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Abstrat. Experiene suggests that fully automated shema mathing

is infeasible, espeially for n-to-m mathes involving semanti funtions.

It is therefore advisable for a mathing algorithm not only to do as

muh as possible automatially, but also to aurately identify the riti-

al points where user input is maximally useful. Our mathing algorithm

ombines several existing approahes with a new emphasis on using the

ontext provided by the way elements are embedded in paths. A pro-

totype tested on biologial data (gene sequene, DNA, RNA, et.) and

on bibliographi data shows signi�ant performane improvements from

utilizing user feedbak and ontext heks. In non-interative mode on

the purhase order shemas used in the COMA projet, it ompares fa-

vorably, and also orretly identi�es ritial points for user input.

1 Introdution

Many sienti� and ommerial appliations use multiple distributed information

soures with metadata, of whih shemas are the most important, and �nding

semanti orrespondenes between di�erent shemas is a ritial step in many

suh appliations, inluding 1) data warehousing, to �nd orret data trans-

formations from the soure shemas to a single target shema; 2) virtual data

integration, to provide a basis for rewriting user queries over a mediated shema

to optimized sub-queries over the soure shemas (often alled query disovery)

[6, 7℄; 3) shema integration, to �nd similar strutures (or \integration points")

aross multiple shemas [1℄; and 4) e-business or sienti� workow, to identify

semantially orret mappings of messages, often in XML format, between steps.

The shema mathing problem is to identity semantially orresponding

elements in a set of shemas, possibly using some auxiliary information [3, 5,

15℄. This an be very diÆult, sine even shemas for the same entities from

di�erent soures may have very di�erent strutural and naming onventions, and

may also use di�erent data models. Moreover, similar, or even the same, labels

may be used for shema elements having totally di�erent meanings, or having

subtly di�erent semantis, due to di�erenes in the unit, preision, resolution,

aggregation, measurement protool, et.; this is extremely ommon in domains

like environmental siene, eology, biology, and ommere.

There an be problems beyond naming and strutural di�erenes. For ex-

ample, in bibliographi shemas, prie units may di�er, items may be missing

(e.g., prie, publiation date, or publisher name when the soure onsists of that



publisher's books), author names may be full or separated into �rst and last,

and some may have a di�erent sope, e.g., inluding artiles as well as books.

Sienti� domains often have indiret mathes; e.g., in eology, speies density

equals speies ount divided by area, so one shema ould have a density ol-

umn, while another has ount and area olumns, although both shemas are for

biodiversity. Hene a single element in one shema may orrespond to multiple

elements in another, and even multiple elements in one shema an orrespond

to multiple elements in another; suh mathes are alled n:m.

Moreover n:m mathes may have di�erent meanings in di�erent ontexts. For

example, PurhaseOrder1/OrderHeader/Contat from one ompany may re-

late to PurhaseOrder2/BillTo/Contatand to PurhaseOrder2/ShipTo/Con-

tat from another ompany, and ontat information from the �rst may be

the simple union of two ontats from the seond. These are 1:2 mathes that

an be simpli�ed to two 1:1 mathes, ([ontat, billTo/ontat℄, sim) and

([ontat, shipTo/ontat℄, sim), and hene an be treated like other 1:1

mathes. On the other hand, the orrespondenes of full author name to onate-

nation of �rst and last names, and of speies density to ount divided by area

involve onversion funtions, and should be represented as 1:2 orrespondenes,

([name, first onat last℄, sim), ([density, ount div area℄, sim) re-

spetively. Unfortunately, most existing shema mathing tools treat all these

ases the same way, onsidering [name, firstname℄ and [name, lastname℄ as

orret mathes, e.g., alled \global n:m mathes" where n = 1 and m = 2, in

COMA [3, 18℄, and other systems.

When one shema element is related to multiple elements in another, whether

a real multiple math exists, and whether it is appropriate, an be very diÆult

to determine, due to various forms of ontext dependeny. In the purhase order

shema mathing problem, Contat in the purhase order header of one shema

may orrespond to both billing Contat and shipping Contat in another, al-

though the Contat for the purhase order is di�erent from the billing or shipping

Contat. On the other hand, mathing Contat in the purhase order header to

the supplier Contat is not desirable. Also, although Bib/Book/Author in one

shema is very similar to both arts/artile/author and arts/book/author

in another, only the Bib/Book/Author to arts/book/author orrespondene

makes sense. Suh examples strongly suggest that totally automati mathing

tool is infeasible, sine some orrespondenes are orret only under subtle on-

ditions that are usually infeasible to infer from just the shema and/or other

straightforward auxiliary information.

Existing automati tools mainly help disover simple 1:1 mathes, without

onsidering data semantis, or how the generated mapping will be used, and

thus often require signi�ant manual e�ort to orret wrong mathes and add

missing mathes. In pratie, shema mathing is still done manually by domain

experts, usually with a graphial tool [11, 13℄, and is very time onsuming when

there are many data soures or when shemas are large and/or omplex.

The goal of shema mathing systems is to save manual e�ort, but the total

manual e�ort inludes work performed to prepare shema and auxiliary infor-
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mation, as well as guiding the math proess, and editing the results to get a

orret mapping. However, existing metris do not measure total manual e�ort.

The most ommon metris only ompare auray and ompleteness of math

results. However, a system that an identify the ritial points where input an

most help the mathing proess ould save more manual e�ort than another sys-

tem having the same quality metris; a system that asks users for input where

mathes an not be automatially determined an save more manual work than

a system that generates wrong mathes at those plaes, even if it provides some

guidane. Moreover, beause shemas themselves often evolve, as well as shemas

being added or deleted, a mathing system that inrementally updates mappings

based on existing mappings an save muh more e�ort than a system that always

treats mathing as a new task.

Our approah is to disover simple orrespondenes using a ombination

of existing mathing tehniques, and prompting the user to provide input at

ritial points when no adequate math an be determined, e.g., when there is

more than one almost equally good math, or when the ontexts embedded in

possibly orresponding paths are not onsistent with eah other, or where n:m

orrespondenes and/or funtions may be needed. Context information provided

by the paths of shema elements is expliitly used to improve simple math

auray and detet ritial points where user input may be most helpful for

n:m orrespondenes that may involve funtions. A researh prototype has been

tested on bibliographi, biologial, and purhase order data, with enouraging

results, though it should be noted that not all the features we disuss have as

yet been fully implemented.

2 Related work

An extensive review of tehniques and tools for automati shema mathing is

given in [15℄, whih lassi�es tools by how they use similarity of information in

shemas (element name, struture, data type, onstraints), data ontent, and

auxiliary information (e.g., general or domain spei� ommon terminologies),

and by whether one or several ombined tehniques are used. LSD and GLUE

use mahine learning to evaluate data instanes and train mathers, and then

predit element similarities by ombining their results [2, 4℄. Cupid ombines

name and strutural mathing, and predits element similarity based on the

similarity of the name and data type of their omponents (sub-elements and

attributes in XML DTD or Shema), whih an easily lead to inorretly iden-

tifying atomi elements (leaves in shema tree) [5℄. SF [12℄ and Rondo [9℄ use

a versatile graph mathing algorithm, also used in our prototype, for strutural

mathing, and introdue more realisti metris for math auray, whih are

also used by COMA and by us. COMA supports exibly ombining di�erent

shema mathing tehniques, reuse of previous mathing results, and user input

during mathing; it has been arefully tested for real purhase orders shemas,

showing that reuse an help a lot [3℄. Other approahes [19℄ emerged after [15℄.

All these tools only �nd 1:1 mathes, and have great diÆulty with mathes
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that involve onditions, or onversion funtions. [17℄ and [16℄ use ontologies to

disover some indiret mathes involving omposition or deomposition of mul-

tiple elements based on their ontologial desriptions, e.g., sample values and

keywords, and require users to provide the ontologies. But sine users an dif-

fer greatly in their math judgments, it is very likely that di�erent individuals

would provide very di�erent ontologies, resulting in variable e�etiveness of the

tehnique. Moreover, ontologies are harder to write and debug than shemas,

and are subjet to evolution almost as muh as shemas. [16℄ also argued that

user interations are desirable for deiding many issues in its soure shema to

target ontologial view mapping framework.

3 Our approah

The most novel aspets of our approah are its support for n:m mathes that

involve semanti funtions, and its fous on providing maximum support to users,

rather than total automation. It enhanes, ombines, and reuses algorithms for

linguisti, strutural, and graph mathing from prior work to disover as many

good mathes automatially as possible, and more importantly, to detet where

user input may be most valuable and identify what spei� input to request from

users. Its strutural mathing onsiders losely onneted nodes, as in ARTEMIS,

COMA, Cupid, DIKE, and Rondo. It has a series of mathing stages using

di�erent methods, as in COMA and Cupid, and results from di�erent methods

are ombined by weighted summation. L linguisti similarity of elements is based

not just on their tag strings, but also on their path strings, as in COMA, so that

hierarhial shema struture is treated as linguisti, and paths provide ontext

dependent mathes for shared elements, as in Cupid. We represent n:m math

as pairs ([exp1, exp2℄, sim), where exp1 is an expression over n target paths

(typially a single path), exp2 is a expression over m soure paths, sim is a value

in the range of [0, 1℄ measuring semanti similarity of exp1 to exp2, with 1 for

most similar and 0 for least similar. This is similar to math representation in the

DDXMI system [13℄, though it is not yet integrated with the shema mathing

software. Examples are:

([bib/book/prie, bookstore/book/prie div (100)℄, 0.85)

([PO2/ontat, PO2/header/ontat/firstname onat

PO2/header/ontat/lastname℄, 0.65)

([Sequenes/Sequene/Segment, /Bsml/Definitions/Sequenes/Sequene/

Feature-tables/Feature-table/Feature℄, 0.74)

The following are some tehnial di�erenes from prior work:

a. Shemas are represented in both tree and graph formats: the tree format is

onvenient for ontext and subtree mathing, while the graph format aommo-

dates additional shema information, inluding element type (attribute, atomi,

or ontext), data type, and onstraint.

b. Spei� user input is interatively requested at ritial points, not just

at pre- and/or post-math, and user supplied mathes are not modi�ed later;

this makes post-math editing muh easier, sine bad guesses made without user

guidane propagate less.
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. Graph mathing gives new mathes based on user supplied and/or high

similarity value mathes from previous stages, without hanging these \good

mathes" in its �x-point omputation and later stages.

d. Sine tag meanings vary with ontext, and ontext is given by higher ele-

ments, we seek to identify ore ontexts and attributes, the most important on-

textualizing elements for tags within subtrees, by using heuristis and user input;

then threshold and ontext are heked for them. For example, in mathing two

book DTDs, the ontexts /arts/book and /arts/artile are found to be ore

ontexts, with title, author, publisher as their main attributes. Previous steps

found that the best math with /arts/artile is /bookstore/book, but its sim-

ilarity value is lower than the ore threshold, so that mathes in its subtree are

not reliable, and user input is needed. Mathing /arts/book/publisher/name

with /bookstore/book/author/name fails beause they are in di�erent on-

texts, even though they have the same tag, and there is no better math for

/arts/book/publisher/name.

e. Mathing two shema trees is divided into mathing their subtrees rooted at

ore ontext nodes. This improves manageability, and provides a general frame-

work for disovering and maintaining n:m mathes.

f. When re�ning subtree mathes in ontext heking, if the roots of 2 sub-

trees are onsidered a \good" math, then the path of an element in either of

the subtrees may be hanged into a shorter one starting from the orresponding

subtree root instead of starting from the root of the whole tree. This helps re-

due the impat of heterogeneous struture on path similarity of elements in the

subtrees. For example, in mathing two bio-moleular DTDs, after �nding that

/Bsml/Definitions/Sequenes/Sequene/Feature-tables/Feature-table/

Feature mathes /Sequenes/Sequene/Segment, then for all nodes in the

subtree of Feature, the string before /Feature in its path is ut o�, and for

all the nodes in subtree of Segment, the string before /Segment in its path is

also ut o�. This should yield higher path similarity values for (Feature/id,

Segment/seg-id), (Feature/Loation/Interval-lo/startpos, Segment/

seg-start).

g. Pre-order traversal gives top-down mathing, whih is more eÆient than

bottom-up, and our ombination of tehniques, earlier identi�ation of ore on-

texts, and user input, all help to improve performane on shemas that di�er at

higher levels.

Figure 1 shows our struture for mathing a soure shema S and a tar-

get shema T . One or more iterations may be exeuted, depending on whether

the mode is automati or interative. In interative mode, mathing strategy

seletion and math andidate determination are done interatively, requesting

spei� user input at ritial points, while in automati mode, everything is done

by using default strategies. Eah iteration has 5 steps: optional user interation,

linguisti and data type mathing, strutural mathing, optional ontext hek,

and ombination of math results; the last four steps also have optional user

interations. Math proessing and the input preproessing are desribed in the

following subsetions.
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Fig. 1. Diagram of math proessing

3.1 Input Preproessing

The input onsists of target and soure shemas, and optional domain thesauri.

The Shema Import module produes a tree and a graph representation of

eah shema. In the tree representation, eah element and attribute of a shema

is a node, and sub-elements are hild nodes. Eah node has its type (attribute,

leaf, or parent that is possibly a ontext), data type, height, onstraints, two

sets of mathes (n

j

, sim) for node n

j

in the other tree, for pre-ontext-hek

and post-ontext-hek respetively, et.

The graph representation uses the RDF (direted labeled graph) model. Eah

element and attribute that is a node n

i

beomes an RDF resoure, res

ni

. Eah

node type nt

i

and data type dt

i

beome RDF resoures res

nti

and res

dti

respe-

tively. Corresponding edges are reated for eah node and added to the graph,

two for its parent if it is not the root node, (res

ni

, parent height

ni

, parent

ni

) and

(parent

ni

, hild height

ni

, res

ni

), one for its node type, (res

ni

, nodeType, res

ntni

),

one for its data type, (res

ni

, dataType, res

dtni

), et.

3.2 User interation

Users an optionally provide some good mathes or mismathes, before the initial

iteration. If the target element and the soure element have signi�antly di�erent

names in a spei�ed good math, then users are asked for input to update the

domain thesauri.

3.3 Linguisti and data type mathing

In the urrent prototype, linguisti mathing inludes: (1) terminologial math-

ing, in whih element name and path are normalized through domain spei�

thesauri ontaining a synonym table, an abbreviation table and a hypernym

table; and (2) syntati mathing, whih is purely based on string similarity,

omputed aording to the number of substrings they have in ommon; the im-

plementation in [9℄ is borrowed. For any pair of nodes (n

i

; n

j

) in the two trees,

both normalized name similarity value ns

i;j

and normalized path similarity value

ps

i;j

are omputed.

ns

i;j

= Coe� � StringMath(Normalize(name

ni

;name

nj

))

ps

i;j

= Coe� � StringMath(Normalize(path

ni

; path

nj

))

where Coe� = 0.8 if name

ni

or name

nj

happens to be hypernymi to the other,

otherwise Coe� = 1.0.
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dts

i;j

= Compatibility(dt

ni

, dt

nj

)

The linguisti and data type similarity value, ls

i;j

, is the weighted sum of name,

path and data type similarities. ls

i;j

= ns

i;j

�w

n l

+ ps

i;j

�w

p l

+ dts

i;j

�w

dt l

where w

n l;

w

p l

and w

dt l

are the weight values for name, path and data type

similarity respetively, at the linguisti and data type mathing steps, and w

n l

+

w

p l

+ w

dt l

= 1:0.

If there are multiple soure nodes with big subtrees having almost the same

linguisti and data type similarity to a target node that also has a big subtree

TST , and if these subtrees are also similar, based on their share of linguistially

similar nodes, then this might indiate that the target subtree TST potentially

orresponds to multiple soure subtrees. Questions about whether there exist

multiple math subtrees for this target subtree, whih of the similar ones are

good ones, and whether there are more, should be posed to users. After user input

on mathing subtrees, SST

i

(0 � i � k), for target subtree TST , the original

problem of mathing soure shema tree S and target shema tree T is divided

into k+1 smaller mathing problems: mathing T � TST with S �

P

SST

i

,

mathing TST with eah SST

i

for 0 � i � k.

3.4 Strutural mathing

The Similarity Flooding algorithm for graph mathing in [12℄ was extended to

strutural mathing for our prototype. Taking as input graphs G

t

; G

s

, and a

set of initial similarity values, InitMap, between the nodes of the graphs, it

iteratively propagates initial similarity values of nodes to surrounding nodes,

using the intuition that neighbors of similar nodes are similar, and �nally returns

the strutural similarity gs

i;j

of any node n

i

in G

t

and any node n

j

in G

s

. The

original algorithm was modi�ed to freeze input mappings from the user and/or of

high similarity from previous steps for some nodes. The initial mapping InitMap

inludes all user input mathes, and the best andidate with max ls

i

� th

l g

for

eah target node from the linguisti and data type mathing step, where th

l g

is

a similarity threshold. Thus

gs

i;j

= GraphMath(G

t

; G

s

, InitMap)

The quality of InitMap has a very important inuene on the output of the

strutural mather; users an also improve quality by on�rming good mathes,

denying bad ones, and adding new ones. The following shows how this works.

The s bib.dtd and s arts.dtd in Figure 2 are simpli�ed to provide more read-

able graphs. Their representations are shown in Figure 3 (the edge label l1

stands for \hild at level 1",dt for \data type"). Here the InitMap ontains

([bib/book/title, arts/book/title℄, 0.77) from the linguisti mathing

step, and built-in mathes for DTD node and data types, suh as ([parentElem,

parentElem℄, 1.0), ([leafElem, leafElem℄, 1.0), ([attribute, attribute℄, 1.0),

([PCDATA, PCDATA℄, 1.0), ([CDATA, CDATA℄, 1.0).

Figure 4 (a) shows the pairwise onnetivity graph. The positive value on

top of a mathing pair node is its initial similarity, and is zero if not shown. The

propagation graph in Figure 4 (b) is indued from this pairwise onnetivity

graph (but the added propagation edges of the 7 nodes at lower part are not
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Fig. 2. s bib.dtd and s arts.dtd

Fig. 3. The graphs for s bib.dtd and s arts.dtd

shown, in order to redue the omplexity). For eah edge (soure, label, target),

an opposite edge is added for propagating target node's similarity to the soure

node. The edge label is hanged to a weight value that indiates how muh of

the similarity value of the soure node will propagate to the target node in eah

iteration. The weight value is determined by the number of outgoing same label

edges from the soure node, and whether the di�erent target nodes are treated

equally or weighted. Here we treat all targets equally, so the weight for eah

outgoing same label edge is 1.0 divided by the number of these edges. Several

�xpoint formulas were explored in [12℄; in the basi one, after eah iteration,

the map pair node similarity sim

n+1

=Normalize(sim

n

+ �weight � sim

soure

)

for eah inoming edge). Propagation ontinues until the Eulidean length of

the residual vetor �(sim

n+1

, sim

n

) is less than threshold. We made the fol-

lowing modi�ations: (1) \good" map pair nodes propagate their similarity to

neighbors, but neighbors don't propagate to them, whih means that the propa-

gation formulae are applied only to \non-good" map pair nodes; and (2) \good"

mathing pair nodes don't join the normalization proess.

In Figure 4 (b), the �nal similarity values (sim1, sim2) are shown around

eah map pair node, where sim1 is from the original algorithmwithout separating

shared elements in the input graph, and sim2 is from the modi�ed algorithm that

�xes high similarity initial mappings and uses paths instead of elements to make

shared elements ontext dependent. The seond gives higher similarity values for

orret mathes and lower similarity values for most wrong mathes, although

it doesn't di�erentiate ([bib/book, arts/book℄, 0.88) from ([bib/book,

arts/artile℄, 0.88), the later ombination of linguisti and strutural simi-

larity makes (bib/book, arts/book)win signi�antly. The �rst method doesn't

di�erentiate ([year, title℄, 0.42) from ([year, date℄, 0.42), sine they

8



have the same similarity value, and it gives too low similarity to ([bib, arts℄,

0.29); both ases ause diÆulty on �ltering.

Fig. 4. (a) Pairwise onnetivity graph and (b) Indued propagation graph

After this graph mathing step, the similarity between two tree nodes is the

weighted sum of similarity values of name, path, data type and struture:

s

i;j

= ns

i;j

�w

n 

+ ps

i;j

�w

p +

+ dts

i;j

�w

dt 

+ gs

i;j

�w

g 

(*)

where w

n 

, w

p 

, w

dt 

, and w

g 

are the weight values for ombining the name,

path, data type and strutural similarities to identify the best math andidates

for eah node right before the following ontext hek step, and w

n 

+ w

p 

+

w

dt 

+ w

g 

= 1:0.

3.5 Context hek

Mathes are re�ned by heking and re-mathing subtrees rooted at ore ele-

ments, as disussed in (3d) above. After ore ontexts are identi�ed, they are

sorted in asending order of height from the root, for top-down mathing re�ne-

ment. For eah node n

i

, hek if its best mathing node has maximum similarity

bigger than a relatively high similarity threshold. If not, for this important target

node, there may be no good math from the ombined mathing steps, so that its

subtree mathes also might not be good, and user interation is requested; or in

automati mode, some mathes with very low similarity within the subtree are

thrown away and hild nodes that are ore nodes are heked further. If a good

math is found, re�nement of subtree mathes to best mathing node n

j

's sub-

tree starts by omputing initial mappings, InitMap

subtree ni;subtree nj

whih are

the best so far within these two subtrees (but not the best at whole trees instead)

and with similarity bigger than a threshold. Then subtree graphs G

subtree ni

and

G

subtree nj

are generated as input with InitMap

subtree ni;subtree nj

together for

GraphMath to ompute again the strutural similarities, gs

h;k

of nodes n

h

in

n

i

's subtree and nodes n

k

in n

j

's subtree, by
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gs

h;k

= GraphMath(G

subtree ni

; G

subtree nj

, InitMap

subtree ni;subtree nj

)

More heking is needed to see whether any almost equally good multiple mathes

with very high similarity values from the linguisti and data type mathing step

for these ore nodes are still ompeting andidates after ontext hek. If they are

very di�erent, this might indiate that some multiple mathes would be missed.

User input on speifying whether or not they are multiple mathes an avoid

missing multiple good mathes. Then the ore node subtree is mathed to the

multiple mathing subtrees as disussed above, and a new similarity value for n

h

and n

k

is omputed using formula (*), but the weight values for similarities from

name, path, data type and graph mathers may hange. Then for eah target

node n

i

, another set of mathes (n

j

, sim), where n

j

is a node in the soure tree,

is omputed as the mathing result of the ontext hek mather.

Core nodes might not group at only one or two levels in a shema tree, and

they might not be identi�ed preisely by heuristis. User input on speifying

some or all ore nodes an help the system onentrate on heking important

subtree mathes. When it is hard for the system to deide good mathes for a

ore node, user feedbak an signi�antly improve whole subtree mathes, and

signi�antly redue total user e�ort.

3.6 Combination of math results

After performing the above mathing steps, eah target node gets a set of an-

didates from ombining the results from the four individual name, path, data

type and strutural mathers, and another set of andidates from the ontext

hek mather. Seleting top mathes from one set, or from ombination of both

sets, depends on how they di�er from eah other. If the ontext hek results

win signi�antly with omparison based on the best math similarity value, the

ontext hek results will be seleted, otherwise the pre-ontext-hek results are

seleted. If they are similar, user input is requested, or by default the top an-

didates from both sets are seleted by sorting them together non-interatively.

The diretion of mathing also a�ets the quality of math results aord-

ing to our experiments and prior work [3℄. Users an hoose seleting math

results from a single diretion or both diretions based on their knowledge of

the shemas. Both-diretion means mathing target to soure and also mathing

soure to target, if a orrespondene (n

t

, n

s

) in the target to soure mapping is

seleted only if target node n

t

is one of top k (e.g., k = 2) almost equal andi-

dates for soure node n

s

in the soure to target mapping. Both-diretion is the

default strategy, sine it performs better on the average.

User input an also help deide how many best math andidates should be

seleted (by default only the best one is seleted), the threshold for seleting or

throwing mathes with lower similarity values for eah target node, and what

delta value for deiding multiple andidates with similar similarity values almost

equally in order to detet real multiple mathes for output, et.

It will save signi�ant post-math manual work by asking user input here

to organize mathes in the right format for further appliations, and to identify
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neessary operations if they ould not be automatially reognized or have not

been spei�ed earlier, espeially for n:m mathes. Sine without formal metadata,

ontologial information or ontent information, it is nearly always infeasible to

reognize preise onversion funtions for n:m mathes, the e�ort on developing

a high quality user interfae to support diretly speifying them onveniently

seems more helpful than asking users for formal metadata or domain ontologies

as hints to disover them. We have not yet provided a good interfae for delivering

user input onveniently, but this should be done soon.

4 Examples and results

Three appliation domains have been used to evaluate our approah: 1) three

book DTDs obtained from the web, bibliography (b), arts (a), bookstore (st), and

a mediated one (bk), have been tested in our data integration prototype system

DDXMI, using manual mathing [13℄; 2) three bio-moleular DTDs, GAME (g),

BSML (bs), BIOML (bi), whih have been trimmed to remove some branhes that

are huge but irrelevant to sequene enoding, or were aused by unsophistiated

design, plus a mediated DTD (s) for gene sequene enoding only; and 3) �ve

XML Shemas for purhase orders, CIDX (), Exel (e), Noris (n), Paragon (p),

and Apertum (ap), used by COMA [3℄. The harateristis of relevant shemas

are shown in Table 1.

Domain Bibliography Biology Purhase Order

Shema b st a bk bs g bi s  e n p ap

#Paths 13 7 21 13 69 124 32 30 40 54 65 80 145

#Nodes 11 7 15 13 58 66 21 30 40 35 46 74 80

Max Depth 4 4 5 5 10 7 8 4 4 4 4 6 5

Table 1. Charateristis of the tested shemas

A partial evaluation of the quality of our mathing proess an be obtained

using the same measures used in [3, 12℄, derived from the information retrieval

and data mining �elds. However, as argued earlier in the paper, a metri that

ounts the total user e�ort would provide a muh more appropriate evaluation,

sine our aim is to minimize this quantity, rather than to ompete diretly with

systems that are less interative. The manually determined real mathes R for a

math task are ompared with the mathes P returned by automati mathing

proess. The following are ounted: the orretly identi�ed mathes T , the wrong

mathes F = P � T , and the missed mathes M = R� T . These orrespond to

true positives, false positives, and false negatives respetively. Then the following

three measures are omputed:

Preision = T=P = T=(T + F )

Reall = T=R

Overall = 1-(F +M)=R = (T � F )=R = Reall � (2� 1=Preision)

The �rst gives the reliability of the mapping, the seond gives the share of real

mathes found, and the third is a ombined measure for mapping quality, taking

aount of the post-math e�ort needed for both removing wrong and adding

missed mathes.
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Fig. 5. Measure values: no ontext hek, non-interative mode, 1-diretion

Fig. 6. Measure values: with ontext hek, non-interative mode, 1-diretion

Fig. 7. Measure values: with ontext hek, interative mode, 1-diretion

Fig. 8. Measure values: with ontext hek, non-interative mode, 2-diretion

Fig. 9. Measure values: no ontext hek, interative mode, 2-diretion

12



5 Summary and future work

The test results in Figures 5{9 show that our approah works well, in omparison

with the purhase order shema tests of COMA [3℄ and Cupid [5℄. The ontext

hek step seems espeially helpful in 1-diretion math, improving the overall

sore signi�antly. For example, in the task of mathing target arts dtd with

soure bookstore dtd (a�st in Figure 5{6) in only one diretion (from the tar-

get to the soure, trying to math target nodes as muh as possible), arts is

about both book and artile, ontext hek help prune all mismathes for the

nodes under artile subtree. But without ontext hek, arts/artile/author,

arts/artile/title get mathed to bookstore/book/author, bookstore/bo-

ok/title respetively, with relatively high similarity values. For simpler tasks

with few multiple-to-multiple mathes, in non-interative mode, both-diretion

works as well as ontext hek. In the above example, arts/artile/author is

not almost equal andidate as arts/book/author to bookstore/book/author

in bookstore to arts mapping, so it and the others in artile subtree are �l-

tered out. User interations help identify n:m mathes with semanti funtions

where good 1:1 mathes an not be determined, and ertify many mathes with

relatively low similarity values, during mathing proess. Some of the overall

measures are still very low beause the di�erene of prie units for book DTDs

an't be deteted without analyzing the data ontent or having more semanti

metadata, or beause neessary onditions an't be found, or even determined

to be needed for mathing, using only the available information.

Many issues remain to be studied. One is representing the generated map-

pings to failitate user editing, for orreting false mathes, adding missed mathes,

attahing restruturing and semanti onversion funtions, making sure that all

heterogeneities are resolved for the next step, query disovery, whih is extremely

important for data integration. Seond, semanti metadata ould make semanti

mathing more onvenient and reliable, for example, to help with �nding n:m

mathes; we are now studying this problem for eologial data integration and

analysis problems. A third issue is using formal ontologies to help with shema

mapping, assuming an ontology is attahed to eah shema; we are exploring on-

tology mappings and developing support tehniques [14℄. Math omposition and

reuse also deserve further researh for the above issues, and have been touhed

upon for the 1:1 ase by [3, 8℄. Finally, we wish to ondut experiments with

groups of users, to validate our proposed total user e�ort metri, and evaluate

our system in its interative mode.
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