s, due to di�eren
es in the unit, pre
ision, resolution,

aggregation, measurement proto
ol, et
.; this is extremely 
ommon in domains

like environmental s
ien
e, e
ology, biology, and 
ommer
e.

There 
an be problems beyond naming and stru
tural di�eren
es. For ex-

ample, in bibliographi
 s
hemas, pri
e units may di�er, items may be missing

(e.g., pri
e, publi
ation date, or publisher name when the sour
e 
onsists of that



publisher's books), author names may be full or separated into �rst and last,

and some may have a di�erent s
ope, e.g., in
luding arti
les as well as books.

S
ienti�
 domains often have indire
t mat
hes; e.g., in e
ology, spe
ies density

equals spe
ies 
ount divided by area, so one s
hema 
ould have a density 
ol-

umn, while another has 
ount and area 
olumns, although both s
hemas are for

biodiversity. Hen
e a single element in one s
hema may 
orrespond to multiple

elements in another, and even multiple elements in one s
hema 
an 
orrespond

to multiple elements in another; su
h mat
hes are 
alled n:m.

Moreover n:m mat
hes may have di�erent meanings in di�erent 
ontexts. For

example, Pur
haseOrder1/OrderHeader/Conta
t from one 
ompany may re-

late to Pur
haseOrder2/BillTo/Conta
tand to Pur
haseOrder2/ShipTo/Con-

ta
t from another 
ompany, and 
onta
t information from the �rst may be

the simple union of two 
onta
ts from the se
ond. These are 1:2 mat
hes that


an be simpli�ed to two 1:1 mat
hes, ([
onta
t, billTo/
onta
t℄, sim) and

([
onta
t, shipTo/
onta
t℄, sim), and hen
e 
an be treated like other 1:1

mat
hes. On the other hand, the 
orresponden
es of full author name to 
on
ate-

nation of �rst and last names, and of spe
ies density to 
ount divided by area

involve 
onversion fun
tions, and should be represented as 1:2 
orresponden
es,

([name, first 
on
at last℄, sim), ([density, 
ount div area℄, sim) re-

spe
tively. Unfortunately, most existing s
hema mat
hing tools treat all these


ases the same way, 
onsidering [name, firstname℄ and [name, lastname℄ as


orre
t mat
hes, e.g., 
alled \global n:m mat
hes" where n = 1 and m = 2, in

COMA [3, 18℄, and other systems.

When one s
hema element is related to multiple elements in another, whether

a real multiple mat
h exists, and whether it is appropriate, 
an be very diÆ
ult

to determine, due to various forms of 
ontext dependen
y. In the pur
hase order

s
hema mat
hing problem, Conta
t in the pur
hase order header of one s
hema

may 
orrespond to both billing Conta
t and shipping Conta
t in another, al-

though the Conta
t for the pur
hase order is di�erent from the billing or shipping

Conta
t. On the other hand, mat
hing Conta
t in the pur
hase order header to

the supplier Conta
t is not desirable. Also, although Bib/Book/Author in one

s
hema is very similar to both arts/arti
le/author and arts/book/author

in another, only the Bib/Book/Author to arts/book/author 
orresponden
e

makes sense. Su
h examples strongly suggest that totally automati
 mat
hing

tool is infeasible, sin
e some 
orresponden
es are 
orre
t only under subtle 
on-

ditions that are usually infeasible to infer from just the s
hema and/or other

straightforward auxiliary information.

Existing automati
 tools mainly help dis
over simple 1:1 mat
hes, without


onsidering data semanti
s, or how the generated mapping will be used, and

thus often require signi�
ant manual e�ort to 
orre
t wrong mat
hes and add

missing mat
hes. In pra
ti
e, s
hema mat
hing is still done manually by domain

experts, usually with a graphi
al tool [11, 13℄, and is very time 
onsuming when

there are many data sour
es or when s
hemas are large and/or 
omplex.

The goal of s
hema mat
hing systems is to save manual e�ort, but the total

manual e�ort in
ludes work performed to prepare s
hema and auxiliary infor-
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mation, as well as guiding the mat
h pro
ess, and editing the results to get a


orre
t mapping. However, existing metri
s do not measure total manual e�ort.

The most 
ommon metri
s only 
ompare a

ura
y and 
ompleteness of mat
h

results. However, a system that 
an identify the 
riti
al points where input 
an

most help the mat
hing pro
ess 
ould save more manual e�ort than another sys-

tem having the same quality metri
s; a system that asks users for input where

mat
hes 
an not be automati
ally determined 
an save more manual work than

a system that generates wrong mat
hes at those pla
es, even if it provides some

guidan
e. Moreover, be
ause s
hemas themselves often evolve, as well as s
hemas

being added or deleted, a mat
hing system that in
rementally updates mappings

based on existing mappings 
an save mu
h more e�ort than a system that always

treats mat
hing as a new task.

Our approa
h is to dis
over simple 
orresponden
es using a 
ombination

of existing mat
hing te
hniques, and prompting the user to provide input at


riti
al points when no adequate mat
h 
an be determined, e.g., when there is

more than one almost equally good mat
h, or when the 
ontexts embedded in

possibly 
orresponding paths are not 
onsistent with ea
h other, or where n:m


orresponden
es and/or fun
tions may be needed. Context information provided

by the paths of s
hema elements is expli
itly used to improve simple mat
h

a

ura
y and dete
t 
riti
al points where user input may be most helpful for

n:m 
orresponden
es that may involve fun
tions. A resear
h prototype has been

tested on bibliographi
, biologi
al, and pur
hase order data, with en
ouraging

results, though it should be noted that not all the features we dis
uss have as

yet been fully implemented.

2 Related work

An extensive review of te
hniques and tools for automati
 s
hema mat
hing is

given in [15℄, whi
h 
lassi�es tools by how they use similarity of information in

s
hemas (element name, stru
ture, data type, 
onstraints), data 
ontent, and

auxiliary information (e.g., general or domain spe
i�
 
ommon terminologies),

and by whether one or several 
ombined te
hniques are used. LSD and GLUE

use ma
hine learning to evaluate data instan
es and train mat
hers, and then

predi
t element similarities by 
ombining their results [2, 4℄. Cupid 
ombines

name and stru
tural mat
hing, and predi
ts element similarity based on the

similarity of the name and data type of their 
omponents (sub-elements and

attributes in XML DTD or S
hema), whi
h 
an easily lead to in
orre
tly iden-

tifying atomi
 elements (leaves in s
hema tree) [5℄. SF [12℄ and Rondo [9℄ use

a versatile graph mat
hing algorithm, also used in our prototype, for stru
tural

mat
hing, and introdu
e more realisti
 metri
s for mat
h a

ura
y, whi
h are

also used by COMA and by us. COMA supports 
exibly 
ombining di�erent

s
hema mat
hing te
hniques, reuse of previous mat
hing results, and user input

during mat
hing; it has been 
arefully tested for real pur
hase orders s
hemas,

showing that reuse 
an help a lot [3℄. Other approa
hes [19℄ emerged after [15℄.

All these tools only �nd 1:1 mat
hes, and have great diÆ
ulty with mat
hes
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that involve 
onditions, or 
onversion fun
tions. [17℄ and [16℄ use ontologies to

dis
over some indire
t mat
hes involving 
omposition or de
omposition of mul-

tiple elements based on their ontologi
al des
riptions, e.g., sample values and

keywords, and require users to provide the ontologies. But sin
e users 
an dif-

fer greatly in their mat
h judgments, it is very likely that di�erent individuals

would provide very di�erent ontologies, resulting in variable e�e
tiveness of the

te
hnique. Moreover, ontologies are harder to write and debug than s
hemas,

and are subje
t to evolution almost as mu
h as s
hemas. [16℄ also argued that

user intera
tions are desirable for de
iding many issues in its sour
e s
hema to

target ontologi
al view mapping framework.

3 Our approa
h

The most novel aspe
ts of our approa
h are its support for n:m mat
hes that

involve semanti
 fun
tions, and its fo
us on providing maximum support to users,

rather than total automation. It enhan
es, 
ombines, and reuses algorithms for

linguisti
, stru
tural, and graph mat
hing from prior work to dis
over as many

good mat
hes automati
ally as possible, and more importantly, to dete
t where

user input may be most valuable and identify what spe
i�
 input to request from

users. Its stru
tural mat
hing 
onsiders 
losely 
onne
ted nodes, as in ARTEMIS,

COMA, Cupid, DIKE, and Rondo. It has a series of mat
hing stages using

di�erent methods, as in COMA and Cupid, and results from di�erent methods

are 
ombined by weighted summation. L linguisti
 similarity of elements is based

not just on their tag strings, but also on their path strings, as in COMA, so that

hierar
hi
al s
hema stru
ture is treated as linguisti
, and paths provide 
ontext

dependent mat
hes for shared elements, as in Cupid. We represent n:m mat
h

as pairs ([exp1, exp2℄, sim), where exp1 is an expression over n target paths

(typi
ally a single path), exp2 is a expression over m sour
e paths, sim is a value

in the range of [0, 1℄ measuring semanti
 similarity of exp1 to exp2, with 1 for

most similar and 0 for least similar. This is similar to mat
h representation in the

DDXMI system [13℄, though it is not yet integrated with the s
hema mat
hing

software. Examples are:

([bib/book/pri
e, bookstore/book/pri
e div (100)℄, 0.85)

([PO2/
onta
t, PO2/header/
onta
t/firstname 
on
at

PO2/header/
onta
t/lastname℄, 0.65)

([Sequen
es/Sequen
e/Segment, /Bsml/Definitions/Sequen
es/Sequen
e/

Feature-tables/Feature-table/Feature℄, 0.74)

The following are some te
hni
al di�eren
es from prior work:

a. S
hemas are represented in both tree and graph formats: the tree format is


onvenient for 
ontext and subtree mat
hing, while the graph format a

ommo-

dates additional s
hema information, in
luding element type (attribute, atomi
,

or 
ontext), data type, and 
onstraint.

b. Spe
i�
 user input is intera
tively requested at 
riti
al points, not just

at pre- and/or post-mat
h, and user supplied mat
hes are not modi�ed later;

this makes post-mat
h editing mu
h easier, sin
e bad guesses made without user

guidan
e propagate less.
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. Graph mat
hing gives new mat
hes based on user supplied and/or high

similarity value mat
hes from previous stages, without 
hanging these \good

mat
hes" in its �x-point 
omputation and later stages.

d. Sin
e tag meanings vary with 
ontext, and 
ontext is given by higher ele-

ments, we seek to identify 
ore 
ontexts and attributes, the most important 
on-

textualizing elements for tags within subtrees, by using heuristi
s and user input;

then threshold and 
ontext are 
he
ked for them. For example, in mat
hing two

book DTDs, the 
ontexts /arts/book and /arts/arti
le are found to be 
ore


ontexts, with title, author, publisher as their main attributes. Previous steps

found that the best mat
h with /arts/arti
le is /bookstore/book, but its sim-

ilarity value is lower than the 
ore threshold, so that mat
hes in its subtree are

not reliable, and user input is needed. Mat
hing /arts/book/publisher/name

with /bookstore/book/author/name fails be
ause they are in di�erent 
on-

texts, even though they have the same tag, and there is no better mat
h for

/arts/book/publisher/name.

e. Mat
hing two s
hema trees is divided into mat
hing their subtrees rooted at


ore 
ontext nodes. This improves manageability, and provides a general frame-

work for dis
overing and maintaining n:m mat
hes.

f. When re�ning subtree mat
hes in 
ontext 
he
king, if the roots of 2 sub-

trees are 
onsidered a \good" mat
h, then the path of an element in either of

the subtrees may be 
hanged into a shorter one starting from the 
orresponding

subtree root instead of starting from the root of the whole tree. This helps re-

du
e the impa
t of heterogeneous stru
ture on path similarity of elements in the

subtrees. For example, in mat
hing two bio-mole
ular DTDs, after �nding that

/Bsml/Definitions/Sequen
es/Sequen
e/Feature-tables/Feature-table/

Feature mat
hes /Sequen
es/Sequen
e/Segment, then for all nodes in the

subtree of Feature, the string before /Feature in its path is 
ut o�, and for

all the nodes in subtree of Segment, the string before /Segment in its path is

also 
ut o�. This should yield higher path similarity values for (Feature/id,

Segment/seg-id), (Feature/Lo
ation/Interval-lo
/startpos, Segment/

seg-start).

g. Pre-order traversal gives top-down mat
hing, whi
h is more eÆ
ient than

bottom-up, and our 
ombination of te
hniques, earlier identi�
ation of 
ore 
on-

texts, and user input, all help to improve performan
e on s
hemas that di�er at

higher levels.

Figure 1 shows our stru
ture for mat
hing a sour
e s
hema S and a tar-

get s
hema T . One or more iterations may be exe
uted, depending on whether

the mode is automati
 or intera
tive. In intera
tive mode, mat
hing strategy

sele
tion and mat
h 
andidate determination are done intera
tively, requesting

spe
i�
 user input at 
riti
al points, while in automati
 mode, everything is done

by using default strategies. Ea
h iteration has 5 steps: optional user intera
tion,

linguisti
 and data type mat
hing, stru
tural mat
hing, optional 
ontext 
he
k,

and 
ombination of mat
h results; the last four steps also have optional user

intera
tions. Mat
h pro
essing and the input prepro
essing are des
ribed in the

following subse
tions.
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Fig. 1. Diagram of mat
h pro
essing

3.1 Input Prepro
essing

The input 
onsists of target and sour
e s
hemas, and optional domain thesauri.

The S
hema Import module produ
es a tree and a graph representation of

ea
h s
hema. In the tree representation, ea
h element and attribute of a s
hema

is a node, and sub-elements are 
hild nodes. Ea
h node has its type (attribute,

leaf, or parent that is possibly a 
ontext), data type, height, 
onstraints, two

sets of mat
hes (n

j

, sim) for node n

j

in the other tree, for pre-
ontext-
he
k

and post-
ontext-
he
k respe
tively, et
.

The graph representation uses the RDF (dire
ted labeled graph) model. Ea
h

element and attribute that is a node n

i

be
omes an RDF resour
e, res

ni

. Ea
h

node type nt

i

and data type dt

i

be
ome RDF resour
es res

nti

and res

dti

respe
-

tively. Corresponding edges are 
reated for ea
h node and added to the graph,

two for its parent if it is not the root node, (res

ni

, parent height

ni

, parent

ni

) and

(parent

ni

, 
hild height

ni

, res

ni

), one for its node type, (res

ni

, nodeType, res

ntni

),

one for its data type, (res

ni

, dataType, res

dtni

), et
.

3.2 User intera
tion

Users 
an optionally provide some good mat
hes or mismat
hes, before the initial

iteration. If the target element and the sour
e element have signi�
antly di�erent

names in a spe
i�ed good mat
h, then users are asked for input to update the

domain thesauri.

3.3 Linguisti
 and data type mat
hing

In the 
urrent prototype, linguisti
 mat
hing in
ludes: (1) terminologi
al mat
h-

ing, in whi
h element name and path are normalized through domain spe
i�


thesauri 
ontaining a synonym table, an abbreviation table and a hypernym

table; and (2) synta
ti
 mat
hing, whi
h is purely based on string similarity,


omputed a

ording to the number of substrings they have in 
ommon; the im-

plementation in [9℄ is borrowed. For any pair of nodes (n

i

; n

j

) in the two trees,

both normalized name similarity value ns

i;j

and normalized path similarity value

ps

i;j

are 
omputed.

ns

i;j

= Coe� � StringMat
h(Normalize(name

ni

;name

nj

))

ps

i;j

= Coe� � StringMat
h(Normalize(path

ni

; path

nj

))

where Coe� = 0.8 if name

ni

or name

nj

happens to be hypernymi
 to the other,

otherwise Coe� = 1.0.
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dts

i;j

= Compatibility(dt

ni

, dt

nj

)

The linguisti
 and data type similarity value, ls

i;j

, is the weighted sum of name,

path and data type similarities. ls

i;j

= ns

i;j

�w

n l

+ ps

i;j

�w

p l

+ dts

i;j

�w

dt l

where w

n l;

w

p l

and w

dt l

are the weight values for name, path and data type

similarity respe
tively, at the linguisti
 and data type mat
hing steps, and w

n l

+

w

p l

+ w

dt l

= 1:0.

If there are multiple sour
e nodes with big subtrees having almost the same

linguisti
 and data type similarity to a target node that also has a big subtree

TST , and if these subtrees are also similar, based on their share of linguisti
ally

similar nodes, then this might indi
ate that the target subtree TST potentially


orresponds to multiple sour
e subtrees. Questions about whether there exist

multiple mat
h subtrees for this target subtree, whi
h of the similar ones are

good ones, and whether there are more, should be posed to users. After user input

on mat
hing subtrees, SST

i

(0 � i � k), for target subtree TST , the original

problem of mat
hing sour
e s
hema tree S and target s
hema tree T is divided

into k+1 smaller mat
hing problems: mat
hing T � TST with S �

P

SST

i

,

mat
hing TST with ea
h SST

i

for 0 � i � k.

3.4 Stru
tural mat
hing

The Similarity Flooding algorithm for graph mat
hing in [12℄ was extended to

stru
tural mat
hing for our prototype. Taking as input graphs G

t

; G

s

, and a

set of initial similarity values, InitMap, between the nodes of the graphs, it

iteratively propagates initial similarity values of nodes to surrounding nodes,

using the intuition that neighbors of similar nodes are similar, and �nally returns

the stru
tural similarity gs

i;j

of any node n

i

in G

t

and any node n

j

in G

s

. The

original algorithm was modi�ed to freeze input mappings from the user and/or of

high similarity from previous steps for some nodes. The initial mapping InitMap

in
ludes all user input mat
hes, and the best 
andidate with max ls

i

� th

l g

for

ea
h target node from the linguisti
 and data type mat
hing step, where th

l g

is

a similarity threshold. Thus

gs

i;j

= GraphMat
h(G

t

; G

s

, InitMap)

The quality of InitMap has a very important in
uen
e on the output of the

stru
tural mat
her; users 
an also improve quality by 
on�rming good mat
hes,

denying bad ones, and adding new ones. The following shows how this works.

The s bib.dtd and s arts.dtd in Figure 2 are simpli�ed to provide more read-

able graphs. Their representations are shown in Figure 3 (the edge label 
l1

stands for \
hild at level 1",dt for \data type"). Here the InitMap 
ontains

([bib/book/title, arts/book/title℄, 0.77) from the linguisti
 mat
hing

step, and built-in mat
hes for DTD node and data types, su
h as ([parentElem,

parentElem℄, 1.0), ([leafElem, leafElem℄, 1.0), ([attribute, attribute℄, 1.0),

([PCDATA, PCDATA℄, 1.0), ([CDATA, CDATA℄, 1.0).

Figure 4 (a) shows the pairwise 
onne
tivity graph. The positive value on

top of a mat
hing pair node is its initial similarity, and is zero if not shown. The

propagation graph in Figure 4 (b) is indu
ed from this pairwise 
onne
tivity

graph (but the added propagation edges of the 7 nodes at lower part are not

7



Fig. 2. s bib.dtd and s arts.dtd

Fig. 3. The graphs for s bib.dtd and s arts.dtd

shown, in order to redu
e the 
omplexity). For ea
h edge (sour
e, label, target),

an opposite edge is added for propagating target node's similarity to the sour
e

node. The edge label is 
hanged to a weight value that indi
ates how mu
h of

the similarity value of the sour
e node will propagate to the target node in ea
h

iteration. The weight value is determined by the number of outgoing same label

edges from the sour
e node, and whether the di�erent target nodes are treated

equally or weighted. Here we treat all targets equally, so the weight for ea
h

outgoing same label edge is 1.0 divided by the number of these edges. Several

�xpoint formulas were explored in [12℄; in the basi
 one, after ea
h iteration,

the map pair node similarity sim

n+1

=Normalize(sim

n

+ �weight � sim

sour
e

)

for ea
h in
oming edge). Propagation 
ontinues until the Eu
lidean length of

the residual ve
tor �(sim

n+1

, sim

n

) is less than threshold. We made the fol-

lowing modi�
ations: (1) \good" map pair nodes propagate their similarity to

neighbors, but neighbors don't propagate to them, whi
h means that the propa-

gation formulae are applied only to \non-good" map pair nodes; and (2) \good"

mat
hing pair nodes don't join the normalization pro
ess.

In Figure 4 (b), the �nal similarity values (sim1, sim2) are shown around

ea
h map pair node, where sim1 is from the original algorithmwithout separating

shared elements in the input graph, and sim2 is from the modi�ed algorithm that

�xes high similarity initial mappings and uses paths instead of elements to make

shared elements 
ontext dependent. The se
ond gives higher similarity values for


orre
t mat
hes and lower similarity values for most wrong mat
hes, although

it doesn't di�erentiate ([bib/book, arts/book℄, 0.88) from ([bib/book,

arts/arti
le℄, 0.88), the later 
ombination of linguisti
 and stru
tural simi-

larity makes (bib/book, arts/book)win signi�
antly. The �rst method doesn't

di�erentiate ([year, title℄, 0.42) from ([year, date℄, 0.42), sin
e they

8



have the same similarity value, and it gives too low similarity to ([bib, arts℄,

0.29); both 
ases 
ause diÆ
ulty on �ltering.

Fig. 4. (a) Pairwise 
onne
tivity graph and (b) Indu
ed propagation graph

After this graph mat
hing step, the similarity between two tree nodes is the

weighted sum of similarity values of name, path, data type and stru
ture:

s

i;j

= ns

i;j

�w

n 


+ ps

i;j

�w

p 
+

+ dts

i;j

�w

dt 


+ gs

i;j

�w

g 


(*)

where w

n 


, w

p 


, w

dt 


, and w

g 


are the weight values for 
ombining the name,

path, data type and stru
tural similarities to identify the best mat
h 
andidates

for ea
h node right before the following 
ontext 
he
k step, and w

n 


+ w

p 


+

w

dt 


+ w

g 


= 1:0.

3.5 Context 
he
k

Mat
hes are re�ned by 
he
king and re-mat
hing subtrees rooted at 
ore ele-

ments, as dis
ussed in (3d) above. After 
ore 
ontexts are identi�ed, they are

sorted in as
ending order of height from the root, for top-down mat
hing re�ne-

ment. For ea
h node n

i

, 
he
k if its best mat
hing node has maximum similarity

bigger than a relatively high similarity threshold. If not, for this important target

node, there may be no good mat
h from the 
ombined mat
hing steps, so that its

subtree mat
hes also might not be good, and user intera
tion is requested; or in

automati
 mode, some mat
hes with very low similarity within the subtree are

thrown away and 
hild nodes that are 
ore nodes are 
he
ked further. If a good

mat
h is found, re�nement of subtree mat
hes to best mat
hing node n

j

's sub-

tree starts by 
omputing initial mappings, InitMap

subtree ni;subtree nj

whi
h are

the best so far within these two subtrees (but not the best at whole trees instead)

and with similarity bigger than a threshold. Then subtree graphs G

subtree ni

and

G

subtree nj

are generated as input with InitMap

subtree ni;subtree nj

together for

GraphMat
h to 
ompute again the stru
tural similarities, gs

h;k

of nodes n

h

in

n

i

's subtree and nodes n

k

in n

j

's subtree, by

9



gs

h;k

= GraphMat
h(G

subtree ni

; G

subtree nj

, InitMap

subtree ni;subtree nj

)

More 
he
king is needed to see whether any almost equally good multiple mat
hes

with very high similarity values from the linguisti
 and data type mat
hing step

for these 
ore nodes are still 
ompeting 
andidates after 
ontext 
he
k. If they are

very di�erent, this might indi
ate that some multiple mat
hes would be missed.

User input on spe
ifying whether or not they are multiple mat
hes 
an avoid

missing multiple good mat
hes. Then the 
ore node subtree is mat
hed to the

multiple mat
hing subtrees as dis
ussed above, and a new similarity value for n

h

and n

k

is 
omputed using formula (*), but the weight values for similarities from

name, path, data type and graph mat
hers may 
hange. Then for ea
h target

node n

i

, another set of mat
hes (n

j

, sim), where n

j

is a node in the sour
e tree,

is 
omputed as the mat
hing result of the 
ontext 
he
k mat
her.

Core nodes might not group at only one or two levels in a s
hema tree, and

they might not be identi�ed pre
isely by heuristi
s. User input on spe
ifying

some or all 
ore nodes 
an help the system 
on
entrate on 
he
king important

subtree mat
hes. When it is hard for the system to de
ide good mat
hes for a


ore node, user feedba
k 
an signi�
antly improve whole subtree mat
hes, and

signi�
antly redu
e total user e�ort.

3.6 Combination of mat
h results

After performing the above mat
hing steps, ea
h target node gets a set of 
an-

didates from 
ombining the results from the four individual name, path, data

type and stru
tural mat
hers, and another set of 
andidates from the 
ontext


he
k mat
her. Sele
ting top mat
hes from one set, or from 
ombination of both

sets, depends on how they di�er from ea
h other. If the 
ontext 
he
k results

win signi�
antly with 
omparison based on the best mat
h similarity value, the


ontext 
he
k results will be sele
ted, otherwise the pre-
ontext-
he
k results are

sele
ted. If they are similar, user input is requested, or by default the top 
an-

didates from both sets are sele
ted by sorting them together non-intera
tively.

The dire
tion of mat
hing also a�e
ts the quality of mat
h results a

ord-

ing to our experiments and prior work [3℄. Users 
an 
hoose sele
ting mat
h

results from a single dire
tion or both dire
tions based on their knowledge of

the s
hemas. Both-dire
tion means mat
hing target to sour
e and also mat
hing

sour
e to target, if a 
orresponden
e (n

t

, n

s

) in the target to sour
e mapping is

sele
ted only if target node n

t

is one of top k (e.g., k = 2) almost equal 
andi-

dates for sour
e node n

s

in the sour
e to target mapping. Both-dire
tion is the

default strategy, sin
e it performs better on the average.

User input 
an also help de
ide how many best mat
h 
andidates should be

sele
ted (by default only the best one is sele
ted), the threshold for sele
ting or

throwing mat
hes with lower similarity values for ea
h target node, and what

delta value for de
iding multiple 
andidates with similar similarity values almost

equally in order to dete
t real multiple mat
hes for output, et
.

It will save signi�
ant post-mat
h manual work by asking user input here

to organize mat
hes in the right format for further appli
ations, and to identify

10



ne
essary operations if they 
ould not be automati
ally re
ognized or have not

been spe
i�ed earlier, espe
ially for n:m mat
hes. Sin
e without formal metadata,

ontologi
al information or 
ontent information, it is nearly always infeasible to

re
ognize pre
ise 
onversion fun
tions for n:m mat
hes, the e�ort on developing

a high quality user interfa
e to support dire
tly spe
ifying them 
onveniently

seems more helpful than asking users for formal metadata or domain ontologies

as hints to dis
over them. We have not yet provided a good interfa
e for delivering

user input 
onveniently, but this should be done soon.

4 Examples and results

Three appli
ation domains have been used to evaluate our approa
h: 1) three

book DTDs obtained from the web, bibliography (b), arts (a), bookstore (st), and

a mediated one (bk), have been tested in our data integration prototype system

DDXMI, using manual mat
hing [13℄; 2) three bio-mole
ular DTDs, GAME (g),

BSML (bs), BIOML (bi), whi
h have been trimmed to remove some bran
hes that

are huge but irrelevant to sequen
e en
oding, or were 
aused by unsophisti
ated

design, plus a mediated DTD (s) for gene sequen
e en
oding only; and 3) �ve

XML S
hemas for pur
hase orders, CIDX (
), Ex
el (e), Noris (n), Paragon (p),

and Apertum (ap), used by COMA [3℄. The 
hara
teristi
s of relevant s
hemas

are shown in Table 1.

Domain Bibliography Biology Pur
hase Order

S
hema b st a bk bs g bi s 
 e n p ap

#Paths 13 7 21 13 69 124 32 30 40 54 65 80 145

#Nodes 11 7 15 13 58 66 21 30 40 35 46 74 80

Max Depth 4 4 5 5 10 7 8 4 4 4 4 6 5

Table 1. Chara
teristi
s of the tested s
hemas

A partial evaluation of the quality of our mat
hing pro
ess 
an be obtained

using the same measures used in [3, 12℄, derived from the information retrieval

and data mining �elds. However, as argued earlier in the paper, a metri
 that


ounts the total user e�ort would provide a mu
h more appropriate evaluation,

sin
e our aim is to minimize this quantity, rather than to 
ompete dire
tly with

systems that are less intera
tive. The manually determined real mat
hes R for a

mat
h task are 
ompared with the mat
hes P returned by automati
 mat
hing

pro
ess. The following are 
ounted: the 
orre
tly identi�ed mat
hes T , the wrong

mat
hes F = P � T , and the missed mat
hes M = R� T . These 
orrespond to

true positives, false positives, and false negatives respe
tively. Then the following

three measures are 
omputed:

Pre
ision = T=P = T=(T + F )

Re
all = T=R

Overall = 1-(F +M)=R = (T � F )=R = Re
all � (2� 1=Pre
ision)

The �rst gives the reliability of the mapping, the se
ond gives the share of real

mat
hes found, and the third is a 
ombined measure for mapping quality, taking

a

ount of the post-mat
h e�ort needed for both removing wrong and adding

missed mat
hes.
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Fig. 5. Measure values: no 
ontext 
he
k, non-intera
tive mode, 1-dire
tion

Fig. 6. Measure values: with 
ontext 
he
k, non-intera
tive mode, 1-dire
tion

Fig. 7. Measure values: with 
ontext 
he
k, intera
tive mode, 1-dire
tion

Fig. 8. Measure values: with 
ontext 
he
k, non-intera
tive mode, 2-dire
tion

Fig. 9. Measure values: no 
ontext 
he
k, intera
tive mode, 2-dire
tion
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5 Summary and future work

The test results in Figures 5{9 show that our approa
h works well, in 
omparison

with the pur
hase order s
hema tests of COMA [3℄ and Cupid [5℄. The 
ontext


he
k step seems espe
ially helpful in 1-dire
tion mat
h, improving the overall

s
ore signi�
antly. For example, in the task of mat
hing target arts dtd with

sour
e bookstore dtd (a�st in Figure 5{6) in only one dire
tion (from the tar-

get to the sour
e, trying to mat
h target nodes as mu
h as possible), arts is

about both book and arti
le, 
ontext 
he
k help prune all mismat
hes for the

nodes under arti
le subtree. But without 
ontext 
he
k, arts/arti
le/author,

arts/arti
le/title get mat
hed to bookstore/book/author, bookstore/bo-

ok/title respe
tively, with relatively high similarity values. For simpler tasks

with few multiple-to-multiple mat
hes, in non-intera
tive mode, both-dire
tion

works as well as 
ontext 
he
k. In the above example, arts/arti
le/author is

not almost equal 
andidate as arts/book/author to bookstore/book/author

in bookstore to arts mapping, so it and the others in arti
le subtree are �l-

tered out. User intera
tions help identify n:m mat
hes with semanti
 fun
tions

where good 1:1 mat
hes 
an not be determined, and 
ertify many mat
hes with

relatively low similarity values, during mat
hing pro
ess. Some of the overall

measures are still very low be
ause the di�eren
e of pri
e units for book DTDs


an't be dete
ted without analyzing the data 
ontent or having more semanti


metadata, or be
ause ne
essary 
onditions 
an't be found, or even determined

to be needed for mat
hing, using only the available information.

Many issues remain to be studied. One is representing the generated map-

pings to fa
ilitate user editing, for 
orre
ting false mat
hes, adding missed mat
hes,

atta
hing restru
turing and semanti
 
onversion fun
tions, making sure that all

heterogeneities are resolved for the next step, query dis
overy, whi
h is extremely

important for data integration. Se
ond, semanti
 metadata 
ould make semanti


mat
hing more 
onvenient and reliable, for example, to help with �nding n:m

mat
hes; we are now studying this problem for e
ologi
al data integration and

analysis problems. A third issue is using formal ontologies to help with s
hema

mapping, assuming an ontology is atta
hed to ea
h s
hema; we are exploring on-

tology mappings and developing support te
hniques [14℄. Mat
h 
omposition and

reuse also deserve further resear
h for the above issues, and have been tou
hed

upon for the 1:1 
ase by [3, 8℄. Finally, we wish to 
ondu
t experiments with

groups of users, to validate our proposed total user e�ort metri
, and evaluate

our system in its intera
tive mode.
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