UC San Diego

Technical Reports

Title
Critical Points for Interactive Schema Matching

Permalink
https://escholarship.org/uc/item/50932011

Authors

Wang, Guilian
Goguen, Joseph
Nam, Young-Kwang

Publication Date
2004-02-02

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/50g3201r
https://escholarship.org/uc/item/50g3201r#author
https://escholarship.org
http://www.cdlib.org/

Critical Points for Interactive Schema Matching

Guilian Wang!, Joseph Goguen!, Young-Kwang Nam?, and Kai Lin®

! Department of Computer Science and Engineering, U.C. San Diego,
{guilian, goguen}@cs.ucsd.edu
2 Department of Computer Science, Yonsei University, Korea,
yknam@dragon.yonsei.ac.kr
% San Diego Supercomputer Center, U.C. San Diego, klin@sdsc.edu

Abstract. Experience suggests that fully automated schema matching
is infeasible, especially for n-to-m matches involving semantic functions.
It is therefore advisable for a matching algorithm not only to do as
much as possible automatically, but also to accurately identify the criti-
cal points where user input is maximally useful. Our matching algorithm
combines several existing approaches with a new emphasis on using the
context provided by the way elements are embedded in paths. A pro-
totype tested on biological data (gene sequence, DNA, RNA/ etc.) and
on bibliographic data shows significant performance improvements from
utilizing user feedback and context checks. In non-interactive mode on
the purchase order schemas used in the COMA project, it compares fa-
vorably, and also correctly identifies critical points for user input.

1 Introduction

Many scientific and commercial applications use multiple distributed information
sources with metadata, of which schemas are the most important, and finding
semantic correspondences between different schemas is a critical step in many
such applications, including 1) data warehousing, to find correct data trans-
formations from the source schemas to a single target schema; 2) virtual data
integration, to provide a basis for rewriting user queries over a mediated schema
to optimized sub-queries over the source schemas (often called query discovery)
[6,7]; 3) schema integration, to find similar structures (or “integration points”)
across multiple schemas [1]; and 4) e-business or scientific workflow, to identify
semantically correct mappings of messages, often in XML format, between steps.

The schema matching problem is to identity semantically corresponding
elements in a set of schemas, possibly using some auxiliary information [3,5,
15]. This can be very difficult, since even schemas for the same entities from
different sources may have very different structural and naming conventions, and
may also use different data models. Moreover, similar, or even the same, labels
may be used for schema elements having totally different meanings, or having
subtly different semantics, due to differences in the unit, precision, resolution,
aggregation, measurement protocol, etc.; this is extremely common in domains
like environmental science, ecology, biology, and commerce.

There can be problems beyond naming and structural differences. For ex-
ample, in bibliographic schemas, price units may differ, items may be missing
(e.g., price, publication date, or publisher name when the source consists of that



publisher’s books), author names may be full or separated into first and last,
and some may have a different scope, e.g., including articles as well as books.
Scientific domains often have indirect matches; e.g., in ecology, species density
equals species count divided by area, so one schema could have a density col-
umn, while another has count and area columns, although both schemas are for
biodiversity. Hence a single element in one schema may correspond to multiple
elements in another, and even multiple elements in one schema can correspond
to multiple elements in another; such matches are called n:m.

Moreover n:m matches may have different meanings in different contexts. For
example, PurchaseOrderl/0rderHeader/Contact from one company may re-
late to PurchaseOrder2/BillTo/Contact and to PurchaseOrder2/ShipTo/Con-
tact from another company, and contact information from the first may be
the simple union of two contacts from the second. These are 1:2 matches that
can be simplified to two 1:1 matches, ([contact, billTo/contact], sim) and
(Lcontact, shipTo/contact], sim), and hence can be treated like other 1:1
matches. On the other hand, the correspondences of full author name to concate-
nation of first and last names, and of species density to count divided by area
involve conversion functions, and should be represented as 1:2 correspondences,
([name, first concat last], sim), ([density, count div areal, sim) re-
spectively. Unfortunately, most existing schema matching tools treat all these
cases the same way, considering [name, firstname] and [name, lastname] as
correct matches, e.g., called “global n:m matches” where n = 1 and m = 2, in
COMA [3,18], and other systems.

When one schema element is related to multiple elements in another, whether
a real multiple match exists, and whether it is appropriate, can be very difficult
to determine, due to various forms of context dependency. In the purchase order
schema matching problem, Contact in the purchase order header of one schema
may correspond to both billing Contact and shipping Contact in another, al-
though the Contact for the purchase order is different from the billing or shipping
Contact. On the other hand, matching Contact in the purchase order header to
the supplier Contact is not desirable. Also, although Bib/Book/Author in one
schema is very similar to both arts/article/author and arts/book/author
in another, only the Bib/Book/Author to arts/book/author correspondence
makes sense. Such examples strongly suggest that totally automatic matching
tool is infeasible, since some correspondences are correct only under subtle con-
ditions that are usually infeasible to infer from just the schema and/or other
straightforward auxiliary information.

Existing automatic tools mainly help discover simple 1:1 matches, without
considering data semantics, or how the generated mapping will be used, and
thus often require significant manual effort to correct wrong matches and add
missing matches. In practice, schema matching is still done manually by domain
experts, usually with a graphical tool [11,13], and is very time consuming when
there are many data sources or when schemas are large and/or complex.

The goal of schema matching systems is to save manual effort, but the total
manual effort includes work performed to prepare schema and auxiliary infor-



mation, as well as guiding the match process, and editing the results to get a
correct mapping. However, existing metrics do not measure total manual effort.
The most common metrics only compare accuracy and completeness of match
results. However, a system that can identify the critical points where input can
most help the matching process could save more manual effort than another sys-
tem having the same quality metrics; a system that asks users for input where
matches can not be automatically determined can save more manual work than
a system that generates wrong matches at those places, even if it provides some
guidance. Moreover, because schemas themselves often evolve, as well as schemas
being added or deleted, a matching system that incrementally updates mappings
based on existing mappings can save much more effort than a system that always
treats matching as a new task.

Our approach is to discover simple correspondences using a combination
of existing matching techniques, and prompting the user to provide input at
critical points when no adequate match can be determined, e.g., when there is
more than one almost equally good match, or when the contexts embedded in
possibly corresponding paths are not consistent with each other, or where n:m
correspondences and/or functions may be needed. Context information provided
by the paths of schema elements is explicitly used to improve simple match
accuracy and detect critical points where user input may be most helpful for
n:m correspondences that may involve functions. A research prototype has been
tested on bibliographic, biological, and purchase order data, with encouraging
results, though it should be noted that not all the features we discuss have as
yet been fully implemented.

2 Related work

An extensive review of techniques and tools for automatic schema matching is
given in [15], which classifies tools by how they use similarity of information in
schemas (element name, structure, data type, constraints), data content, and
auxiliary information (e.g., general or domain specific common terminologies),
and by whether one or several combined techniques are used. LSD and GLUE
use machine learning to evaluate data instances and train matchers, and then
predict element similarities by combining their results [2,4]. Cupid combines
name and structural matching, and predicts element similarity based on the
similarity of the name and data type of their components (sub-elements and
attributes in XML DTD or Schema), which can easily lead to incorrectly iden-
tifying atomic elements (leaves in schema tree) [5]. SF [12] and Rondo [9] use
a versatile graph matching algorithm, also used in our prototype, for structural
matching, and introduce more realistic metrics for match accuracy, which are
also used by COMA and by us. COMA supports flexibly combining different
schema matching techniques, reuse of previous matching results, and user input
during matching; it has been carefully tested for real purchase orders schemas,
showing that reuse can help a lot [3]. Other approaches [19] emerged after [15].
All these tools only find 1:1 matches, and have great difficulty with matches



that involve conditions, or conversion functions. [17] and [16] use ontologies to
discover some indirect matches involving composition or decomposition of mul-
tiple elements based on their ontological descriptions, e.g., sample values and
keywords, and require users to provide the ontologies. But since users can dif-
fer greatly in their match judgments, it is very likely that different individuals
would provide very different ontologies, resulting in variable effectiveness of the
technique. Moreover, ontologies are harder to write and debug than schemas,
and are subject to evolution almost as much as schemas. [16] also argued that
user interactions are desirable for deciding many issues in its source schema to
target ontological view mapping framework.

3 Our approach

The most novel aspects of our approach are its support for n:m matches that
involve semantic functions, and its focus on providing maximum support to users,
rather than total automation. It enhances, combines, and reuses algorithms for
linguistic, structural, and graph matching from prior work to discover as many
good matches automatically as possible, and more importantly, to detect where
user input may be most valuable and identify what specific input to request from
users. Its structural matching considers closely connected nodes, as in ARTEMIS,
COMA, Cupid, DIKE, and Rondo. It has a series of matching stages using
different methods, as in COMA and Cupid, and results from different methods
are combined by weighted summation. L linguistic similarity of elements is based
not just on their tag strings, but also on their path strings, as in COMA, so that
hierarchical schema structure is treated as linguistic, and paths provide context
dependent matches for shared elements, as in Cupid. We represent n:m match
as pairs ([expl, exp2], sim), where expl is an expression over n target paths
(typically a single path), exp2 is a expression over m source paths, sim is a value
in the range of [0, 1] measuring semantic similarity of exp1 to exp2, with 1 for
most similar and 0 for least similar. This is similar to match representation in the
DDXMI system [13], though it is not yet integrated with the schema matching
software. Examples are:

([bib/book/price, bookstore/book/price div (100)], 0.85)

([P02/contact, P02/header/contact/firstname concat
P02/header/contact/lastname], 0.65)

([Sequences/Sequence/Segment, /Bsml/Definitions/Sequences/Sequence/
Feature-tables/Feature-table/Feature], 0.74)

The following are some technical differences from prior work:

a. Schemas are represented in both tree and graph formats: the tree format is
convenient for context and subtree matching, while the graph format accommo-
dates additional schema information, including element type (attribute, atomic,
or context), data type, and constraint.

b. Specific user input is interactively requested at critical points, not just
at pre- and/or post-match, and user supplied matches are not modified later;
this makes post-match editing much easier, since bad guesses made without user
guidance propagate less.



c. Graph matching gives new matches based on user supplied and/or high
similarity value matches from previous stages, without changing these “good
matches” in its fix-point computation and later stages.

d. Since tag meanings vary with context, and context is given by higher ele-
ments, we seek to identify core contexts and attributes, the most important con-
textualizing elements for tags within subtrees, by using heuristics and user input;
then threshold and context are checked for them. For example, in matching two
book DTDs, the contexts /arts/book and /arts/article are found to be core
contexts, with title, author, publisher as their main attributes. Previous steps
found that the best match with /arts/articleis /bookstore/book, but its sim-
ilarity value is lower than the core threshold, so that matches in its subtree are
not reliable, and user input is needed. Matching /arts/book/publisher/name
with /bookstore/book/author/name fails because they are in different con-
texts, even though they have the same tag, and there is no better match for
/arts/book/publisher/name.

e. Matching two schema trees is divided into matching their subtrees rooted at
core context nodes. This improves manageability, and provides a general frame-
work for discovering and maintaining n:m matches.

f. When refining subtree matches in context checking, if the roots of 2 sub-
trees are considered a “good” match, then the path of an element in either of
the subtrees may be changed into a shorter one starting from the corresponding
subtree root instead of starting from the root of the whole tree. This helps re-
duce the impact of heterogeneous structure on path similarity of elements in the
subtrees. For example, in matching two bio-molecular DTDs, after finding that
/Bsml/Definitions/Sequences/Sequence/Feature-tables/Feature-table/
Feature matches /Sequences/Sequence/Segment, then for all nodes in the
subtree of Feature, the string before /Feature in its path is cut off, and for
all the nodes in subtree of Segment, the string before /Segment in its path is
also cut off. This should yield higher path similarity values for (Feature/id,
Segment/seg-id), (Feature/Location/Interval-loc/startpos, Segment/
seg-start).

g. Pre-order traversal gives top-down matching, which is more efficient than
bottom-up, and our combination of techniques, earlier identification of core con-
texts, and user input, all help to improve performance on schemas that differ at
higher levels.

Figure 1 shows our structure for matching a source schema S and a tar-
get schema T'. One or more iterations may be executed, depending on whether
the mode is automatic or interactive. In interactive mode, matching strategy
selection and match candidate determination are done interactively, requesting
specific user input at critical points, while in automatic mode, everything is done
by using default strategies. Each iteration has 5 steps: optional user interaction,
linguistic and data type matching, structural matching, optional context check,
and combination of match results; the last four steps also have optional user
interactions. Match processing and the input preprocessing are described in the
following subsections.



Input User

STT— > Interaction -3
Achema Import
.f } 0 r
S—- ; Y Output
i Thesaailmport | Linguistic and Structural | Context Combination of

i >
et | Type Matchitis | Blatchitys ! Check | blstch Results Mapping

Fig. 1. Diagram of match processing

3.1 Input Preprocessing

The input consists of target and source schemas, and optional domain thesauri.
The Schema Import module produces a tree and a graph representation of
each schema. In the tree representation, each element and attribute of a schema
is a node, and sub-elements are child nodes. Each node has its type (attribute,
leaf, or parent that is possibly a context), data type, height, constraints, two
sets of matches (n;, sim) for node n; in the other tree, for pre-context-check
and post-context-check respectively, etc.

The graph representation uses the RDF (directed labeled graph) model. Each
element and attribute that is a node n; becomes an RDF resource, res,;. Each
node type nt; and data type dt; become RDF resources resy,;; and resg; respec-
tively. Corresponding edges are created for each node and added to the graph,
two for its parent if it is not the root node, (res,;, parent_height,;, parent,;) and
(parent,;, child_height,;, res,;), one for its node type, (res,;, node Type, res,tn;),
one for its data type, (res,;, dataType, resqini), etc.

3.2 User interaction

Users can optionally provide some good matches or mismatches, before the initial
iteration. If the target element and the source element have significantly different
names in a specified good match, then users are asked for input to update the
domain thesauri.

3.3 Linguistic and data type matching

In the current prototype, linguistic matching includes: (1) terminological match-
ing, in which element name and path are normalized through domain specific
thesauri containing a synonym table, an abbreviation table and a hypernym
table; and (2) syntactic matching, which is purely based on string similarity,
computed according to the number of substrings they have in common; the im-
plementation in [9] is borrowed. For any pair of nodes (n;,n;) in the two trees,
both normalized name similarity value ns; ; and normalized path similarity value
ps;,; are computed.

ns;,j = Coeff x StringMatch(Normalize(name,;, name,;))

psi,j = Coeff x StringMatch(Normalize(path,,;, path,,;))
where Coeff = 0.8 if name,; or name,; happens to be hypernymic to the other,
otherwise Coeff = 1.0.



dts; ; = Compatibility(dt,;, dtn;)
The linguistic and data type similarity value, Is; j, is the weighted sum of name,
path and data type similarities. Is; j= ns; j X Wp_+ PSij X Wpy + dts; j X Wgr_y
where w,_j w,_; and wg;_; are the weight values for name, path and data type
similarity respectively, at the linguistic and data type matching steps, and w,,_;+
wp_1 + wgey = 1.0.

If there are multiple source nodes with big subtrees having almost the same
linguistic and data type similarity to a target node that also has a big subtree
T ST, and if these subtrees are also similar, based on their share of linguistically
similar nodes, then this might indicate that the target subtree T'ST potentially
corresponds to multiple source subtrees. Questions about whether there exist
multiple match subtrees for this target subtree, which of the similar ones are
good ones, and whether there are more, should be posed to users. After user input
on matching subtrees, SST; (0 < i < k), for target subtree T'ST', the original
problem of matching source schema tree S and target schema tree 1" is divided
into k+1 smaller matching problems: matching T' — T'ST with S — Y SST;,
matching T'ST with each SST; for 0 < < k.

3.4 Structural matching

The Similarity Flooding algorithm for graph matching in [12] was extended to
structural matching for our prototype. Taking as input graphs G, G, and a
set of initial similarity values, InitMap, between the nodes of the graphs, it
iteratively propagates initial similarity values of nodes to surrounding nodes,
using the intuition that neighbors of similar nodes are similar, and finally returns
the structural similarity gs; ; of any node n; in Gy and any node n; in G. The
original algorithm was modified to freeze input mappings from the user and/or of
high similarity from previous steps for some nodes. The initial mapping InitMap
includes all user input matches, and the best candidate with maz_ls; < thy_, for
each target node from the linguistic and data type matching step, where th;_g is
a similarity threshold. Thus

gsi,j = GraphMatch(Gy, G, InitMap)
The quality of InitMap has a very important influence on the output of the
structural matcher; users can also improve quality by confirming good matches,
denying bad ones, and adding new ones. The following shows how this works.
The s_bib.dtd and s_arts.dtd in Figure 2 are simplified to provide more read-
able graphs. Their representations are shown in Figure 3 (the edge label cl1
stands for “child at level 17 dt for “data type”). Here the InitMap contains
([bib/book/title, arts/book/title], 0.77) from the linguistic matching
step, and built-in matches for DTD node and data types, such as ([parentElem,
parentElem|,1.0), ([leafElem, leafElem|, 1.0), ([attribute, attribute],1.0),
([PCDATA, PCDATA], 1.0), ([CDATA, CDATA], 1.0).

Figure 4 (a) shows the pairwise connectivity graph. The positive value on
top of a matching pair node is its initial similarity, and is zero if not shown. The
propagation graph in Figure 4 (b) is induced from this pairwise connectivity
graph (but the added propagation edges of the 7 nodes at lower part are not



. <IELEMENT arts (book| article) >
; </ELEMENT bib (book®)> | <IELEMENT book (title)>

. <IELEMENT book (title)> | <IATTLIST book date CDATA #REQUIRED »
. “IATTLIST book year CDATA #REQUIRED> | | <IELEMENT title CDATA>

<|ELEMENT title CDATA> <IELEMENT article (title)=
i «IATTLIRT article date CDATA #REQUIRED >

Fig. 2. s_bib.dtd and s_arts.dtd

Fig. 3. The graphs for s_bib.dtd and s_arts.dtd

shown, in order to reduce the complexity). For each edge (source, label, target),
an opposite edge is added for propagating target node’s similarity to the source
node. The edge label is changed to a weight value that indicates how much of
the similarity value of the source node will propagate to the target node in each
iteration. The weight value is determined by the number of outgoing same label
edges from the source node, and whether the different target nodes are treated
equally or weighted. Here we treat all targets equally, so the weight for each
outgoing same label edge is 1.0 divided by the number of these edges. Several
fixpoint formulas were explored in [12]; in the basic one, after each iteration,
the map pair node similarity sim™! =Normalize(sim™ + Xweight X $iMgource)
for each incoming edge). Propagation continues until the Euclidean length of
the residual vector A(sim™t!, sim™) is less than threshold. We made the fol-
lowing modifications: (1) “good” map pair nodes propagate their similarity to
neighbors, but neighbors don’t propagate to them, which means that the propa-
gation formulae are applied only to “non-good” map pair nodes; and (2) “good”
matching pair nodes don’t join the normalization process.

In Figure 4 (b), the final similarity values (sim1, sim2) are shown around
each map pair node, where sim1 is from the original algorithm without separating
shared elements in the input graph, and sim2is from the modified algorithm that
fixes high similarity initial mappings and uses paths instead of elements to make
shared elements context dependent. The second gives higher similarity values for
correct matches and lower similarity values for most wrong matches, although
it doesn’t differentiate ([bib/book, arts/book], 0.88) from ([bib/book,
arts/article], 0.88), the later combination of linguistic and structural simi-
larity makes (bib/book, arts/book) win significantly. The first method doesn’t
differentiate ([year, title], 0.42) from ([year, date], 0.42), since they



have the same similarity value, and it gives too low similarity to ([bib, arts],
0.29); both cases cause difficulty on filtering.

hb (0.29, 0.60)

(.54, 033)
L 0.22)

(0.42, 0.34)

025 (0.42,0.0)

hibhook/title,
aris/article/daie

cl2
hih/hookiyear,
aris/article/title
(043, 0.0)

' Lo
hlbflwok.fhtle
d > 1o \_arisiarticle/tidle
blhfhnnkfyear,
hib/hook/year, hib/bookivear, arls."artwle.-’dam
aris/hook/date aris/article/date
o 2 042, 1.0) (0.42, 0.0)

Fig. 4. (a) Pairwise connectivity graph and (b) Induced propagation graph

bih/hool year,
arts/hoolktitle

After this graph matching step, the similarity between two tree nodes is the
weighted sum of similarity values of name, path, data type and structure:
8ij= NSij X Wn_c+ PSij X Wp_ et + ALS; j X War_c+ 9Sij X Wy c (¥)
where wy,_¢, Wp_c, Wat_c, and wy_care the weight values for combining the name,
path, data type and structural similarities to identify the best match candidates
for each node right before the following context check step, and wy,_. + wp_. +
Wat_ + wy_ = 1.0.

3.5 Context check

Matches are refined by checking and re-matching subtrees rooted at core ele-
ments, as discussed in (3d) above. After core contexts are identified, they are
sorted in ascending order of height from the root, for top-down matching refine-
ment. For each node n;, check if its best matching node has maximum similarity
bigger than a relatively high similarity threshold. If not, for this important target
node, there may be no good match from the combined matching steps, so that its
subtree matches also might not be good, and user interaction is requested; or in
automatic mode, some matches with very low similarity within the subtree are
thrown away and child nodes that are core nodes are checked further. If a good
match is found, refinement of subtree matches to best matching node n;’s sub-
tree starts by computing initial mappings, InitMapsuptree_ni,subtree_nj Which are
the best so far within these two subtrees (but not the best at whole trees instead)
and with similarity bigger than a threshold. Then subtree graphs Gsuptree_ni and
G subtree_nj are generated as input with InitMapsupiree_ni,subtree_nj together for
GraphMatch to compute again the structural similarities, gsy . of nodes ny in
n;’s subtree and nodes ny, in n;’s subtree, by



9Sh,k — GraphMatCh(Gsubtree_ni: Gsubtree_nj: InitMapsubtree_ni,subtree_nj)
More checking is needed to see whether any almost equally good multiple matches
with very high similarity values from the linguistic and data type matching step
for these core nodes are still competing candidates after context check. If they are
very different, this might indicate that some multiple matches would be missed.
User input on specifying whether or not they are multiple matches can avoid
missing multiple good matches. Then the core node subtree is matched to the
multiple matching subtrees as discussed above, and a new similarity value for ny,
and ny, is computed using formula (*), but the weight values for similarities from
name, path, data type and graph matchers may change. Then for each target
node n;, another set of matches (n;, sim), where n; is a node in the source tree,
is computed as the matching result of the context check matcher.

Core nodes might not group at only one or two levels in a schema tree, and
they might not be identified precisely by heuristics. User input on specifying
some or all core nodes can help the system concentrate on checking important
subtree matches. When it is hard for the system to decide good matches for a
core node, user feedback can significantly improve whole subtree matches, and
significantly reduce total user effort.

3.6 Combination of match results

After performing the above matching steps, each target node gets a set of can-
didates from combining the results from the four individual name, path, data
type and structural matchers, and another set of candidates from the context
check matcher. Selecting top matches from one set, or from combination of both
sets, depends on how they differ from each other. If the context check results
win significantly with comparison based on the best match similarity value, the
context check results will be selected, otherwise the pre-context-check results are
selected. If they are similar, user input is requested, or by default the top can-
didates from both sets are selected by sorting them together non-interactively.

The direction of matching also affects the quality of match results accord-
ing to our experiments and prior work [3]. Users can choose selecting match
results from a single direction or both directions based on their knowledge of
the schemas. Both-direction means matching target to source and also matching
source to target, if a correspondence (n;, ns) in the target to source mapping is
selected only if target node n; is one of top k (e.g., k = 2) almost equal candi-
dates for source node ng in the source to target mapping. Both-direction is the
default strategy, since it performs better on the average.

User input can also help decide how many best match candidates should be
selected (by default only the best one is selected), the threshold for selecting or
throwing matches with lower similarity values for each target node, and what
delta value for deciding multiple candidates with similar similarity values almost
equally in order to detect real multiple matches for output, etc.

It will save significant post-match manual work by asking user input here
to organize matches in the right format for further applications, and to identify

10



necessary operations if they could not be automatically recognized or have not
been specified earlier, especially for n:m matches. Since without formal metadata,
ontological information or content information, it is nearly always infeasible to
recognize precise conversion functions for n:m matches, the effort on developing
a high quality user interface to support directly specifying them conveniently
seems more helpful than asking users for formal metadata or domain ontologies
as hints to discover them. We have not yet provided a good interface for delivering
user input conveniently, but this should be done soon.

4 Examples and results

Three application domains have been used to evaluate our approach: 1) three
book DTDs obtained from the web, bibliography (b), arts (a), bookstore (st), and
a mediated one (bk), have been tested in our data integration prototype system
DDXMI, using manual matching [13]; 2) three bio-molecular DTDs, GAME (g),
BSML (bs), BIOML (b3), which have been trimmed to remove some branches that
are huge but irrelevant to sequence encoding, or were caused by unsophisticated
design, plus a mediated DTD (s) for gene sequence encoding only; and 3) five
XML Schemas for purchase orders, CIDX (c), Excel (e), Noris (n), Paragon (p),
and Apertum (ap), used by COMA [3]. The characteristics of relevant schemas
are shown in Table 1.

Domain Bibliography Biology Purchase Order

Schema b st |a bk |bs |g be s c e n P ap

#Paths 13 |7 21 |13 |69 |124 (32 (30 |40 |54 |65 |80 |145

#Nodes 11 |7 15 |13 |58 (66 (21 |30 |40 (35 (46 |74 |80

Max Depth|4 4 5 5 10 |7 8 4 4 4 4 6 5
Table 1. Characteristics of the tested schemas

A partial evaluation of the quality of our matching process can be obtained
using the same measures used in [3,12], derived from the information retrieval
and data mining fields. However, as argued earlier in the paper, a metric that
counts the total user effort would provide a much more appropriate evaluation,
since our aim is to minimize this quantity, rather than to compete directly with
systems that are less interactive. The manually determined real matches R for a
match task are compared with the matches P returned by automatic matching
process. The following are counted: the correctly identified matches T', the wrong
matches F' = P — T, and the missed matches M = R — T. These correspond to
true positives, false positives, and false negatives respectively. Then the following
three measures are computed:

Precision =T/P =T/(T + F)

Recall=T/R

Overall = 1-(F + M)/R = (T — F)/R = Recall x (2 — 1/ Precision)

The first gives the reliability of the mapping, the second gives the share of real
matches found, and the third is a combined measure for mapping quality, taking
account of the post-match effort needed for both removing wrong and adding
missed matches.

11



c~ap e~ap n~ap  peap

c~n  e~n cYp  e~p  n~p

EEE

bi~s

F

O Cverall

W Recall

Precision

bs~s g~

b~ st~a a~

b~a

Fig. 5. Measure values: no context check, non-interactive mode, 1-direction

m Recall O Owerall

& Precision

nep ceap e~ap n~ap pap

c~n e~n  c~p  Ep

e~

bs~s g~bs hi~s

b~st st~a a—st

b~a

1-direction

Fig. 6. Measure values: with context check, non-interactive mode,

O Overall |

B Recall

B Precision

0 n~p C~ap e~ap n—-ap p-ap

C c~n e~n c~p e~

B

hs~=z g~bs hi~s

b~a b~st st~a a-st

7. Measure values: with context check, interactive mode, 1-direction

Fig.

O Owverall

m Recall

Precision

]

B

T ]

1'..
I
]
N I

T
I —— —

—mwwno
o T o Y o Y s |

e~C C~N EB~N C~p B~p NP Coap e~ap nap preap

bs~s g~bs bi~s

b~a b~st st~a a~st

Fig. 8. Measure values: with context check, non-interactive mode, 2-direction

B Recall O Owerall |

B Precision

RPN,
N —— — (—

C~n B~ C~p E~p N~p C~ap e~ap n~ap p~ap

g~C

b5~ g~bs hi~s

b~g b~st st~a a~st

Fig. 9. Measure values: no context check, interactive mode, 2-direction

12



5 Summary and future work

The test results in Figures 5-9 show that our approach works well, in comparison
with the purchase order schema tests of COMA [3] and Cupid [5]. The context
check step seems especially helpful in 1-direction match, improving the overall
score significantly. For example, in the task of matching target arts dtd with
source bookstore dtd (a~st in Figure 5-6) in only one direction (from the tar-
get to the source, trying to match target nodes as much as possible), arts is
about both book and article, context check help prune all mismatches for the
nodes under article subtree. But without context check, arts/article/author,
arts/article/title get matched to bookstore/book/author, bookstore/bo-
ok/title respectively, with relatively high similarity values. For simpler tasks
with few multiple-to-multiple matches, in non-interactive mode, both-direction
works as well as context check. In the above example, arts/article/author is
not almost equal candidate as arts/book/author to bookstore/book/author
in bookstore to arts mapping, so it and the others in article subtree are fil-
tered out. User interactions help identify n:m matches with semantic functions
where good 1:1 matches can not be determined, and certify many matches with
relatively low similarity values, during matching process. Some of the overall
measures are still very low because the difference of price units for book DTDs
can’t be detected without analyzing the data content or having more semantic
metadata, or because necessary conditions can’t be found, or even determined
to be needed for matching, using only the available information.

Many issues remain to be studied. One is representing the generated map-
pings to facilitate user editing, for correcting false matches, adding missed matches,
attaching restructuring and semantic conversion functions, making sure that all
heterogeneities are resolved for the next step, query discovery, which is extremely
important for data integration. Second, semantic metadata could make semantic
matching more convenient and reliable, for example, to help with finding n:m
matches; we are now studying this problem for ecological data integration and
analysis problems. A third issue is using formal ontologies to help with schema
mapping, assuming an ontology is attached to each schema; we are exploring on-
tology mappings and developing support techniques [14]. Match composition and
reuse also deserve further research for the above issues, and have been touched
upon for the 1:1 case by [3,8]. Finally, we wish to conduct experiments with
groups of users, to validate our proposed total user effort metric, and evaluate
our system in its interactive mode.

Acknowledgements We thank Bertram Ludéscher for many valuable discussions,
and we also thank Hong-Hai Do, Erhard Rahm and Sergey Melnik for generously
sharing their data with us. This material is based upon work supported by the
National Science Foundation under Grant No. ITR 0225676.

References
1. Bergamaschi, S., S. Castano, and M. Vincini: Semantic Integration of Semistruc-

tured and Structured Data Sources. SIGMOD Record 28(1) (1999) 54-59.

13



2. Doan. A, P. Domingos, and A. Y. Halevy: Reconciling schemas of disparate data
sources: A machine-learning approach. SIGMOD’01 (2001).

3. Do, H. and E. Rahm: Coma - A System for flexible combination of schema matching
approaches. Proc. 28th Conf. on Very Large Databases (VLDB) (2002).

4. Doan, A. Thesis. http://anhai.cs.uiuc.edu/home/thesis/anhai-thesis.pdf (2003).

5. Madhavan, J., P. A. Bernstein, E. Rahm: Generic Schema Matching with Cupid.
Proc. 27th Int. Conf. on Very Large Data Bases (VLDB) (2001).

6. Embley, D.W. et al: Multifaceted Exploitation of Metadata for attribute Match
Discovery in Information Integration. WIIW (2001).

7. Li, W., C. Clifton: SemInt: A Tool for Identifying Attribute Correspondences in
Heterogeneous Databases Using Neural network. Data and Knowledge Engineering
33:1 (2000) 49-84.

8. Madhavan, J., P. A. Bernstein, P. Domingos, & A.Y. Halevy. Representing and
Reasoning About Mappings between Domain Models. In 18th National Conference
on Artificial Intelligence (AAAI), 2002.

9. Melnik, S., E. Rahm, P. A. Bernstein: Rondo: A Programming Platform for Generic
Model Management. Proc. ACM Intl. Conference on Management of Data (SIG-
MOD) (2003) San Diego, CA.

10. Milo, T. and S. Zohar: Using Schema Matching to Simplify Heterogeneous Data
Translation. VLDB (1998) 122-133.

11. Miller, R., L. Haas, and M.A. Hernandez: Schema Mapping as Query Discovery.
VLDB (2000) 77-88.

12. Melnik, S., H. Garcia-Molina, E. Rahm: Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching. ICDE (2002).

13. Nam, Y. K, J. Goguen, and G. Wang: A Metadata Integration Assistant Genera-
tor for Heterogeneous Distributed Databases. Proc. Intl. Conference on Ontologies,
Databases, and Applications of Semantics for Large Scale Information Systems,
Springer, Lecture Notes in Computer Science, 2519 (2002) 1332-1344.

14. Noy, N. F. and M. A. Musen: PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. Proc. 17th National Conference on Artificial
Intelligence (AAAI-2000), Austin, TX. Available as SMI technical report SMI-2000-
0831 (2000).

15. Rahm, E. and Bernstein, P. A.: On Matching Schemas Automatically. Techn.
Report (2001) Dept. of Comp. Science, Univ. of Leipzig. http://dol.uni-
leipzig.de/pub/2001-5/en

16. Biskup, J. and D. W. Embley: Extracting information from heterogeneous infor-
mation sources using ontologically specified target view. Information Systems 28
(2003) 169-212.

17. Li Xu and D. Embley: Using Domain Ontologies to Discover Direct and Indirect
Matches for Schema Elements. Proc. Semantic Integration Workshop (2003) Sanibel
Island, Florida.

18. Do, H.H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations.
Proc. GI-Workshop ”Web and Databases”, Erfurt, LNCS 2593, Springer-Verlag
(2002).

19. He, B. and K. C. Chang: Statistical Schema Matching across Web Query Interfaces.
In ACM Intl. Conference on Management of Data (SIGMOD) (2003) San Diego,
CA.

14





